MATH 341 - FALL 2009 ASSIGNMENT 10

Due December 11, 2009
Do Problem 9.1 and any four of the remaining 7 problems: 9.2-9.8. You must submit 5 problems in all.

In the following Γ is the circle in the Euclidean plane centered at $O=(0,0)$ of radius 1 : $\Gamma=\left\{(x, y) \mid x^{2}+y^{2}=1\right\}$.
9.1 Let $A=(0,0)$ and $B=(0,1 / 4)$, and let ℓ be the diameter of Γ cut out by the x -axis.
(a) Find the Poincaré length $d_{p}(A, B)$.
(b) Find the coordinates of the point M on the segment $\overline{A B}$ that represents its midpoint in the Poincaré model.
9.2 (a) In a right triangle with standard notation and right angle at C, show that

$$
\tan (A)=\frac{\tanh (a)}{\tanh (b)}
$$

(b) Deduce that in an isosceles triangle with base b and side a, summit angle at B and one base angle at A :

$$
\begin{aligned}
& \tanh (a) \cos \left(\frac{B}{2}\right)=\tan (A) \sinh \left(\frac{b}{2}\right) \\
& \sin (A) \cosh \left(\frac{b}{2}\right)=\cos \left(\frac{B}{2}\right)
\end{aligned}
$$

(HINT: Drop the altitude to the base.)
9.3 In a right triangle $\triangle A B C$ with right angle at C (and standard notation), show that

$$
\sin (K)=\frac{\sinh (a) \sinh (b)}{1+\cosh (a) \cosh (b)}
$$

where $K=$ the area $=\triangle(A B C)$.
9.4 (a) Let h denote the length of the altitude from vertex B. Show that

$$
\sinh b \sinh h=S \sinh a \sinh b \sinh c
$$

where S is the constant ratio in the Hyperbolic Law of Sines.
(b) Let $H=\frac{1}{2} \sinh b \sinh h$. Show that $2 H=\sin A \sinh b \sinh c$.
9.5 An right isosceles triangle in the hyperbolic plane has leg length 1.4 units. Find the angles, the hypotenuse and the hyperbolic area.
9.6 If $\triangle A B C$ is an equilateral triangle with sides of length a and angle α, show that the sides and angles are related by the equations:

$$
\cos (\alpha)=\frac{\cosh (a)}{1+\cosh (a)} \quad \text { and } \quad \cosh (a)=\frac{\cos (\alpha)}{1-\cos (\alpha)}
$$

9.7 Let $\triangle A B C$ be an equilateral triangle in the hyperbolic plane. Fill in the following table. Make your calculations correct to 3 decimal places.

Side	Angle (degrees \& radians)	Area (radians)
0.250		
1.000		
2.000		
	5° or $\pi / 36$ radians	
	1° or $\pi / 180$ radians	
		$3 \pi / 4 \approx 2.356$

9.8 Let a, b, and c be the lengths of the sides, base, and summit, respectively, of a Saccheri quadrilateral.
(a) If d is the length of the segment joining the midpoints of the base and summit, use the diagonal from the midpoint of the base to the summit angle to show

$$
\cosh (d)=\frac{\cosh (a) \cosh (b / 2)}{\cosh (c / 2)} .
$$

(b) Show that $\cosh (c)=\cosh ^{2}(a) \cosh (b)-\sinh ^{2}(a)$
(c) Use the diagonal of the Saccheri quadrilateral to prove that each summit angle θ satisfies

$$
\cos (\theta)=\frac{\sinh (a) \cosh (a)(\cosh (b)-1)}{\sinh (c)} .
$$

(d) Find c, d, and θ if
i. $a=1$ and $b=2$,
ii. $a=2$ and $b=4$.

