

Continuity

\qquad
Euler (1748) defined continuous, \qquad
\qquad Continuous $=$ expressible by a single analytic expression.
Mixed = expressible in two or more
\qquad analytic expressions.
Discontinuous $=$ defined by different expression at different places \qquad

19-Nov-2008
MATH 6101 \qquad

Continuity

Bolzano (1817) Rein analytischer Beweis (Pure Analytical Proof)
Attempt to free calculus from concept of infinitesimal
Bolzano achieved what he set out to achieve His ideas only became well known after his death - almost 100 years. Bolzano purged the concepts of limit, convergence, and derivative of geometrical components and replace them by purely arithmetical concepts

19-Nov-2008
MATH 6101

Continuity

\qquad

Bolzano (1817) Rein analytischer Beweis \qquad (Pure Analytical Proof) Defined a function f to be continuous on an interval if for any value of x in this interval the difference $f(x+\Delta x)-f(x)$ becomes and remains less than any given quantity for Δx sufficiently small, whether positive or negative.
\qquad
\qquad
\qquad
\qquad
\qquad

Continuity

Cauchy (1821) - Cours d'analyse
Let f be a function that maps a set of real numbers to another set of real numbers, and suppose c is an element of the domain of f. The function f is said to be continuous at the point c if the following holds: For any number $\varepsilon>0$, however small, there exists \qquad some number $\delta>0$ such that for all x in the domain with $c-\delta<x<c+\delta$, the value of f \qquad (x) satisfies

$$
f(c)-\varepsilon<f(x)<f(c)+\varepsilon
$$

\qquad
\qquad
$f(c)-\varepsilon<f(x)<f(c)+\varepsilon$ \qquad

19-Nov-2008
MATH 6101

Continuity

Cauchy (1821) - Cours d'analyse
Pointed out Euler's definition of continuity was imprecise

$$
|x|=\left\{\begin{array}{ll}
x & x \geq 0 \\
-x & x<0
\end{array}=\sqrt{x^{2}}=\frac{2}{\pi} \int_{0}^{\infty} \frac{x^{2}}{t^{2}-x^{2}} d t\right.
$$

The first is discontinuous by Euler, but last two are clearly analytic expressions.

19-Nov-2008
MATH 6101

Continuity

\qquad
Heine - 1860's
A real function f is continuous if for any sequence $\left\{x_{n}\right\}$ such that $\lim _{n \rightarrow \infty} x_{n}=L$ it
\qquad holds that $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(L)$.
(Assume $\left\{x_{n}\right\} \& L$ are in domain of f.)
\qquad

A function is continuous if and only if it preserves limits. (Cauchy's and Heine's definitions of continuity are equivalent on the reals.) \qquad
\qquad

Limits

\qquad
Let $f: D \rightarrow \mathbf{R}$ be a function. Let $a \in D$.
Definition 1: $\lim _{x \rightarrow a} f(x)=L$ provided \qquad
(1) There is a sequence $\left\{x_{n}\right\} \subset D-\{a\}$ such that $\lim _{n \rightarrow \infty} x_{n}=a$, and
(2) for every sequence $\left\{x_{n}\right\} \subset D-\{a\}$ such that $\lim _{n \rightarrow \infty} x_{n}=a, \lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$. \qquad
\qquad
\qquad

Simple Proposition

Proposition:
(1) $\lim _{x \rightarrow a} r=r$; (2) $\lim _{x \rightarrow a} x=a$; (3) $\lim _{x \rightarrow a}|x|=|a|$.

Big Theorem:
Suppose $f, g: D \rightarrow \mathbf{R}$ so that $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a}$ $g(x)=M$, then
(1) $\lim _{x \rightarrow a}(f(x)+g(x))=L+M$
(2) $\lim _{x \rightarrow a} f(x) g(x)=L M$
(3) $\lim _{x \rightarrow a} f(x)-g(x)=L-M$
(4) $\lim _{x \rightarrow a} f(x) / g(x)=L / M$ if $M \neq 0$.

19-Nov-2008
MATH 6101

Problems

$\lim _{x \rightarrow 5} \frac{x-5}{x^{2}-25}$

19-Nov-2008
MATH 6101

\qquad

Problems$\lim _{x \rightarrow 4} \frac{4}{x-4}$			

Problems		
$\lim _{x \rightarrow 0} \frac{x}{\|x\|}$		

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Dirichlet Function

\qquad
$f(x)= \begin{cases}1 & \text { if } x \text { is rational } \\ 0 & \text { if } x \text { is irrational }\end{cases}$
$\lim _{x \rightarrow a} f(x)$ does not exist for all $a \in R$ \qquad
Let $g(x)=x \cdot f(x)$ \qquad
Claim: $\lim _{x \rightarrow 0} g(x)=0$
but $\lim _{x \rightarrow a} g(x)$ does not exist for all $a \neq 0$.

19-Nov-2008
MATH 6101 ${ }^{14}$

Continuity

Definition:

The function $f: D \rightarrow \mathbf{R}$ is continuous at $a \in \mathrm{D}$ if . \qquad
$\lim _{x \rightarrow a} f(x)=f(a)$ \qquad
This means:
For a function to be continuous at a point a : \qquad

1. $f(a)$ exists,
2. $\lim _{x \rightarrow a} f(x)$ exists, and \qquad
3. $\lim _{x \rightarrow a} f(x)=f(a)$.

Simple Proposition \& Big Theorem Proposition: Redux
 The constant function $f(x)=r$, the identity function $f(x)=x$ and the absolute value function $f(x)=|x|$ are all continuous for all real numbers.
 Big Theorem:
 Suppose $f, g: D \rightarrow \mathbf{R}$ are continuous at $x=a$. Then
 (1) $f(x)+g(x)$ is continuous at $x=a$.
 (2) $f(x) g(x)$ is continuous at $x=a$.
 (3) $f(x)-g(x)$ is continuous at $x=a$.
 (4) $f(x) / g(x)$ is continuous at $x=a$ if $g(a) \neq 0$.
 19-Nov-2008
 MATH 6101

Continuity and Composition

 Theorem:Suppose $f: D \rightarrow \mathbf{R}$ and $g: E \rightarrow \mathbf{R}$ are functions such that the composition $f \circ g$ is defined in E. If g continuous at $x=a \in E$ and f continuous at $g(a)$, then $f \circ g$ is continuous at $x=a$.

Continuity and Trig

Theorem:

1. $|\sin \phi| \leq|\phi|$ for all ϕ
2. $\lim _{\phi \rightarrow 0} \frac{\sin \phi}{\phi}=1$

Continuity and Trig

Theorem:
The functions $\sin (x)$ and $\cos (x)$ are continuous.
$\sin \alpha-\sin \beta=2 \sin \frac{\alpha-\beta}{2} \cos \frac{\alpha+\beta}{2}$
$\left|\sin x_{n}-\sin a\right| \leq 2\left|\sin \frac{x_{n}-a}{2}\right| \leq 2 \frac{\left|x_{n}-a\right|}{2}=\left|x_{n}-a\right|$

Questions

Let $\left\{f_{n}\right\}$ be a sequence of continuous functions. By induction we know that

$$
\sum_{k=1}^{n} f_{k}(x)
$$

is continuous. Is it true that the following sum is \qquad continuous?

$$
\sum_{n=1}^{\infty} f_{n}(x)
$$

Is it true that if $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$ exists, then it will be continuous?

19-Nov-2008
MATH 6101 ${ }^{21}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Theorem: ${ }^{\text {Continuity and Trig }}$
${ }^{19 . \mathrm{Nap} \text {-2088 }}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Continuity Pathologies

Let

$$
f(x)=\left\{\begin{array}{lc}
1 & \text { if } x \text { is rational } \\
0 & \text { if } x \text { is irrational }
\end{array}\right.
$$

Let $g(x)=x \cdot f(x)$
Then g is continuous at $x=0$ and discontinuous at every other real number.

19-Nov-2008
MATH 6101

Continuity II

The function, $f(x)$, is a combination of three \qquad simpler functions.
$f_{1}(x)=x$ is continuous at each point;
$f_{2}(x)=\llbracket x \rrbracket$ is continuous $\Leftrightarrow x$ is not an integer; \qquad $f_{3}(x)=\llbracket x^{2} \rrbracket$ is continuous $\Leftrightarrow x^{2}$ is not an integer; \qquad
\qquad

More Pathologies

1. A function that is continuous at only one point \qquad ($x=0$)

$$
f(x)=\left\{\begin{array}{cc}
x & \text { if } x \text { is rational } \\
-x & \text { if } x \text { is irrational }
\end{array}\right.
$$

More Pathologies

2. A function with a derivative defined for \qquad all x, but whose derivative is discontinuous

$$
f(x)=\left\{\begin{array}{cc}
x^{2} \sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\
0 & \text { if } x=0
\end{array}\right.
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

More Pathologies

3. A function continuous at all irrationals \qquad and discontinuous at all rationals.
$f(x)=1 / q$ if $x=p / q$ is rational and in
\qquad lowest terms, otherwise $f(x)=0$.

More Pathologies

4. The function g is non-zero, infinitely differentiable, and any derivative of g at x $=0$ equals zero.

$$
g(x)=\left\{\begin{array}{cc}
e^{-1 / x^{2}} & \text { if } x \neq 0 \\
0 & \text { if } x=0
\end{array}\right.
$$

More Pathologies

\qquad
5. A function that is everywhere continuous but nowhere differentiable (Bolzano)
a) The first graph is the line from (0,0) to $(0,1)$.
b) Suppose that (a, A) and (b, B) are the endpoints of a segment in some iteration. In the next iteration the segment is replaced by a polygonal line joining the following points:
\qquad
\qquad $a, A),(a+3 / 8(b-a), A+5 / 8(B-A))$,
$(1 / 2(a+b), 1 / 2(A+B)),(a+7 / 8(b-a), A+9 / 8(B-A))$, (b,B)
http://demonstrations.wolfram.com/BolzanosFunction/
19-Nov-2008
MATH 6101 29

More Pathologies

7. A function that is everywhere continuous but nowhere differentiable (Weierstrass, 1872)

$g(x)=\sum_{n=0}^{\infty}\left(\frac{3}{4}\right)^{n}\left|\sin \left(4^{n} x\right)\right|$
$h(x)=\sum_{n=0}^{\infty}(1 / 2)^{n} \sin \left(2^{n} x\right)$

19-Nov-2008
MATH 6101

Properties of Continuous Functions
Intermediate Value Theorem (Bolzano, 1817)

Let $f:[a, b] \rightarrow \mathbf{R}$ be a continuous function and let y^{*} be a real number so that either $f(a)<y^{*}<f(b)$ or $f(b)<y^{*}<f(a)$. Then there is $x^{*}, a<x^{*}<b$, so that $f\left(x^{*}\right)=y^{*}$.

19-Nov-2008

Properties of Continuous Functions

Proof:
Assume $f(a)<y^{*}<f(b)$.
We are going to set up a binary search for x^{*}.
Let $a_{0}=a$ and $b_{0}=b$. Let $c_{1}=\left(a_{0}+b_{0}\right) / 2$
Then $f\left(c_{1}\right)=y^{*}, f\left(c_{1}\right)<y^{*}$, or $f\left(c_{1}\right)>y^{*}$.

Properties of Continuous Functions

If $f\left(c_{1}\right)>y^{*}$ set $a_{1}=a_{0}$ and $b_{1}=c_{1}$.
If $f\left(c_{1}\right)<y^{*}$ set $a_{1}=c_{1}$ and $b_{1}=b_{0}$. If $f\left(c_{1}\right)=y^{*}$ set $x^{*}=c_{1}$.
This sets up a recursive algorithm.
If there is an n so that $f\left(c_{n}\right)=y^{*}$, we are done.

Properties of Continuous Functions \qquad
Assume that this never happens.
Note that \qquad
$a_{0} \leq a_{1} \leq a_{2} \leq \ldots$ and $b_{0} \geq b_{1} \geq b_{2} \geq \ldots$ and
$b_{n}-a_{n}=\frac{b_{n-1}-a_{n-1}}{2}=\frac{b_{n-2}-a_{n-2}}{2^{2}}=\cdots=\frac{b_{0}-a_{0}}{2^{n}}$
\qquad

Therefore $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ converge to the same limit, call it x^{*}.
f continuous $\Longrightarrow\left\{f\left(a_{n}\right)\right\}$ and $\left\{f\left(b_{n}\right)\right\}$ converge to $f\left(x^{*}\right)$. By the Squeeze Theorem
\qquad
\qquad
\qquad
\qquad

Properties of Continuous Functions \qquad
$f\left(x^{*}\right)=\lim _{n \rightarrow \infty} f\left(a_{n}\right) \leq y^{*} \leq \lim _{n \rightarrow \infty} f\left(b_{n}\right)=f\left(x^{*}\right)$ \qquad
Therefore $f\left(x^{*}\right)=y^{*}$.

Properties of Continuous Functions
Corollary: For every positive integer n and positive real number r there is a real number x so that $x^{n}=r$.
Proof:
Let $f(x)=x^{n}, y^{*}=r, a=0$, and $b=1+r$.
$f(a)=0<y^{*}=r<1+r<(1+r)^{n}=f(b)$

Properties of Continuous Functions
The Maximum Principle (Weierstrauss):
Let $f:[a, b] \rightarrow \mathbf{R}$ be a continuous function.
\qquad Then fassumes both a maximum and a minimum on $[a, b]$. \qquad
\qquad
\qquad
\qquad
\qquad

