MATH 6101 Fall 2008

Series and a Famous Unsolved Problem

Problems

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)} = \frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \frac{1}{7 \cdot 9} + \cdots$$

12-Nov-2008

MATH 6101

Problems

$$\sum_{n=1}^{\infty} \frac{1}{n(n+4)}$$

 $\frac{25}{48}$

12-Nov-2008

$$\sum_{n=1}^{\infty} \frac{n}{(n+1)!}$$

1

12-Nov-2008 MATH 6101

Problems

$$2 + \frac{3}{2^3} + \frac{4}{3^3} + \frac{5}{4^3} + \dots + \frac{n+1}{n^3} + \dots$$

12-Nov-2008 MATH 6101

Problems

$$1 + \frac{1}{2^2} + \frac{1}{3^3} + \frac{1}{4^4} + \dots = \sum_{n=1}^{\infty} \frac{1}{n^n}$$

12-Nov-2008

$$\sum_{n=1}^{\infty} \frac{n^n}{n!}$$

$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$

40 N--- 0000

MATH 6101

Problems

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{(n!)^2}$$

12-Nov-2008

MATH 6101

Problems

$$\sum_{n=1}^{\infty} \frac{(2n!)}{n^4}$$

12-Nov-2008

$$\sum_{n=0}^{\infty} \left(\frac{n}{n+1} \right)^n$$

12-Nov-2008 MATH 6101

Problems

$$\sum_{n=1}^{\infty}nr^n$$
, $|r|<1$

12-Nov-2008 MATH 6101

Problems

Show
$$\sum_{n=1}^{\infty} nr^n = \frac{r}{(1-r)^2}$$

12-Nov-2008 MATH 6101 12

Find
$$\sum_{n=1}^{\infty} \frac{n}{2^n}$$

12-Nov-2008

MATH 6101

Prime Numbers

Statement:

There are an infinite number of prime numbers.

Proof A (Euclid):

Assume not, that is assume that there are a finite number of prime numbers: $p_1, p_2, p_3, ..., p_n$. Let $M = (p_1 \times p_2 \times p_3 \times ... \times p_n) + 1$. Note that M is not divisible by $p_1, p_2, p_3, ...$ or p_n , since none of these divide 1. Thus, M is divisible only by itself and 1. Therefore, M is prime and not in the list - a

12-Nov-2008

contradiction.

MATH 6101

 $\begin{array}{c} \textbf{Prime Numbers} \\ \textbf{Proof B (Euler)} : (\text{Using series}) \end{array}$

Assume that there are a finite number of prime numbers: 2, 3, 5,...,p, where p is the largest prime.

$$\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n = \frac{1}{1-1/2} = 2$$

$$\sum_{n=0}^{\infty} \left(\frac{1}{3} \right)^n = \frac{1}{1 - 1/3} = \frac{3}{2}$$

$$\sum_{n=0}^{\infty} \left(\frac{1}{p}\right)^n = \frac{1}{1 - 1/p} = \frac{p}{p - 1}$$

Prime Numbers

Thus the product is finite:

$$\left(\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n\right) \times \left(\sum_{n=0}^{\infty} \left(\frac{1}{3}\right)^n\right) \times \cdots \times \left(\sum_{n=0}^{\infty} \left(\frac{1}{p}\right)^n\right) = \left(2\right) \left(\frac{3}{2}\right) \cdots \left(\frac{p}{p-1}\right)$$

What does the product on the left hand side really look like?

$$\begin{split} &\left(\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^{n}\right) \times \left(\sum_{n=0}^{\infty} \left(\frac{1}{3}\right)^{n}\right) \times \dots \times \left(\sum_{n=0}^{\infty} \left(\frac{1}{p}\right)^{n}\right) = \\ &\left(1 + \frac{1}{2} + \frac{1}{2^{2}} + \frac{1}{2^{3}} + \dots\right) \left(1 + \frac{1}{3} + \frac{1}{3^{2}} + \frac{1}{3^{3}} + \dots\right) \dots \left(1 + \frac{1}{p} + \frac{1}{p^{2}} + \frac{1}{p^{3}} + \dots\right) \right) \end{split}$$

12-Nov-2008 MATH 6101

Prime Numbers

If we distribute the multiplication through the addition we get an infinite sum each of whose summands looks like

$$\frac{1}{2^{d_2}} \frac{1}{3^{d_3}} \frac{1}{5^{d_5}} \cdots \frac{1}{p^{d_p}} = \frac{1}{2^{d_2} \cdot 3^{d_3} \cdot 5^{d_5} \cdots p^{d_p}}$$

where each of the d_k is a non-negative integer.

Each summand occurs exactly once.

The denominator is a positive integer and each positive integer appears exactly once. Therefore

$$\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^{n} \times \left(\sum_{n=0}^{\infty} \left(\frac{1}{3}\right)^{n}\right) \times \dots \times \left(\sum_{n=0}^{\infty} \left(\frac{1}{p}\right)^{n}\right) = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \dots \right)$$
12-Nor-2008
MATH 6101

Prime Numbers

The right hand side is the harmonic series which diverges and is not a real number. This is the needed contradiction.

12-Nov-2008

MATH 6101

Prime Numbers

This wasn't enough for Euler. He wanted to see what size the set of primes was. He showed the sum of the reciprocals of all prime numbers diverges.

Theorem: $\sum 1/p$ diverges.

Proof:

From above we know that

$$\sum_{n=1}^{\infty} \frac{1}{n} = \prod_{p \text{ prime}} \left(\frac{1}{1 - p^{-1}} \right)$$

12-Nov-2008

Prime Numbers

Take the log of both sides.

$$\ln\!\left(\sum_{n=1}^{\infty}\frac{1}{n}\right) = \ln\!\left[\prod_{p \text{ prime}}\!\left(\frac{1}{1-p^{-1}}\right)\right] = \sum_{p \text{ prime}} \ln\!\left(\frac{1}{1-p^{-1}}\right) = \sum_{p \text{ prime}} -\ln\!\left(1-p^{-1}\right)$$

Euler now uses the Taylor series for the logarithm.

$$\ln(1-x) = -x - \frac{1}{2}x^2 - \frac{1}{3}x^3 - \frac{1}{4}x^4 - \dots - \frac{1}{n}x^n - \dots$$

$$-\ln(1-p^{-1}) = p^{-1} + \frac{1}{2}p^{-2} + \frac{1}{3}p^{-3} + \frac{1}{4}p^{-4} + \dots + \frac{1}{n}p^{-n} + \dots$$

$$= \frac{1}{p} + \frac{1}{2p^2} + \frac{1}{3p^3} + \frac{1}{4p^4} + \dots + \frac{1}{np^n} + \dots$$

12-Nov-2008

6101

Prime Numbers

Take the log of both sides.

$$\begin{split} \ln\!\left(\sum_{n=1}^{\infty} \frac{1}{n}\right) &= \sum_{p \text{ prime}} \left(\frac{1}{p} + \frac{1}{2p^2} + \frac{1}{3p^3} + \frac{1}{4p^4} + \dots + \frac{1}{np^n} + \dots\right) \\ &= \sum_{p \text{ prime}} \left(\frac{1}{p}\right) + \sum_{p \text{ prime}} \frac{1}{p^2} \left(\frac{1}{2} + \frac{1}{3p} + \frac{1}{4p^2} + \dots + \frac{1}{np^{n-2}} + \dots\right) \\ &< \sum_{p \text{ prime}} \left(\frac{1}{p}\right) + \sum_{p \text{ prime}} \frac{1}{p^2} \left(1 + \frac{1}{p} + \frac{1}{p^2} + \dots + \frac{1}{p^n} + \dots\right) \\ &= \sum_{p \text{ prime}} \left(\frac{1}{p}\right) + \sum_{p \text{ prime}} \frac{1}{p(p-1)} \\ &= \sum_{p \text{ prime}} \left(\frac{1}{p}\right) + C \end{split}$$

12-Nov-2008

Prime Numbers where *C* is a number < 1. Since $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, we know that

$$\ln\left(\sum_{n=1}^{\infty} \frac{1}{n}\right)$$

diverges. Thus, $\sum_{n \text{ prime}} \left(\frac{1}{p}\right)$ diverges.

We do know that if you sum the reciprocals of the twin primes that that sum is finite and slightly bigger than 1. (Apery's constant)

12-Nov-2008

MATH 6101

Probability

Proposition:

If two positive integers are chosen independently and randomly, then the probability that they are relatively prime is $6/\pi^2$.

Proof:

Let p be prime. Let n be randomly chosen integer. $\alpha = \text{Prob}(p|n) = 1/p$.

12-Nov-2008

MATH 6101

Probability

If m and n are independently and randomly chosen

Prob $(p|m \text{ and } p|n) = 1/p^2$.

Thus,

Prob(p not divide both m and n) = $1 - 1/p^2$ List the primes: $p_1, p_2, p_3, ..., p_k, ...$ and let $P_k = \text{Prob}(p_k \text{ not divide both } m \text{ and } n) = 1 - 1/p_k^2$ Claim: Divisibility by p_i and p_i are independent. Let P be the probability that m and n are relatively prime.

12-Nov-2008

MATH 6101

Probability

$$P = P_1 P_2 P_3 \cdots P_k \cdots$$

So

$$\begin{split} &\frac{1}{p} = \frac{1}{p_1 p_2 \cdots p_k \cdots} \\ &= \frac{1}{1 - \frac{1}{2^2}} \cdot \frac{1}{1 - \frac{1}{3^2}} \cdot \frac{1}{1 - \frac{1}{5^2}} \cdot \cdots \cdot \frac{1}{1 - \frac{1}{p_k^2}} \cdots \\ &= \left(1 + \frac{1}{2^2} + \frac{1}{(2^2)^2} + \frac{1}{(2^2)^3} + \right) \times \left(1 + \frac{1}{3^2} + \frac{1}{(3^2)^2} + \frac{1}{(3^2)^3} + \right) \times \\ &\qquad \left(1 + \frac{1}{5^2} + \frac{1}{(5^2)^2} + \frac{1}{(5^2)^3} + \right) \times \cdots \end{split}$$

Probability

$$\begin{split} \frac{1}{P} &= \left(1 + \frac{1}{2^2} + \frac{1}{(2^2)^2} + \frac{1}{(2^2)^3} + \right) \times \left(1 + \frac{1}{3^2} + \frac{1}{(3^2)^2} + \frac{1}{(3^2)^3} + \right) \times \\ & \left(1 + \frac{1}{5^2} + \frac{1}{(5^2)^2} + \frac{1}{(5^2)^3} + \right) \times \cdots \\ &= \left(1 + \frac{1}{2^2} + \frac{1}{(2^2)^2} + \frac{1}{(2^3)^2} + \right) \times \left(1 + \frac{1}{3^2} + \frac{1}{(3^2)^2} + \frac{1}{(3^3)^2} + \right) \times \\ & \left(1 + \frac{1}{5^2} + \frac{1}{(5^2)^2} + \frac{1}{(5^3)^2} + \right) \times \cdots \\ &= 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} + \cdots = \frac{\pi^2}{6} \end{split}$$

12-Nov-2008

MATH 6101

Riemann Zeta Function

In 1859 Reimann defined a differentiable function of a complex variable $\zeta(s)$ by

$$\zeta(s) = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \frac{1}{5^s} + \dots + \frac{1}{n^s} + \dots = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

Riemann knew the value of this function at certain values of *s*.

- $\zeta(0)$ does not exist. (Why?)
- $\zeta(1)$ does not exist. (Why?)
- $\zeta(2) = \pi^2/6$
- $\zeta(4) = \pi^4/90$

12-Nov-2008

Riemann Zeta Function

Euler had computed $\zeta(2n)$ for n=1,2,3,...,13. We saw last time that

$$\zeta(2k) = \sum_{n=1}^{\infty} \frac{1}{n^{2k}} = \frac{2^{2k-1} |B_{2k}| \pi^{2k}}{(2k)!}$$

Riemann showed that $\zeta(s)$ gives a lot of information about the distribution of primes.

12-Nov-2008

MATH 6101

Riemann Zeta Function

Question: Where is $\zeta(s) = 0$? It can be shown that when it has been extended to all complex numbers except $R_0(s) = 1$, then if

to all complex numbers, except Re(s) = 1, then it is trivially seen to be zero at the negative even integers.

Riemann proved that $\zeta(s) = 0$ when s falls inside the infinite strip bounded by the lines x = 0 and x = 1.

12-Nov-2008

MATH 6101

Prime Number Theorem

Theorem

For every real number x let $\pi(x)$ be the number of prime numbers less than x and let

$$Li(x) = \int_{2}^{x} \frac{dt}{\ln(t)}$$

Then

$$\lim_{x\to\infty}\frac{\pi(x)}{Li(x)}=1$$

This was proven by Hadamard and Poussin in 1896.

12-Nov-2008

MATH 6101

Riemann Zeta Hypothesis

Conjecture: (Unproven)

If s is a complex number so that $\zeta(s) = 0$ then $Re(s) = \frac{1}{2}$.

What we do know:

- The line $x = \frac{1}{2}$ contains an infinite number of zeroes of $\zeta(s)$.
- The first 70,000,000 or so lie on that line.

12-Nov-2008

MATH 6101

Power Series

Definition:

If $\{a_n\}$ is a sequence, we define the series $\sum a_n x^n$ as a *power series* in x. For a given sequence a power series is a function f(x) whose domain consists of those values of x for which the series converges.

Power series behavior is typical to that of the geometric series.

 $\sum x^n$ converges for |x| < 1, so the domain of this function: $f(x) = \sum x^n$ is the open interval (-1,1).

12-Nov-200

MATH 6101

Convergence of Power Series

Proposition:

Suppose that the power series $\sum a_n x^n$ converges for x = x' and diverges for x = x'', then $\sum a_n x^n$

- 1. converges absolutely for each x satisfying |x| < |x'|;
- 2. diverges for each x satisfying |x| > |x''|

12-Nov-2008

MATH 6101

Convergence of Power Series

Proof:

1) If x' = 0 there is nothing to prove.

Assume $x' \neq 0$. $\sum a_n x'^n$ converges $\Longrightarrow \{a_n x'^n\} \to 0$ $\Longrightarrow \{a_n x'^n\}$ bounded $\Longrightarrow \exists M > 0 \ni |a_n x'^n| \le M$ for all n.

Let |x| < |x'|, then

$$\left|a_n x^n\right| = \left|a_n x'^n\right| \cdot \left|\frac{x}{x'}\right|^n \le M \left|\frac{x}{x'}\right|^n$$

12-Nov-2008

MATH 6101

Convergence of Power Series

If $|x/x'| < 1 \Longrightarrow \sum M|x/x'|^n$ converges $\Longrightarrow \sum |a_nx^n|$ converges $\Longrightarrow \sum a_nx^n$ converges.

2) Assume |x| > |x''| and $\sum a_n x^n$ converges. Then first part $\Longrightarrow \sum a_n x''^n$ converges, contradicting the given.

12-Nov-2008

MATH 6101

Convergence of Power Series

Proposition:

Let $\sum a_n x^n$ be a power series, then one of the following must hold.

- 1. $\sum a_n x^n$ converges absolutely for all x;
- 2. $\sum a_n x^n$ converges only at x = 0;
- 3. there is a number $\rho>0$ so that $\sum a_n x^n$ converges absolutely for $|x|<\rho$ and diverges for $|x|>\rho$.

12-Nov-2008

MATH 6101

Convergence of Power Series

Proof:

Let $S = \{x \in \mathbf{R} \mid \sum a_n x^n \text{ converges}\}$. Note: $0 \in S$. S unbounded \Longrightarrow by previous Proposition, $\sum a_n x^n$ converges absolutely for all x.

Assume *S* bounded. Let $\rho = \text{lub}\{S\}$, which exists by the Least Upper Bound Axiom.

 $x > \rho \Longrightarrow x \notin S \Longrightarrow \sum a_n x^n \text{ diverges.}$ Let $x < -\rho$ and let $x < x_0 < -\rho \Longrightarrow \rho < -x_0 < -x$ $\Longrightarrow \sum a_n (-x_0)^n \text{ diverges} \Longrightarrow \sum a_n x^n \text{ diverges}$

12-Nov-2008

5101

Convergence of Power Series

Suppose $\exists x'' \ni |x''| < \rho$ and $\sum a_n x''^n$ diverges. Then $\sum a_n x^n$ diverges for all $x > |x''| \Longrightarrow |x''|$ is an upper bound for S.

This contradicts $\rho = \text{lub}\{S\}$. \square

 ρ is the *radius of convergence* for the power series. $S = [-\rho, \rho], (-\rho, \rho], [-\rho, \rho),$ or $(-\rho, \rho)$ and all can occur. This is called the *interval of convergence*. In Case 1, $\rho = \infty$ and $S = \mathbb{R}$; Case 2, $\rho = 0$ and $S = \{0\}$.

12-Nov-2008

MATH 6101

Ratio Test for Power Series

Proposition:

Let $\sum a_n x^n$ be a power series with radius of convergence ρ . If $a_n \neq 0$ for all n and

$$\{a_{n+1}/a_n\} \rightarrow q$$

then

- 1. $\rho = \infty$ if q = 0;
- 2. $\rho = 0$ if $q = \infty$;
- 3. $\rho = 1/|q|$ otherwise.

12-Nov-2008

MATH 6101

Proof

12-Nov-2008

MATH 6101

Problem 1

$$\sum_{n=1}^{\infty} \frac{x^n}{n(n+4)} \quad a_n = \frac{1}{n(n+4)}, \quad a_{n+1} = \frac{1}{(n+1)(n+5)}$$

$$\frac{a_{n+1}}{a_n} = \frac{1}{(n+1)(n+5)} \cdot \frac{n(n+4)}{1} = \frac{n(n+4)}{(n+1)(n+5)}$$

$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \lim_{n\to\infty} \frac{n(n+4)}{(n+1)(n+5)} = 1 = q$$

$$\rho = \frac{1}{q} = 1$$

12-Nov-2008

MATH 6101

Problem 1

MATH 6101

$$\sum_{n=1}^{\infty} \frac{x^n}{n(n+4)}$$

$$\rho = 1 \Rightarrow \sum_{n=1}^{\infty} \frac{1}{n(n+4)}$$

converges by comparison with $\sum 1/n^2$.

$$\rho = -1 \Rightarrow \sum_{n=1}^{\infty} \frac{(-1)^n}{n(n+4)}$$

converges by Alternating Series Test.

$$S = [-1,1]$$

12-Nov-2008

$$\begin{split} \sum_{n=0}^{\infty} \frac{n^n}{n!} x^n & a_n = \frac{n^n}{n!}, \quad a_{n+1} = \frac{(n+1)^{n+1}}{(n+1)!} \\ \frac{a_{n+1}}{a_n} &= \frac{(n+1)^{n+1}}{(n+1)!} \cdot \frac{n!}{n^n} = \frac{n!}{(n+1)!} \cdot \frac{(n+1)^{n+1}}{n^n} = \frac{1}{n+1} \cdot \frac{(n+1)^{n+1}}{n^n} \\ &= \frac{(n+1)^n}{n^n} = \left(\frac{n+1}{n}\right)^n = \left(1 + \frac{1}{n}\right)^n \\ \lim_{n \to \infty} \frac{a_{n+1}}{a_n} &= \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e = q \end{split}$$

12-Nov-2008

MATH 6101

Trigonometric Series

Definition:

Let $\{a_n\}$ and $\{b_n\}$ be sequences, we say that $a_n = \mathrm{O}(b_n)$ if

$$\lim_{n\to\infty}\frac{a_n}{b_n}$$
 exists.

$$\sqrt[3]{n^3+n+1}=O(n)$$

$$\frac{3n+5}{4n^4-5n^2+6} = O(n^{-3})$$

12-Nov-2008

MATH 6101

Trigonometric Series

Proposition:

Let $\{a_n\}$ be a sequence so that $a_n = O(n^p)$ for some p < -1. Then the series $\sum a_n \cos(nx)$ and $\sum a_n \sin(nx)$ both converge absolutely for all x.

Proof:

 $\begin{array}{l} a_n = \mathrm{O}(n^p) \Longrightarrow \{a_n/n^p\} \ \mathrm{converges} \Longrightarrow \{a_n/n^p\} \\ \mathrm{bounded, so} \ |a_n/n^p| \leq M \ \mathrm{for \ all} \ n \Longrightarrow \end{array}$

 $|a_n \cos(nx)| \le |a_n| \le Mn^p \Longrightarrow \sum a_n \cos(nx)$ converges absolutely.

12-Nov-2008

MATH 6101