
Cevians, Symmedians, and 
Excircles

MA 341 – Topics in Geometry
Lecture 16



CevianCevian
A cevian is a line segment which joins a vertex of a 

l  h    h   d  (   triangle with a point on the opposite side (or its 
extension). 

BB
cevian
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D
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Cevian Triangle & CircleCevian Triangle & Circle
• Pick P in the interior of ∆ABC

 f  h  h h   h  • Draw cevians from each vertex through P to the 
opposite side 

• Gives set of three intersecting cevians AA’  BB’  • Gives set of three intersecting cevians AA , BB , 
and CC’ with respect to that point. 

• The triangle ∆A’B’C’ is known as the cevianThe triangle ∆A B C  is known as the cevian
triangle of ∆ABC with respect to P

• Circumcircle of ∆A’B’C’ is known as the evian
circle with respect to P. 
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Cevian
circlecircle

C iCevian
triangle
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CeviansCevians
In ∆ABC examples of cevians are:

di  i i   Gmedians – cevian point = G
perpendicular bisectors – cevian point = O
angle bisectors – cevian point = I (incenter)angle bisectors – cevian point = I (incenter)
altitudes – cevian point = H

’  h  d l  h  f  Ceva’s Theorem deals with concurrence of any 
set of cevians.
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Gergonne PointGergonne Point
In ∆ABC find the incircle and points of 

 f i i l i h id  f ∆ BC  tangency of incircle with sides of ∆ABC. 
Known as contact triangleg
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Gergonne Point
These cevians are concurrent! 
Why?Why?
Recall that AE=AF, BD=BF, and CD=CE

Ge
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Gergonne Point
The point is called the Gergonne point, Ge. 

Ge
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Gergonne Point
Draw lines parallel to sides of contact 
triangle through Ge. g ug .
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Gergonne Point
Six points are concyclic!!
Called the Adams CircleCalled the Adams Circle
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Gergonne Point
Center of Adams circle = incenter of ∆ABC
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Isogonal Conjugates
Two lines AB and AC through vertex A are 
said to be isogonal if one is the reflection g
of the other through the angle bisector.
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Isogonal Conjugates
If lines through A, B, and C are concurrent 
at P, then the isogonal lines are concurrent , g
at Q.

Points P and Q are isogonal conjugates.
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Symmedians
In ∆ABC, the symmedian ASa is a cevian
through vertex A (Sa  BC) isogonallyg ( a ) g y
conjugate to the median AMa, Ma being the 
midpoint of BC. p
The other two 
symmedians BSbsymmedians BSb
and CSc are defined 
similarly.y
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Symmedians
The three symmedians ASa, BSb and CSc
concur in a point commonly denoted K and p y
variably known as either
• the symmedian point orthe symmedian point or
• the Lemoine point

05-Oct-2011 MA 341 001 15



Symmedian of Right TriangleSymmedian of Right Triangle

The symmedian point K of a right triangle The symmedian point K of a right triangle 
is the midpoint of the altitude to the 
hypotenuse Ahypotenuse.

MbK

B C

bK

B C
D
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Proportions of the SymmedianProportions of the Symmedian

Draw the cevian from vertex A  through Draw the cevian from vertex A, through 
the symmedian point, to the opposite side 
of the triangle  meeting BC at S  Then of the triangle, meeting BC at Sa. Then 

2BS c
a

2
a

BS c
CS b

c

b

a
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Length of the SymmedianLength of the Symmedian

Draw the cevian from vertex C  through Draw the cevian from vertex C, through 
the symmedian point, to the opposite side 
of the triangle  Then this segment has of the triangle. Then this segment has 
length  


2 2 2ab 2a 2b cCS

Likewise
c 2 2CS

a b
 


2 2 2bc 2b 2c aAS 

 

a 2 2

2 2 2

AS
b c

ac 2a 2c bB
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ExcirclesExcircles
In several versions of geometry triangles 
are defined in terms of lines not are defined in terms of lines not 
segments.

AA

B C
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ExcirclesExcircles
Do these sets of three lines define 
circles?circles?
Known as tritangent circles

AA

B C
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ExcirclesExcircles

AIC IB

B
Irc rb

B
C

IA ra
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Construction of ExcirclesConstruction of Excircles
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Extend the sidesExtend the sides
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Bisect exterior angle at ABisect exterior angle at A
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Bisect exterior angle at BBisect exterior angle at B
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Find intersectionFind intersection

IIc
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Drop perpendicular to ABDrop perpendicular to AB

IIc
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Find point of intersection with 
ABAB

IIc
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Construct circle centered at IcConstruct circle centered at Ic

IIc rc
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ExcirclesExcircles
The Ia, Ib, and Ic are called excenters.

   ll d dra, rb, rc are called exradii
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ExcirclesExcircles
Theorem: The length of the tangent from 
a vertex to the opposite exscribed circle 
equals the semiperimeter, s.

CP = s
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Excircles
1. CQ = CP

Excircles
Q

2. AP = AY
3. CP = CA+AP

= CA+AY
4. CQ= BC+BYQ

5. CP + CQ = AC + AY + BY + BCQ
6. 2CP = AB + BC + AC = 2s
7. CP = s             
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ExradiiExradii
1. CPICP
2 t (C/2) /2. tan(C/2)=rC/s
3. Use Law of Ic

Tangents

     
   

 
c

C (s a)(s b) s(s a)(s b)r stan s
2 ( )    

c 2 s(s c) s c
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ExradiiExradii
Likewise

 


a
s(s b)(s c)r

s a
 

b

s a
s(s a)(s c)r

s b
 



s b
s(s a)(s b)r

cr s c
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Excircles
Theorem: For any triangle ∆ABC

1 1 1 1
  

a b c

1 1 1 1
r r r r
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Excircles
  

    
     b

1 1 1 s a s b s c
r r r s(s b)(s c) s(s a)(s c) s(s a)(s b)a b cr r r ( )( ) ( a)( ) ( a)( )

  
  

        

s a s b s c
s(s a)(s b)(s c) s(s a)(s b)(s c) s(s a)(s b)(s c)

  


  

3s (a b c)
s(s a)(s b)(s c)( )( )( )

 
  

s s
Ks(s a)(s b)(s c)


1
r
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Nagel PointNagel Point
In ∆ABC find the excircles and points of 

 f h  i l i h id  f tangency of the excircles with sides of 
∆ABC. 
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Nagel Point
These cevians are concurrent! 
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Nagel Point
Point is known as the Nagel point
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Mittenpunkt Point
The mittenpunkt of ∆ABC is the 
symmedian point of the excentral triangle ymm p f g
(∆IaIbIc formed from centers of 
excircles) )
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Mittenpunkt Point
The mittenpunkt of ∆ABC is the point of 
intersection of the lines from the f f m
excenters through midpoints of 
corresponding sidesp g
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Spieker Point
The Spieker center is center  of Spieker
circle, i.e., the incenter of the medial , . ., f m
triangle of the original triangle .
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Special Segments
Gergonne point, centroid and mittenpunkt
are collinear

GGe =2
GM
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Special Segments
Mittenpunkt, Spieker center and 
orthocenter are collinear
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Special Segments
Mittenpunkt, incenter and symmedian point 
K are collinear with distance ratioK w

2 2 2IM 2(a +b +c )= 2=
MK (a +b+c)
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Nagel Line
The Nagel line is the line on which the 
incenter , triangle centroid , Spieker , g , p
center Sp, and Nagel point Na lie. 

GNa =2
IGIG
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Various CentersVarious Centers
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