MATH 341 — FALL 2009 ASSIGNMENT 10

Due December 11, 2009

Do Problem 9.1 and any four of the remaining 7 problems: 9.2 – 9.8. You must submit 5 problems in all.

In the following Γ is the circle in the Euclidean plane centered at O = (0,0) of radius 1: $\Gamma = \{(x, y) | x^2 + y^2 = 1\}.$

- 9.1 Let A = (0,0) and B = (0,1/4), and let ℓ be the diameter of Γ cut out by the x-axis.
 - (a) Find the Poincaré length $d_p(A, B)$.
 - (b) Find the coordinates of the point M on the segment \overline{AB} that represents its midpoint in the Poincaré model.
- 9.2 (a) In a right triangle with standard notation and right angle at *C*, show that

$$\tan(A) = \frac{\tanh(a)}{\tanh(b)}.$$

(b) Deduce that in an isosceles triangle with base *b* and side *a*, summit angle at *B* and one base angle at *A*:

$$\tanh(a)\cos\left(\frac{B}{2}\right) = \tan(A)\sinh\left(\frac{b}{2}\right)$$
$$\sin(A)\cosh\left(\frac{b}{2}\right) = \cos\left(\frac{B}{2}\right)$$

(HINT: Drop the altitude to the base.)

9.3 In a right triangle $\triangle ABC$ with right angle at C (and standard notation), show that

$$\sin(K) = \frac{\sinh(a)\sinh(b)}{1 + \cosh(a)\cosh(b)}$$

where K = the area = $\triangle(ABC)$.

9.4 (a) Let *h* denote the length of the altitude from vertex *B*. Show that

 $\sinh b \sinh h = S \sinh a \sinh b \sinh c$,

where *S* is the constant ratio in the Hyperbolic Law of Sines.

- (b) Let $H = \frac{1}{2} \sinh b \sinh h$. Show that $2H = \sin A \sinh b \sinh c$.
- 9.5 An right isosceles triangle in the hyperbolic plane has leg length 1.4 units. Find the angles, the hypotenuse and the hyperbolic area.
- 9.6 If $\triangle ABC$ is an equilateral triangle with sides of length *a* and angle α , show that the sides and angles are related by the equations:

$$\cos(\alpha) = \frac{\cosh(a)}{1 + \cosh(a)}$$
 and $\cosh(a) = \frac{\cos(\alpha)}{1 - \cos(\alpha)}$.

9.7 Let $\triangle ABC$ be an equilateral triangle in the hyperbolic plane. Fill in the following table. Make your calculations correct to 3 decimal places.

Side	Angle	Area (radians)
	(degrees & radians)	
0.250		
1.000		
2.000		
	5° or $\pi/36$ radians	
	1° or $\pi/180$ radians	
		$3\pi/4 \approx 2.356$

- 9.8 Let *a*, *b*, and *c* be the lengths of the sides, base, and summit, respectively, of a Saccheri quadrilateral.
 - (a) If *d* is the length of the segment joining the midpoints of the base and summit, use the diagonal from the midpoint of the base to the summit angle to show

$$\cosh(d) = \frac{\cosh(a)\cosh(b/2)}{\cosh(c/2)}.$$

- (b) Show that $\cosh(c) = \cosh^2(a)\cosh(b) \sinh^2(a)$
- (c) Use the diagonal of the Saccheri quadrilateral to prove that each summit angle θ satisfies

$$\cos(\theta) = \frac{\sinh(a)\cosh(a)(\cosh(b)-1)}{\sinh(c)}.$$

- (d) Find *c*, *d*, and θ if
 - i. *a* = 1 and *b* = 2, ii. *a* = 2 and *b* = 4.