Similarity

MA 341 - Topics in Geometry Lecture 10

Similarity

- Definition
- AAA Theorem
- Proportionality
- Similarity and parallelism
- Similarity theorems
- Ceva's Theorem

Definition

- 1. Definition: Two triangles are similar if their corresponding angles are equal.
- 2. Definition: Triangles are similar if they have the same shape, but can be different sizes.
- 3. Definition: Two geometric shapes are similar if there is a rigid motion of the plane that maps one onto the other.

Definition

Working Definition: Two triangles are similar if their corresponding angles are equal.

 $\Delta ABC \sim \Delta DEF$ means that $\angle A = \angle D, \angle B = \angle E, \angle C = \angle F$

AA Similarity Theorem

Theorem: Given two triangles $\triangle ABC$ and $\triangle DEF$, suppose that $\angle A = \angle D$ and $\angle B = \angle E$. Then $\angle C = \angle F$, and so $\triangle ABC \sim \triangle DEF$.

So AU/AB=AV/AC if and only if r=s.

Proof

Now we need to show that UV||BC iff r=s. Consider $\triangle ACB$ and $\triangle UCB$. They have same height. Thus:

$$\frac{K_{BUC}}{K_{ABC}} = \frac{UB}{AB} = r$$
$$K_{BUC} = rK_{ABC}$$

Similarly, $K_{BVC}=sK_{ABC}$. Thus, r=s iff $K_{BUC}=K_{BVC}$. Thus, UV||BC iff $K_{BUC}=K_{BVC}$. 19-Sept-2011

Proof

 ΔBUC and ΔBVC have same base. Their areas are equal iff they have same height, or UE=VF. Thus, UV||BC iff UE=VF. Note: UE||VF. Thus, if UE=VF then UVEF = parallelogram and UV||BC. If UV||BC, then UVEF is a parallelogram hence UE=VF.

Proportionality Theorem

Theorem: If $\triangle ABC \sim \triangle DEF$, then the lengths of the corresponding sides are proportional.

Proof: We need to find k so that: AB = k DE AC = k DF BC = k FF

Proportionality Theorem We want to show that DE/AB=DF/AC. If DE=AB, then $\triangle ABC \cong \triangle DEF$ by ASA. In this case, $DF \cong AC$ and DF/AC=1. So assume DE<AB. Choose $U \in AB$ so that AU = DE and construct UV parallel to BC with $V \in AC$. $UV || BC \Rightarrow \angle AUV = \angle B = \angle E$ and $\angle AVU = \angle C = \angle F$ $AU=DF \Rightarrow \Delta AUV \cong \Delta DEF$ by $AAS \Rightarrow AV=DF$. $UV||BC \Rightarrow AU/AB=AV/AC$, but AU=DE & AV=DF So DE/AB=DF/AC.

Midline of a Triangle

A line joining two midpoints of a triangle is called a midline of the triangle. A segment joining two midpoints is called a midsegment.

Midline Theorem

Theorem: In $\triangle ABC$ if U and V are the midpoints of AB and AC, respectively, then UV||BC and UV= $\frac{1}{2}BC$.

SS Similarity Theorem

Theorem: Suppose that the sides of $\triangle ABC$ are proportional to the corresponding sides of $\triangle DEF$. Then $\triangle ABC \sim \triangle DEF$.

SAS Similarity Theorem

Theorem: Suppose that in $\triangle ABC$ and $\triangle DEF$ we have that $\angle A = \angle D$ and DE/AB=DF/AC. Then $\triangle ABC \sim \triangle DEF$.

Right Triangle Theorem

Theorem: Suppose $\triangle ABC$ is a right triangle with hypotenuse AB and CP is the altitude from C. $\triangle ACP \sim \triangle ABC \sim \triangle CBP$.

The three lines containing the vertices A, B, and C of $\triangle ABC$ and intersecting opposite sides at points L, M, and N, respectively, are concurrent if and only if $\frac{AN}{NB} \cdot \frac{BL}{LC} \cdot \frac{CM}{MA} = 1$

 $\frac{\mathsf{K}(\triangle \mathsf{PBL})}{\mathsf{K}(\triangle \mathsf{PCL})} = \frac{\mathsf{BL}}{\mathsf{LC}}$

$\frac{\mathsf{BL}}{\mathsf{LC}} = \frac{\mathsf{K}(\triangle \mathsf{ABL}) - \mathsf{K}(\triangle \mathsf{PBL})}{\mathsf{K}(\triangle \mathsf{ACL}) - \mathsf{K}(\triangle \mathsf{PCL})} = \frac{\mathsf{K}(\triangle \mathsf{ABP})}{\mathsf{K}(\triangle \mathsf{ACP})}$

19-Sept-2011

19

$\frac{CM}{MA} = \frac{K(\triangle BMC) - K(\triangle PMC)}{K(\triangle BMA) - K(\triangle PMA)} = \frac{K(\triangle BCP)}{K(\triangle BAP)}$

19-Sept-2011

MA 341 001

20

$\frac{AN}{NB} = \frac{K(\triangle ACN) - K(\triangle APN)}{K(\triangle BCN) - K(\triangle BPN)} = \frac{K(\triangle ACP)}{K(\triangle BCP)}$

19-Sept-2011

21

$\frac{AN}{NB} \frac{BL}{LC} \frac{CM}{MA} = \frac{K(\triangle ACP)}{K(\triangle BCP)} \frac{K(\triangle ABP)}{K(\triangle ACP)} \frac{K(\triangle BCP)}{K(\triangle ABP)} = 1$

Now assume that

 $\frac{AN}{NB} \cdot \frac{BL}{LC} \cdot \frac{CM}{MA} = 1$

Let BM and AL intersect at P and construct CP intersecting AB at N', N' different from N.

Then AL, BM, and CN' are concurrent and

 $\frac{AN'}{N'B} \frac{BL}{LC} \frac{CM}{MA} = 1$

From our hypothesis it follows that

 $\frac{AN'}{N'B} = \frac{AN}{NB}$

So N and N' must coincide.