Ceva's Theorem

MA 341 - Topics in Geometry
Lecture 11

9/20/2011

Ceva's Theorem

The three lines containing the vertices A, B, and
C of AABC and intersecting opposite sides at
points L, M, and N, respectively, are concurrent
if andonly if AN BL CM _1

NB LC MA
Nf ; EM
B L C
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Ceva's Theorem

A\ K(AABL) _BL
K(AACL) LC
A K(APBL) _BL
\ ; K(APCL) ~ LC
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Ceva's Theorem

B L

BL K(AABL)—K(APBL) K(AABP)
LC ~ K(AACL) _K(APCL) ~ K(AACP)
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Ceva's Theorem

e

CM  K(ABMC)—K(APMC) K(ABCP)

MA ~ K(ABMA)—K(APMA) K(ABAP)
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Ceva's Theorem

AN K(AACN)—K(AAPN) K(AACP)
NB ~ K(ABCN)—K(ABPN) ~ K(ABCP)
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Ceva's Theorem

AN BL CM _ K(AACP) K(AABP) K(ABCP)
NB'LC'MA ~ K(ABCP) K(AACP) K(AABP) ~

1
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Ceva's Theorem
Now assume that

AN BL

CM
B'LC’'MA

=1

Let BM and AL
intersect at P and
construct CP
intersecting AB at
N, N' different
from N.
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Ceva's Theorem

Then AL, BM, and CN' are concurrent and

AN'BL CM _,
N'BLC MA ™
From our hypothesis it follows that

AN'_ AN
N‘B~ NB

So N and N' must coincide.
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Medians

In AABC, let M, N, and P be midpoints of AB,
BC, AC.

Medians: CM, AN, BP

9/20/2011

Theorem: In any triangle the three medians
meet in a single point, called the centroid.

M - midpoint = AM=BM, N - midpoint = BN=CN
P - midpoint = AP=CP

AM BN CP

MB'NC'PA "~
By Ceva's Theorem they are concurrent.
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Orthocenter

Let AABC be a triangle and let P, Q, and R
be the feet of A, B, and C on the opposite
sides.

AP, BQ, and CR are the altitudes of AABC.

Theorem: The altitudes of a triangle
AABC meet in a single point, called the
orthocenter, H.
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Orthocem‘er B
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Orthocenter

By AA
ABRC~ABPA (a right angle and ZB)
= BR/BP=BC/BA
AAQB~AARC (a right angle and ZA)
— AQ/AR=AB/AC
ACPA~ACQB (a right angle and £C)
= CP/CQ=AC/BC

BR AQ CP BC AB AC

BP AR CQ AB AC BC
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Orthocenter
By Ceva's Theorem, the altitudes meet at
a single point.
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Orthocenter
Traditional route:
BQ intersects AP.
Now construct CH and let
it intersect AB at R.
Prove AARC~AAQB
making £R=90.
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Incenter

Let AABC be a triangle and let AP, BQ,
and CR be the angle bisectors of ZA, ZB,
and £C.

Angle Bisector Theorem: If AD is the
angle bisector of ZA with D on BC, then
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AB_BD
AC (D
Incenter 4

Proof: Want to use similarity.
Where is similarity?

Construct line through
C parallel to AB
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Incenter 4

Proof: Want to use similarity.
Where is similarity?

Construct line through
C parallel o AB

Extend AD to meet parallel line
through C at point E.
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Incenter 4

ZBAE = ZCEA - Alt Int Angles
ZBDA = ZCDE - vertical angle
ABAD ~ ACDE - AA

Therefore ,

AB_BD

CE (D
Note that ZCEA = /BAE = ZCAE AR BD
= AACE isosceles = CE = AC and A = E
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Incenter

Let AABC be a triangle and let AP, BQ,
and CR be the angle bisectors of ZA, /B,
and £C.

Theorem: The angle bisectors of a triangle
AABC meet in a single point, called the
incenter, I.
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Incenter

Proof: Angle bisector means:
AB BP BA AQ CA AR

AC PC BC QC CB RB
By Ceva's Theorem we need to find the
product: ,

AR BP (Q

RE " PC QA — ¢
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Incenter
AR BP CQ AC AB Bc_1

— e —eo = —0—eo ——

RB PC QA BC AC AB
Thus by Ceva's Theorem the s
angle bisectors are

o
concurrent. R
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Circumcenter & Perp Bisectors

Does Ceva's Theorem apply to
perpendicular bisectors? A y
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Circumcenter & Perp Bisectors

How can we get Ceva's Theorem to apply
to perpendicular bisectors?
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Circumcenter & Perp Bisectors
A

Draw in
midsegments

EF||BC =
perpendicular
bisector of BC is
perpendicular to
EF = isan B
altitude of ADEF
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Circumcenter & Perp Bisectors

Perpendicular bisectors of
AB, BC and AC are
altitudes of ADEF.

Altitudes meet in a single
point = perpendicular
bisectors are concurrent.
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Circumcircle

Theorem: There is exactly one circle through
any three non-collinear points.

The circle = the circumcircle
The center = the circumcenter, O.
The radius = the circumradius, R.

Theorem: The circumcenter is the point of
intersection of the three perpendicular
bisectors.
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Question

Where do the perpendicular bisectors of
the sides intersect the circumcircle?
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Question

Where do the perpendicular bisectors of
the sides intersect the circumcircle?

At one end is point of intersection of
angle bisector with circumcircle

The other end is point of intersection of
exterior angle bisector with circumcircle.
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Extended Law of Sines

Theorem: Given AABC with circumradius R, let
a, b, and ¢ denote the lengths of the sides
opposite angles ZA, ZB, and ZC, respectively.
Then

a b < _
sinA  sinB  sinC

2R
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Proof
Three cases:

Proof
Case I: /A <90°
BP = diameter

=ABCP right triangle
BP = 2R

= sinP=a/2R
ZA = /P
= 2R =a/sin A B
C
Proof
Case IT: ZA > 90°
BP = diameter

=ABCP right triangle
BP = 2R g
=sinP=a/2R

ZA = /P

= 2R =a/sin A
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Proof
Case III: /A =90°

BP = a = diameter A
BP = 2R
2R=a=a/sinA
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Circumradius and Area

Theorem: Let R be the circumradius and K be
the area of AABC and let a, b, and ¢ denote the
lengths of the sides as usual. Then 4KR=abc

K:g
4R
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Proof

K=%absinC
2K=absinC
c/sinC = 2R
sinC=c/2R
2K = abc/2R
4KR = abc
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