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Logic and Proof

On my first day of school my 
parents dropped me off at the 

wrong nursery. There I 
was...surrounded by trees and 

bushes!
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Requirements for Proof
1. Mutual understanding of the words and 

symbols used
2. Acceptance of certain statements called 

axioms without justification
3. Agreement on how and when one 

statement follows logically from another, 
that is, agreement on certain rules of 
reasoning.
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Sets
A set is a collection of objects satisfying 

some condition. 
It is possible to have no objects in a set.  

This set is called the empty set and is 
denoted by { } or Ø
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Set Notation
Roster method: {a,b,c,…z} 
Set builder notation:

A = { x | P(x) is satisfied }
Set elements:

a є A
a is in A
a is a member of A
a is an element of A
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Set Notation
Set elements:

a є A means a is not a member of A
means that A is a subset of B which 

means every element of A is also an 
element of B

if a є A then a є B

Note:           for every set A  
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Set Equality
A = B means that every element of A is also 

and element of B and vice versa.
A = B and 
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Set Intersection
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Set Union
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Set Complement

Note that 
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Mathematical Statements
A declarative sentence which is true or 

false, but not both, is called a statement.

Examples:  1 + 1 = 3
2 - 1 = 1
The grass is blue.
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Set Variables
A variable is a symbol or an icon that can 

be used to represent various elements of 
the universal set.

Examples: He is a Wildcat.
This is true if “he=Adolf Rupp”. This is not 

true if “he=Rick Pitino”.
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Logical Connectives & Truth Tables
If P and Q are statements, then the 

statement P and Q is called the 
conjunction of P and Q.

Notation:

Examples:
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P Q
True True
True False
False True
False False

Truth Values
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True
False
False
False
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Logical Connectives & Truth Tables
If P and Q are statements, then the 

statement P or Q is called the disjunction
of P and Q.

Notation:
Note: mathematicians use the inclusive “or”
Examples:
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P Q
True True
True False
False True
False False

Truth Values
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True
True
True
False
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Negation
If P is a statement, then the statement not 

P is called the negation of P.
Notation:  ~P (sometimes –P or ¬P)
We assume that either P or ~P is true, but 

not both and not neither
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Negation
~(P  Q) is equivalent to ~P  ~Q.
~(P  Q) is equivalent to ~P  ~Q
~(~P) is equivalent to P

MA 341 00126-Aug-2011 MA 341 001 17

The Conditional
If P and Q are statements, then the 

statement if P then Q is called the 
conditional statement

Notation:

Examples: If it is cold, it is snowing.
If it is blue, it is UK.
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P Q
True True
True False
False True
False False

Truth Values
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True
False
True
True

See additional notes in Blackboard for further discussion.
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Truth Values
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P = “The animal is a tiger.”
Q = “The animal is a mammal.”
When must the statement be false?

P Q PQ
is a tiger is a mammal
is a tiger is not a mammal
is not a tiger is mammal
is not a tiger is not a mammal

Truth Values
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Statements of the form “If P then Q” do not mean 
the same thing in math as in ordinary English.

In ordinary English, 
“If P then Q” may suggest order of occurrence.  
“If we go outside, the neighbors will see us” implies 

that the neighbors will see us after we go 
outside. 

If P then Q” can suggest causation.  This example 
has the connotation that the neighbors will see 
us because we went outside.
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The Conditional

If P then Q   PREFERED
Q if P  
P only if Q
Q provided P
Q when P
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Related Statements

Conditional: If P, then Q  (P  Q)
Converse: If Q, then P (Q  P)
Inverse: If not P, then not Q (~P  ~Q)
Contrapositive: If not Q, then not P

(~Q  ~P)
(Conditional logically equiv to Contrapositive)
(Converse logically equiv to Inverse )

MA 341 00126-Aug-2011 MA 341 001 23

Related Statements

If there is smoke, then there is fire.
Converse: 

If there is fire, then there is smoke.
Inverse: 
If there is no smoke, then there is no fire.

Contrapositive:
If there is no fire, then there is no smoke.
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The Biconditional
If P and Q are statements, then the 

statement P if and only if Q is called the 
biconditional statement

Notation:  P Q

Meaning: P  Q means P  Q and Q  P.
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P Q
True True
True False
False True
False False

Truth Values
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True
False
False
True
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Compound Statements
If x is perpendicular to y and y is 
perpendicular to z, then x is parallel to z.

Let
P: x is perpendicular to y
Q: y is perpendicular to z
R: x is parallel to z.
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P Q R
True True True
True True False
True False True
True False False
False True True
False True False
False False True
False False False
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True
False
True
True
True
True
True
True
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Universal Quantifier
If P is a statement that depends on a 
variable x, then the universal quantifier is 

For every x, P(x)
for every = for each = for all
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Existential Quantifier
If P is a statement that depends on a 
variable x, then the existential quantifier 
is 

There exists an x such that P(x)
There is at least one = for at least one = 
some
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Translate the following
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x y, x+y = 0

x y, x+y=0

x y, x+y=0

x y, x+y=0

For every x and for every y,
x+y = 0.
For every x there exists a y
so that x+y = 0.

There exists an x so that for
every y, x+y = 0.

There exists an x and there
exists a y so that x+y = 0.
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Translate the following
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x (x is even   y, x = 2y)

For every x, if x is even, then there exists a y 
such that x = 2y.
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Rules of Reasoning
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Example:
P  (P  Q)

A tautology is a sentence which is true no matter 
what the truth value of its constituent parts.

26-Aug-2011 MA 341 001 33



8/25/2011

12

Logic Axiom 1
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✦ (PQ)  (~Q~P)  (The Contrapositive)
✦ [P  (P  Q)]  Q  (Modus ponens)
✦ [(PQ)  (QR)](PR)  (Law of Syllogism)
✦ ~(PQ)  (P~Q) (basis for Proof by 

Contradiction)
✦ [(PR)  (QR)][(PQ)R]  Proof by Cases

Every tautology is a rule of reasoning.

26-Aug-2011 MA 341 001 34

Logic Axiom 2

Let U denote a universal set. Each of the 
following is a rule of reasoning.
 [x,P(x)  Q(x)]  [x,P(x)  x,Q(x)]
 x,P(x)  P(a) for any a  U
 x,P(x)  [P(a) for some a  U]
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Logic Axiom 3
(Rule of Substitution) Suppose P  Q.  Then P 
and Q may be substituted for one another in any 
sentence.

Logic Axiom 4
Every sentence of the type ~[x,P(x)][x so 
that ~P(x)] is true.

Logic Axiom 5
Every sentence of the type ~[x so that P(x)] 
[x,~P(x)] is true.
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