MATH 6101 Fall 2008

Infinite Series and Convergence

Definition

Given any sequence $\{a_n\}$ we associate a new sequence $\{s_n\}$ of *partial sums*:

$$\begin{split} s_n &= a_1 + a_2 + a_3 + a_4 + \ldots + a_n \\ \text{We define the } \textbf{series } \sum a_n \text{ to be the limit:} \\ & \sum a_n = \lim_{n \to \infty} s_n \\ \text{If the sequence of partial sums converges, we say that the infinite series converges. Otherwise, we say that the series is divergent.} \end{split}$$

MATH 6101

05-Nov-2008

Examples

$$\begin{aligned} & \sum_{n=0}^{\infty} a^n = \frac{1}{1-a}, \quad |a| < 1 \\ & \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1 \end{aligned}$$

$$\begin{aligned} & \sum_{n=1}^{\infty} \frac{n}{2^n} = 2 \qquad \sum_{n=1}^{\infty} \frac{n^2}{2^n} = 6 \qquad \sum_{n=1}^{\infty} \frac{n^3}{2^n} = 26 \end{aligned}$$

First Series $\sum_{k=1}^{\infty} k = 1+2+3+4+5+\dots+k+\dots$ $s_n = 1+2+3+4+\dots+n$ $s_n = \frac{n(n+1)}{2}$ $\lim_{n \to \infty} s_n = \lim_{n \to \infty} \frac{n(n+1)}{2} = +\infty$ Thus, the limit of the sequence of partial sums does not exist as a real number, and the series diverges.

Does this conv	$\sum_{n=1}^{\infty} \frac{1}{n^2}$ werge or diverge?	
We know that	$2n^2 \ge n(n+1) \text{ so}$ $\frac{2}{n(n+1)} \ge \frac{1}{n^2}$	
$\sum_{n=1}^{\infty} \frac{1}{n^2}$ Therefore, it	$\frac{1}{2} \le \sum_{n=1}^{\infty} \frac{2}{n(n+1)} = 2$ does converges.	
05-Nov-2008	MATH 6101	10

Continued

We noted earlier that Euler proved in 1735 that

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \dots = \frac{\pi^2}{6}$$

We also know more:

$$\sum_{n=1}^{\infty} \frac{1}{n^{2k}} = \frac{2^{2k-1} |B_{2k}| \pi^{2k}}{(2k)!}$$

where B_n is the *n*th *Bernoulli* number. Euler only went through the exponent 26.

MATH 6101

Bernoulli Numbers

The Bernoulli numbers B_n were discovered by Jakob Bernoulli in conjunction with computing the sums of powers:

$$\sum_{k=0}^{m-1} k^{n} = 0^{n} + 1^{n} + 2^{n} + 3^{n} + 4^{n} + \dots (m-1)^{n}$$

MATH 6101

For example:

$$\sum_{k=0}^{n} k = \frac{1}{2}n^{2} + \frac{1}{2}n$$
$$\sum_{k=0}^{n} k^{2} = \frac{1}{3}n^{3} + \frac{1}{2}n^{2} + \frac{1}{6}n$$

Bernoulli Numbers

The *p*th Bernoulli number is the coefficient of n in the polynomial describing $\sum k^p$. Other techniques for generating the Bernoulli numbers come from

$$\sum_{k=0}^{n-1} k^{p} = \frac{1}{p+1} \sum_{k=0}^{p} \binom{p+1}{k} B_{k} n^{p+1-k}$$

 $\frac{x}{e^x - 1} = \sum_{n=0}^{\infty} B_n \frac{x^n}{n!}$

or

Bernoulli Numbers $\boldsymbol{n} \quad \boldsymbol{B}_n$ $\boldsymbol{n} \boldsymbol{B}_{\boldsymbol{n}}$ 12 -691/2730 0 1 -1/214 7/6 1 2 1/6 16 -3617/510 4 -1/30 18 43867/798 1/42 -174611/330 6 20 8 -1/30 22 854513/138 10 5/66 24 -236364091/2730 $B_{2n+1} = 0, n > 0$ MATH 6101

Absolute Convergence

If the terms a_n of an infinite series $\sum a_n$ are all nonnegative, then the partial sums $\{s_n\}$ form a non-decreasing sequence.

Therefore, $\sum a_n$ either converges or diverges to ∞ .

 $\sum |a_n|$ is non-decreasing for any sequence.

The series $\sum a_n$ is said to *converge absolutely* if $\sum |a_n|$ converges.

Conditional Convergence

A series *converges conditionally*, if it converges, but not absolutely.

Does the series ∑(-1)ⁿ converge absolutely, conditionally, or not at all?
Does the series ∑(1/2)ⁿ converge absolutely, conditionally, or not at all?

•Does the series $\sum (-1)^{n+1}/n$ converge absolutely, conditionally, or not at all (this series is called alternating harmonic series)?

Order of Summation

Theorem:

(i) Let ∑a_n be an absolutely convergent series. Then any rearrangement of terms in that series results in a new series that is also absolutely convergent to the same limit.
(ii) Let ∑a_n be a conditionally convergent

series. Then, for any real number c there is a rearrangement of the series such that the new resulting series will converge to c.

MATH 6101

(To be proven later)

Algebra of Series

Let ${\textstyle \sum} a_n$ and ${\textstyle \sum} b_n$ be two absolutely convergent series. Then

- (i) The sum of the two series is again absolutely convergent. $\sum (a_n + b_n) = \sum a_n + \sum b_n$
- (ii) The difference of the two series is again absolutely convergent. $\sum (a_n b_n) = \sum a_n \sum b_n$
- (iii) The product of the two series is again absolutely convergent. Its limit is the product of the limit of the two series.

nth Term TestTheorem: $If \sum a_n$ converges then $\{a_n\} \rightarrow 0$.Metaproof: $If \sum a_n$ converges, then the sequence of
partial sums converges $\{s_n\} \rightarrow L$. Note that the sequence
 $\{s_{n-1}\}$ also converges to L. Thus, $\lim_{n\to\infty} a_n = \lim_{n\to\infty} (s_n - s_{n-1}) = \lim_{n\to\infty} s_n - \lim_{n\to\infty} s_{n-1} = L - L = 0.$ Corollary: $If |a| \ge 1$ then $\sum a^n$ diverges.Inth Term Test: $If \lim a_n \ne 0$, then $\sum a_n$ diverges.

Comparison Test Proof: Set $d_n = a_0 + a_1 + a_2 + \dots + a_n$ $e_n = b_0 + b_1 + b_2 + \dots + b_n$ $\{d_n\}$ and $\{e_n\}$ are increasing sequences. $0 \le d_n \le e_n$

MATH 6101

9

Comparison Test

Each converges or diverges depending on whether it is bounded or not.

 $\sum b_n \text{ converges} \Longrightarrow \{e_n\} \text{ converges} \Longrightarrow \{e_n\}$ bounded $\Longrightarrow \{d_n\}$ bounded $\Longrightarrow \{d_n\}$ converges $\Longrightarrow \sum a_n$ converges

 $\sum a_n \text{ diverges} \Longrightarrow \{d_n\} \text{ diverges} \Longrightarrow \{d_n\}$ unbounded $\Longrightarrow \{e_n\} \text{ unbounded} \Longrightarrow \{e_n\}$ diverges $\Longrightarrow \sum b_n \text{ diverges}$

Limit Comparison Test

Theorem:

Let $\sum a_n$ and $\sum b_n$ be two series. Suppose also $r = \lim |a_n/b_n|$ exists and $0 < r < +\infty$. Then $\sum a_n$ converges absolutely if and only if $\sum b_n$ converges absolutely.

Limit Comparison Test

Proof: $r = \lim |a_n/b_n|$ and r is a positive real number. There are constants c and C,

 $0 < c < C < +\infty$

so that for some N > 1 if n > N

 $c < |a_n/b_n| < C.$

Assume $\sum a_n$ converges absolutely. For n > N, $c|b_n| < |a_n|$. Therefore, $\sum b_n$ converges absolutely by the Comparison Test.

MATH 6101

Limit Comparison Test

Assume that $\sum b_n$ converges absolutely. For n > N, $|a_n| < C|b_n|$.

 $C \sum b_n$ converges absolutely. $\sum a_n$ converges absolutely by Comparison Test.

Cauchy Condensation Test

Theorem:

Suppose $\{a_n\}$ is a decreasing sequence of positive terms. Then the series $\sum a_n$ converges if and only if the series $\sum 2^k a_{2^k}$ converges.

p-series Test

Corollary:

For a positive number p, $\sum 1/n^p$ converges if and only if p > 1.

p-series Test

MATH 6101

Proof:

If p < 0 then the sequence $\{1/n^p\}$ diverges to infinity. Hence, the series diverges by the *n*th Term Test. If p > 0 then consider the series

 $\sum 2^n a_{2^n} = \sum 2^n / (2^n)^p = \sum (2^{1-p})^n.$

By the geometric series,

• if 0 , so right-hand series diverges;• if <math>p > 1 then $2^{1:p} < 1$, so right-hand series converges. Now the result follows from the Cauchy Condensation Test.

Root Test

Theorem:

Let $\sum a_n$ be a series and let

 $\alpha = \limsup |a_n|^{1/n}.$

The series $\sum a_n$

- i. converges absolutely if $\alpha < 1$,
- ii. diverges if $\alpha > 1$.
- iii. Otherwise $\alpha = 1$ and the test gives no information.

Root Test

Proof:

i) Suppose that $\alpha < 1$. Then choose an $\varepsilon > 0$ so that $\alpha + \varepsilon < 1$. By definition of lim sup there exists N so that $\alpha - \varepsilon < \text{lub}\{|a_n|^{1/n} | n > N, \alpha + \varepsilon\}$. In particular, $|a_n|^{1/n} < \alpha + \varepsilon$ for n > N, so $|a_n| < (\alpha + \varepsilon)^n$ for n > N. Since $0 < \alpha + \varepsilon < 1$, the geometric series $\sum (\alpha + \varepsilon)^n$ converges. By the Comparison Test $\sum |a_n|$ converges. This means that $\sum a_n$ also converges.

MATH 6101

Root Test

Proof:

- i) If a > 1, then there is a subsequence of $|a_n|^{1/n}$ that has limit a > 1. That means that $|a_n| > 1$ for infinitely many n. The sequence $\{a_n\}$ cannot converge to 0, so $\sum a_n$ cannot converge.
- ii)For the series $\sum 1/n$ and $\sum 1/n^2$, $\alpha = 1$. The harmonic series diverges and the other converges, so $\alpha = 1$ can not guarantee either convergence or divergence of the series.

Ratio Test

Theorem:

The series $\sum a_n$

i. converges absolutely if $\limsup |a_{n+1}/a_n| < 1$,

- ii. diverges if $\liminf |a_{n+1}/a_n| > 1$.
- iii. Otherwise
 - $\lim \inf |a_{n+1}/a_n| \le 1 \le \limsup |a_{n+1}/a_n|$ and the test gives no information.

Alternating Series Test

Theorem:

If $a_1 \ge a_2 \ge \dots \ge a_n \ge \dots \ge 0$ and $\{a_n\}$ converges to zero, then the alternating series $\sum (-1)^n a_n$ converges.

