

Definitions

Lines and Segments

Given two points *A* and *B* there is a unique line \overrightarrow{AB} containing them. We can identify *A* with the number 0 and *B* with any positive real number. This means that each line must have infinitely many points.

The **distance** between any two points P and Q on \overrightarrow{AB} is defined to be the absolute value of the difference between the two points on the real line associated with P and Q:

$$d(P,Q) = |x_P - x_Q|$$

We will denote this distance by d(P,Q) = PQ.

The point *C* lies **between** *A* and *B* if *A*, *B* and *C* are distinct points on the same line and AC + CB = AB. We will use the notation A * B * C to mean that *C* lies between *A* and *B*.

Given two points *A* and *B*, the line *segment* \overline{AB} consists of the points *A* and *B* and all points that lie between *A* and *B*.

$$\overline{AB} = \{A, B\} \cup \{X \in \overrightarrow{AB} | A * X * B\}.$$

A and *B* are called the *endpoints* and all other points are called *interior* points. Note that *AB* will denote the *length* of the segment.

A *figure* in the plane is a set of points in the plane. A figure is *convex* if it contains all of the interior points of all line segments joining any two points of the figure. A figure that is not convex is called *concave*.

For two distinct points $A \neq B$, the **ray** \overrightarrow{AB} is the set of points consisting of the segment \overrightarrow{AB} together with the set of points *D* so that *B* lies between *A* and *D*.

$$\overrightarrow{AB} = \overrightarrow{AB} \cup \{X \in \overrightarrow{AB} | A * B * X\}.$$

Two rays \overrightarrow{BA} and \overrightarrow{BC} are **opposite** if A * B * C.

Two rays emanating from the same point form two **angles** with the common point called the vertex. The rays form the **sides** of the angles. If the two rays coincide, then we have one angle of measure 0° and another angle of measure 360°. If the union of the rays is a straight line, then each angle measures 180°. In this case this is called a **straight angle**. For all others, one of the angles will have a unique measure between 0° and 180°, exclusive. If the two rays are \overrightarrow{BA} and \overrightarrow{BC} we will denote this angle by $\angle ABC$ and its **measure** by $m \angle ABC$. The two rays forming the angles divide the set

into two disjoint sets, neither of which contains the sides of the angle. The convex region will be called the *interior* of the angle and the concave region will be called the *exterior*.

If the measure of an angle lies in $(0^{\circ}, 90^{\circ})$ the angle is called *acute*. If the measure lies in $(90^{\circ}, 180^{\circ})$ the angle is called *obtuse*. If the measure of the angle equals 90°, the angle is called a *right* angle.

If the sum of the measures of two angles is 90° they are called *complementary* angles. If the sum of the measures is 180° they are called *supplementary* angles. Two angles $\angle PQR$ and $\angle RQT$ for a linear pair if *P*, *Q* and *T* are collinear with P*Q*T.

Let $A_1, A_2, ..., A_n$ be distinct points in the plane so that no three consecutive points are collinear. Suppose that no two of the segments $\overline{A_1A_2}$, $\overline{A_2, A_3}$, ..., $\overline{A_{n-1}A_n}$ and $\overline{A_nA_1}$ share an interior point. The **n**-gon $A_1A_2...A_n$ is the union of these *n* segments. The points $A_1, A_2, ..., A_n$ are called the **vertices** and the segments are the **sides** of the polygon.

A polygon divides the plane into two disjoint sets – the *interior* of the polygon and the *exterior* of the polygon – with no point of the polygon in either set. A polygon is *convex* if its interior is a convex region, otherwise we call it *concave* or *non-convex*. A polygon is *regular* if all of its sides are congruent and all of its angles are congruent. A 3-gon is called a *triangle*, a 4-gon is called a *quadrilateral*, a 5-gon is a *pentagon*, *etc*. For $n \ge 4$ an interior angle of a polygon may have measure in $(180^\circ, 360^\circ)$.

Let *P* and *P'* be two plane figures. They are *similar* if there exists a positive real number *k* and an onto function $f: P \rightarrow P'$ so that for all $A, B \in P$ f(A) f(B) = A'B' = k AB. The number *k* is called the *coefficient of similarity*. We denote this by $P \sim P'$. If $P \sim P'$ with coefficient of similarity k = 1 we say that *P* and *P'* are *congruent*.

Vertical Angles

Page | 3

When two distinct lines intersect they form four angles having a common vertex. The angles in each pair { $\angle AEC$, $\angle BED$ } and { $\angle CEB$, $\angle DEA$ } are called *vertical* angles.

Two lines are **parallel** if they coincide or they do not intersect. We will indicate that \overrightarrow{AB} and \overrightarrow{CD} are parallel by the notation $\overrightarrow{AB} \parallel \overrightarrow{CD}$. When two distinct lines , *I* and *m*, not necessarily parallel, are intersected by a third line *t*, called a transversal, then we refer to certain pairs of angles as follows:

The angles in each pair {1,5}, {2,6}, {3,7} and {4,8} are called *corresponding* angles.

The angles in each pair {3,6} and {4,5} are called *alternate interior* angles.

The angles in each pair {1,8} and {2,7} are called *alternate exterior* angles.

The angles in each pair {3,5} and {4,6} are called *same side interior* angles.

Two intersecting lines *I* and *m* are *perpendicular* if the measure of each angle formed by the lines is 90°. If $P \notin I$ there is a unique line through *P* which is perpendicular to *I*. Let the point of intersection of this line with *I* be *Q*. *Q* is the *foot* of *P* in *I* and the length of \overline{PQ} is the *distance* from *P* to *I*, denoted d(P,I).

