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MATH 6101
Fall 2008

Infinite Series and Convergence

Definition

Given any sequence {an} we associate a new 
sequence {sn} of partial sums:

sn = a1 + a2 + a3 + a4 + … + an

We define the series ∑an to be the limit:We define the series ∑an to be the limit:

∑an = limnØ∞ sn

If the sequence of partial sums converges, we say 
that the infinite series converges. Otherwise, we 
say that the series is divergent.
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In this case we have seen that:
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In this case we have seen that:
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Do these converge or diverge?
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First Series
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Thus, the limit of the sequence of partial sums 
does not exist as a real number, and the series 
diverges. 

( 1)
lim lim

2nn n

n n
s

→∞ →∞

+
= =+∞

Second Series

1

times

1 1 1 1 1 1

1 1 1

lim lim

n

n
n

n

s n

s n

∞

=

= + + + + +

= + + + =

= =+∞

∑

05-Nov-2008 MATH 6101 8

nn n→∞ →∞
+

Again, the sequence of partial sums does not 
exist as a real number, and the series diverges.

Third Series
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This one is more difficult to see, but in 1350 
Nicole Oresme proves the following:
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So this one does not add up to a finite number.  
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Does this converge or diverge?

We know that   2n2 ≥ n(n+1) so

2
1

1

n n=

∞

∑

2 1
≥

05-Nov-2008 MATH 6101 10

2( 1)n n n
≥

+

2
1 1

1 2
2

( 1)n nn n n

∞ ∞

= =

≤ =
+∑ ∑

Therefore, it does converges. 

Continued
We noted earlier that Euler proved in 1735 that
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We also know more:
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We also know more:
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where Bn is the nth Bernoulli number. Euler 
only went through the exponent 26.

Bernoulli Numbers
The Bernoulli numbers Bn were discovered by 
Jakob Bernoulli in conjunction with computing 
the sums of powers:
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Bernoulli Numbers
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Bernoulli Numbers
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Bernoulli Numbers
Bernoulli then states:
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Bernoulli Numbers
The pth Bernoulli number is the coefficient of n 
in the polynomial describing ∑kp.  

Other techniques for generating the Bernoulli 
numbers come from
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Bernoulli Numbers
n Bn n Bn

0 1 12 −691/2730

1 −1/2 14 7/6

2 1/6 16 −3617/510  
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4 −1/30 18 43867/798

6 1/42 20 −174611/330

8 −1/30 22 854513/138

10 5/66 24 −236364091/2730
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Series
We will be able to show later that the series
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converges if and only if p > 1.  The easier proof 
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g y p p
requires a little calculus.
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Absolute Convergence
If the terms an of an infinite series ∑an are all 
nonnegative, then the partial sums {sn} form a 
non-decreasing sequence. 

Therefore, ∑an either converges or diverges to 
∞  
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∞. 

∑|an| is non-decreasing for any sequence. 

The series ∑an is said to converge absolutely if 
∑|an| converges.

Conditional Convergence
A series converges conditionally, if it 
converges, but not absolutely.

•Does the series ∑(-1)n converge absolutely, 
diti ll   t t ll?
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conditionally, or not at all?

•Does the series ∑(½)n converge absolutely, 
conditionally, or not at all?

•Does the series ∑ (-1)n+1/n converge 
absolutely, conditionally, or not at all (this 
series is called alternating harmonic series)?
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Order of Summation
Theorem:

(i) Let ∑an be an absolutely convergent series. 
Then any rearrangement of terms in that 
series results in a new series that is also 
absolutely convergent to the same limit
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absolutely convergent to the same limit.

(ii) Let ∑an be a conditionally convergent 
series. Then, for any real number c there is a 
rearrangement of the series such that the new 
resulting series will converge to c.

(To be proven later)

Algebra of Series
Let ∑an and ∑bn be two absolutely convergent series. 

Then

(i) The sum of the two series is again absolutely 
convergent. ∑(an + bn) = ∑an + ∑bn

(ii) The difference of the two series is again absolutely 
t  ∑(  b )  ∑  ∑b
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convergent. ∑(an − bn) = ∑an − ∑bn

(iii) The product of the two series is again absolutely 
convergent. Its limit is the product of the limit of 
the two series.

Algebra of Series
The Cauchy product of two series ∑an and ∑bn is 

defined as follows. The Cauchy product is
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nth Term Test
Theorem:  If ∑an converges then {an}Ø0.

Metaproof:  If ∑an converges, then the sequence of 
partial sums converges {sn}ØL.  Note that the sequence 
{sn-1} also converges to L. Thus, 
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( )1 1lim lim lim lim 0.n n n n nn n n n
a s s s s L L− −→∞ →∞ →∞ →∞

= − = − = − =

Corollary:  If |a|≥ 1 then ∑an diverges.

nth Term Test: If lim an ≠ 0, then ∑an diverges.

Comparison Test
Theorem:  If ∑an and  ∑bn are series so that

0 ≤ an ≤ bn.

Then

if ∑bn converges so does ∑an;

if ∑an diverges so does ∑bn. 
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f ∑ n g ∑ n

Comparison Test
Proof:  Set 

dn = a0 + a1 + a2 + … + an

en = b0 + b1 + b2 + … + bn

{d } and {e } are increasing sequences   
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{dn} and {en} are increasing sequences.  

0 ≤ dn ≤ en



11/5/2008

10

Comparison Test
Each converges or diverges depending on 
whether it is bounded or not.

∑bn converges ï {en} converges ï {en} 
bounded ï {dn} bounded ï {dn} 
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converges ï ∑an converges 

∑an diverges ï {dn} diverges ï {dn} 
unbounded ï {en} unbounded ï {en} 
diverges ï ∑bn diverges 
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2 2n nn

Limit Comparison Test
Theorem:

Let ∑an and ∑bn be two series. Suppose also

r = lim |an/bn| exists and 0 < r <+∞. 

Then ∑an converges absolutely if and only if ∑bn
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converges absolutely.
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Limit Comparison Test
Proof: r = lim |an/bn| and r is a positive real 
number. There are constants c and C, 

0 < c < C < +∞  

so that for some N > 1 if n > N 
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c < | an/bn | < C.

Assume ∑an converges absolutely. For n > N, c|bn| 
< |an|. Therefore, ∑bn converges absolutely by the 
Comparison Test.

Limit Comparison Test
Assume that ∑bn converges absolutely. For n > N, 

|an| < C|bn|. 

C ∑bn converges absolutely. ∑an converges 
absolutely by Comparison Test.
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Cauchy Condensation Test
Theorem:

Suppose {an} is a decreasing sequence of positive 
terms. Then the series ∑an converges if and only if 
the series ∑2ka2k converges.
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p-series Test
Corollary:

For a positive number p,  ∑ 1/np converges if and 
only if p > 1.
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p-series Test
Proof:

If p < 0 then the sequence {1/np} diverges to infinity. 
Hence, the series diverges by the nth Term Test.

If p > 0 then consider the series 

∑2na n = ∑2n/(2n)p = ∑(21-p)n
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∑2 a2n = ∑2 /(2 ) = ∑(2 p) .

By the geometric series, 

• if  0 < p ≤ 1, 21-p ≥ 1, so right-hand series diverges;

• if p > 1 then 21-p < 1, so right-hand series converges.

Now the result follows from the Cauchy Condensation 
Test.

Root Test
Theorem:

Let ∑an be a series and let 

α = lim sup|an|1/n. 

The series ∑an
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i. converges absolutely if α < 1,

ii. diverges if α > 1.

iii. Otherwise α = 1 and the test gives no 
information.
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Root Test
Proof:

i) Suppose that α < 1. Then choose an ε > 0 so that 
α + ε < 1. By definition of lim sup there exists N
so that α – ε < lub{|an|1/n | n > N, α + ε}. In 
particular  |a |1/n < α + ε for n > N  so |a |<(α + 
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particular, |an| < α + ε for n > N, so |an|<(α + 
ε)n for n > N.  Since  0 < α + ε < 1, the geometric 
series ∑(α + ε)n converges. By the Comparison 
Test ∑|an| converges. This means that ∑an also 
converges.

Root Test
Proof:

i) If α > 1, then there is a subsequence of |an|1/n that 
has limit α > 1. That means that |an| > 1 for 
infinitely many n. The sequence {an} cannot 
converge to 0  so ∑a cannot converge
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converge to 0, so ∑an cannot converge.

ii)For the series ∑1/n and ∑1/n2, α = 1. The 
harmonic series diverges and the other 
converges, so α = 1 can not guarantee either 
convergence or divergence of the series.

Ratio Test
Theorem:

The series ∑an

i. converges absolutely if lim sup|an+1/an| < 1,

ii. diverges if lim inf|an+1/an| > 1.
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iii. Otherwise 
lim inf|an+1/an| ≤ 1 ≤ lim sup|an+1/an| 
and the test gives no information.
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Alternating Series Test
Theorem:

If a1 ≥ a2 ≥ …  ≥  an ≥ … ≥ 0 and {an} converges to 
zero, then the alternating series ∑(-1)nan converges.
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