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Triangles III

Stewart’s Theorem, 
Orthocenter, Euler Line
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Stewart’s Theorem (1746)
With the measurements given in the 
triangle below, the following relationship 
holds:

a2n + b2m = c(d2 + mn)
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Stewart’s Theorem (1746)
CEAB so we will apply the Pythagorean 
Theorem several times
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Stewart’s Theorem (1746)
In ΔCEB  a2 = h2 + (m – p)2

In ΔCED  d2 = h2 + p2

a2 = d2 - p2 + (m – p)2

a2 =d2 + m2 – 2mp
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Stewart’s Theorem (1746)
In ΔCEA  b2 = h2 + (n + p)2

b2 = d2 - p2 + (n + p)2

b2 = d2 + n2 + 2np
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Stewart’s Theorem (1746)
a2n =d2n + m2n – 2mnp
b2m = d2m + n2m + 2mnp
a2n + b2m = d2n + m2n + d2m + n2m

= d2(n + m) + mn(m + n)
a2n + b2m = c(d2 + mn)
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The length of the median
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m=c/2 n=c/2

The length of the medians
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For a 3-4-5 triangle this gives us that the 
medians measure:

Example
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Theorem 4
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For any triangle, the sum of the lengths of the 
medians is less than the perimeter of the 
triangle.
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N in AF so that NF=AF
ACNB is a parallelogram
BN=AC
In ΔABN, AN < AB+BN
2AF < AB + AC
2ma < b + c

Theorem 4
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Similarly
2mb < a + c and 2mc < a + b
2(ma+mb+mc) < 2a+2b+2c 

ma + mb + mc < a+ b+ c 

Theorem 5
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For any triangle, the sum of the lengths of the 
medians is greater than three-fourths the 
perimeter of the triangle.
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BG + CG > BC

and
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Theorem 5
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Result
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Theorem 6
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The sum of the squares of the medians of a 
triangle equals three-fourths the sum of the 
squares of the sides of the triangle.
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Theorem 6
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Theorem 7
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The sum of the squares of the lengths of the 
segments joining the centroid with the vertices 
is one-third the sum of the squares of the 
lengths of the sides.

Theorem 8
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A median and the midline it intersects bisect 
each other.
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Show AF and DE bisect 
each other.
Construct DF and FE.
DF||AE
AD||FG
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Theorem 8
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A median and the midline it intersects bisect 
each other.
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ADFE a parallelogram
Thus, AF and DE bisect 
each other.

Theorem 9
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A triangle and its medial triangle have the same 
centroid.

A

B

C

G

F

D

E

This is HW Problem 
2B.1.

Orthocenter
Definition: In ΔABC the foot of a vertex to the 
side opposite that vertex is called an altitude of 
the triangle.
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Orthocenter
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Theorem: The altitudes of a triangle meet in a 
single point, called the orthocenter, H.
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H

We have shown this.

Euler Points

• The midpoint of the segment from the 
vertex to the orthocenter is called the 
Euler point of ΔABC opposite the side.
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Circumcenter & Centroid
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If the circumcenter and the centroid coincide, 
the triangle must be equilateral.

A

B C

G

X

Suppose G=O, X = midpt
of BC, Y=midpt of AC. 
G=O  AG=BG. 
G=centroid  3/2 AG= 
3/2 BG  AX=BY
GX=GY. By SAS ΔAGY 
 ΔBGX  BX=AY 
BC=AC.

Y
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The Euler Segment

The circumcenter O, the 
centroid G, and the 
orthocenter H are 
collinear. Furthermore, G 
lies between O and H and

The Euler Segment
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(Symmetric Triangles)
Extend OG twice its 
length to a 
point P, that is GP = 2OG. 
We 
need to show that P is the 
orthocenter.

The Euler Segment
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Draw the median, AL, where L is 
the midpoint of BC. Then, GP = 
2OG and AG = 2GL and by 
vertical angles we 
have that 

Then  
and OL is parallel to AP.
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The Euler Segment
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Since OL is perpendicular to BC, so it AP, making 
P lie on the altitude from A. 

Repeating this for each of the other vertices 
gives us our result. By construction GP = 2OG.

This line segment is called the Euler Segment of 
the triangle.

Orthic Quadruple

Let A, B, C, and H be four distinct points 
with A, B, and C noncollinear and H the 
orthocenter of ΔABC.
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Line determined 
by 2 of these 
points is 
perpendicular to 
the line 
determined by 
other 2 points!!

Orthocenter of ΔHBC
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A is the 
orthocenter of 
ΔHBC !!!
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Orthic Quadruple

• H is the orthocenter of ΔABC 
• A is the orthocenter of ΔHBC
• B is the orthocenter of ΔHAC
• C is the orthocenter of ΔHAB

{A, B, C, H} is called Orthic Quadruple 
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Orthic Quadruple

Given three points {A, B, C} there is 
always a fourth point, H, making an orthic
quadruple UNLESS
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1. A, B, C collinear
2. A, B, C form a right triangle

Orthic Triangle

Let A, B, C form a triangle and let D, E, F 
denote the intersections of the altitudes 
from A, B, and C with the lines     ,     , and

respectively. The triangle DEF is 
called the orthic triangle.
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Theorem: The orthic triangles of each of the 
four triangles determined by an orthic
quadruple are all the same.
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Circumcircle of Orthic Triangle

Consider the circumcircle of the orthic
triangle.
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It contains D, 
E, F – of 
course !!

Circumcircle of Orthic Triangle

It also contains the Euler points !!
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At least, it 
looks like it 
does.
Prove it!!

Circumcircle of Orthic Triangle

It also contains the midpoints !!
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At least, it 
looks like it 
does.
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Nine Point Circle Theorem
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Theorem: For any triangle the following nine 
points all lie on the same circle: the three feet 
of the altitudes, the three Euler points, and the 
three midpoints of the sides. Furthermore, the 
line segments joining an Euler point to the 
midpoint of the opposite side is a diameter of 
this circle.

Sometimes called Feuerbach’s Circle.


