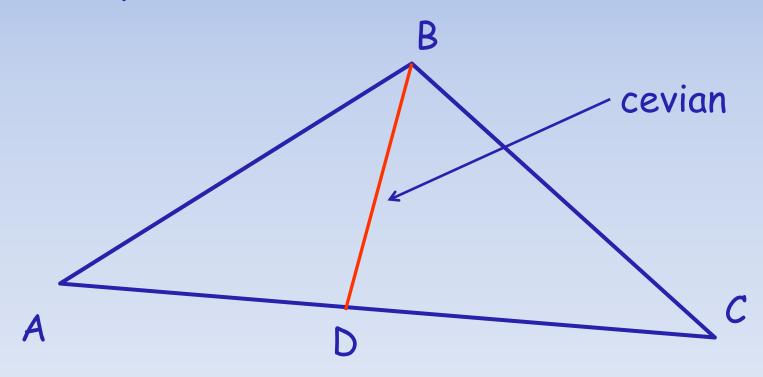
Cevians, Symmedians, and Excircles

MA 341 - Topics in Geometry Lecture 16

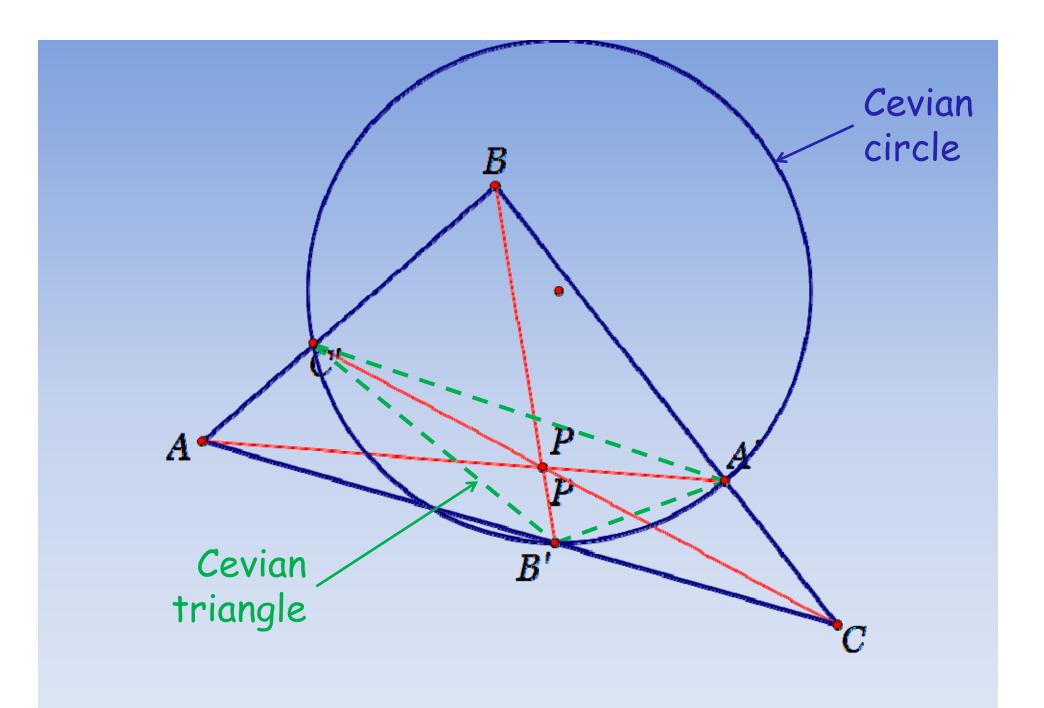
Cevian

A cevian is a line segment which joins a vertex of a triangle with a point on the opposite side (or its extension).



Cevian Triangle & Circle

- Pick P in the interior of $\triangle ABC$
- Draw cevians from each vertex through P to the opposite side
- Gives set of three intersecting cevians AA', BB', and CC' with respect to that point.
- The triangle $\triangle A'B'C'$ is known as the cevian triangle of $\triangle ABC$ with respect to P
- Circumcircle of $\Delta A'B'C'$ is known as the evian circle with respect to P.



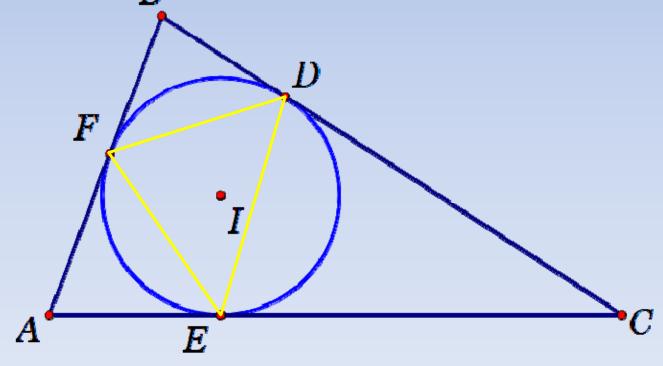
Cevians

In $\triangle ABC$ examples of cevians are: medians - cevian point = Gperpendicular bisectors - cevian point = Oangle bisectors - cevian point = I (incenter) altitudes - cevian point = H

Ceva's Theorem deals with concurrence of any set of cevians.

In $\triangle ABC$ find the incircle and points of tangency of incircle with sides of $\triangle ABC$.

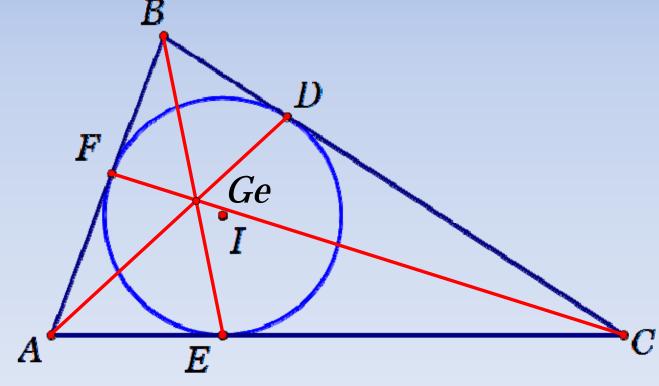
Known as contact triangle



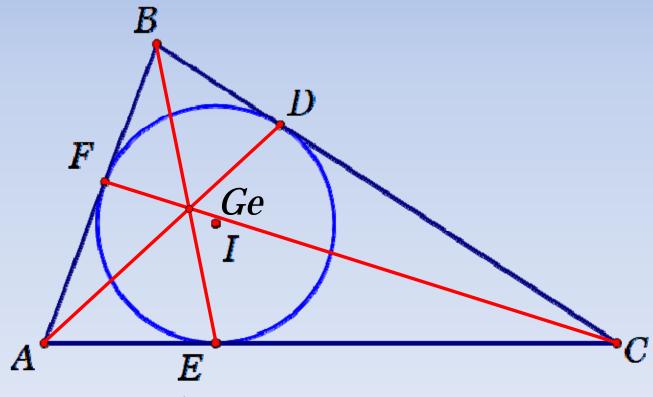
These cevians are concurrent!

Why?

Recall that AE=AF, BD=BF, and CD=CE

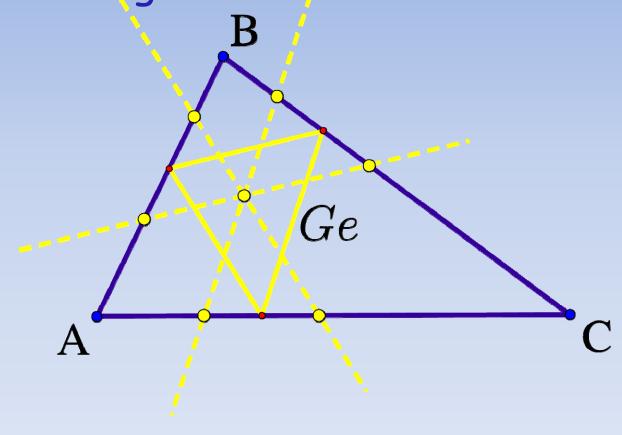


The point is called the Gergonne point, Ge.

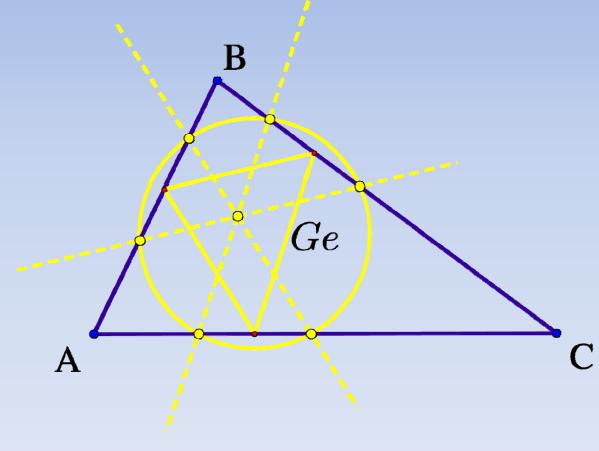


05-Oct-2011 MA 341 001 8

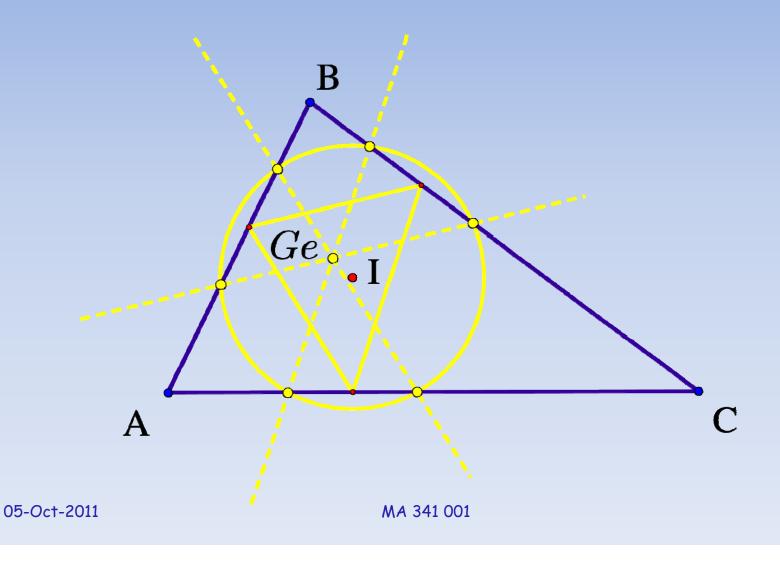
Draw lines parallel to sides of contact triangle through Ge.



Six points are concyclic!!
Called the Adams Circle



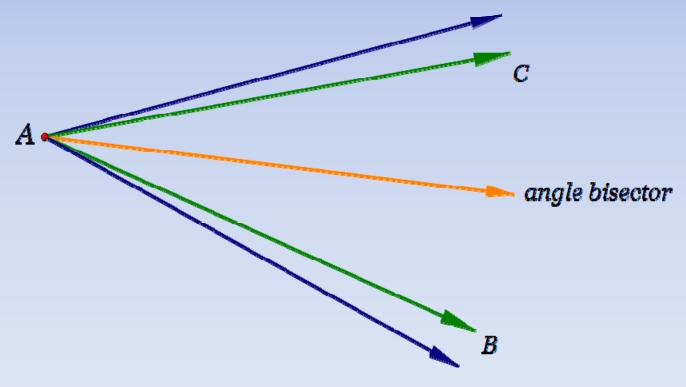
Center of Adams circle = incenter of $\triangle ABC$



11

Isogonal Conjugates

Two lines AB and AC through vertex A are said to be <u>isogonal</u> if one is the reflection of the other through the angle bisector.



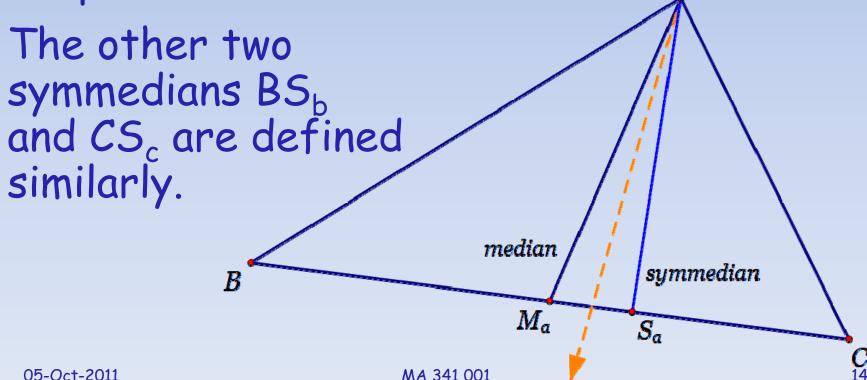
Isogonal Conjugates

If lines through A, B, and C are concurrent at P, then the isogonal lines are concurrent at Q.

Points P and Q are isogonal conjugates.

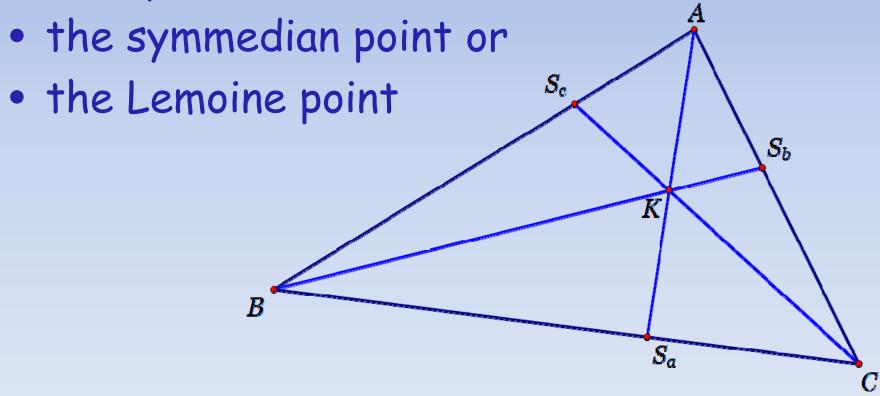
Symmedians

In $\triangle ABC$, the symmedian AS_a is a cevian through vertex A ($S_a \in BC$) isogonally conjugate to the median AM_a , M_a being the midpoint of BC.



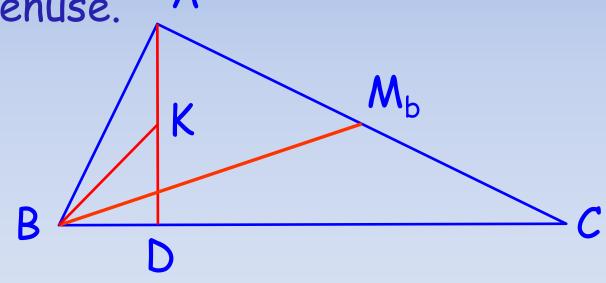
Symmedians

The three symmedians AS_a , BS_b and CS_c concur in a point commonly denoted K and variably known as either



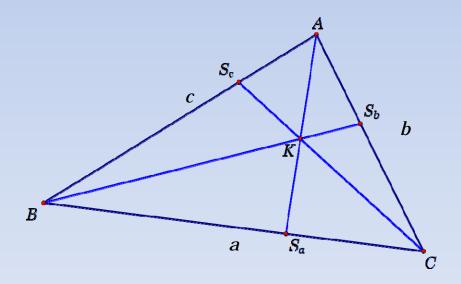
Symmedian of Right Triangle

The symmedian point K of a right triangle is the midpoint of the altitude to the hypotenuse. A



Proportions of the Symmedian

Draw the cevian from vertex A, through the symmedian point, to the opposite side of the triangle, meeting BC at S_a . Then



$$\frac{\mathsf{BS}_{a}}{\mathsf{CS}_{a}} = \frac{\mathsf{c}^{2}}{\mathsf{b}^{2}}$$

Length of the Symmedian

Draw the cevian from vertex C, through the symmedian point, to the opposite side of the triangle. Then this segment has length

 $CS_{c} = \frac{ab\sqrt{2a^{2} + 2b^{2} - c^{2}}}{a^{2} + b^{2}}$

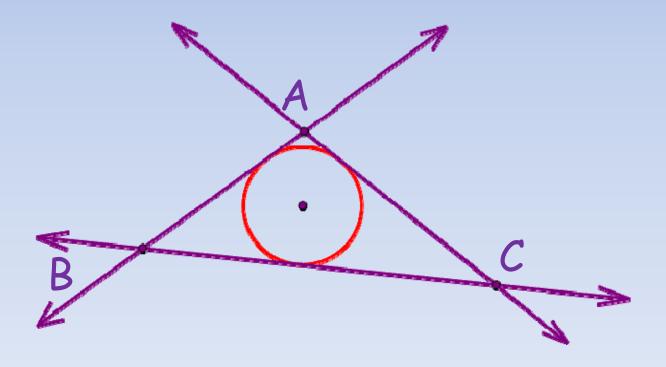
Likewise

$$AS_{a} = \frac{bc\sqrt{2b^{2} + 2c^{2} - a^{2}}}{b^{2} + c^{2}}$$

$$BS_{b} = \frac{ac\sqrt{2a^{2} + 2c^{2} - b^{2}}}{a^{2} + c^{2}}$$

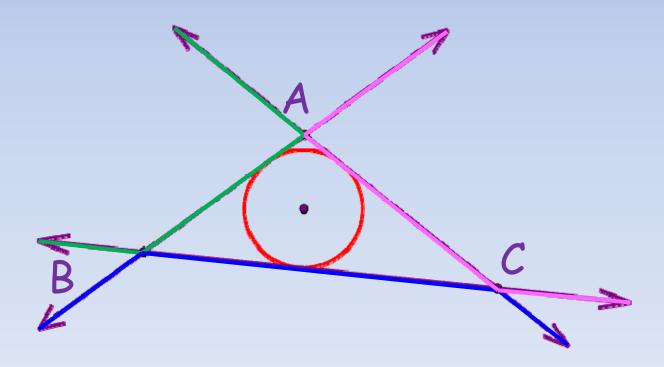
05-Oct-2011

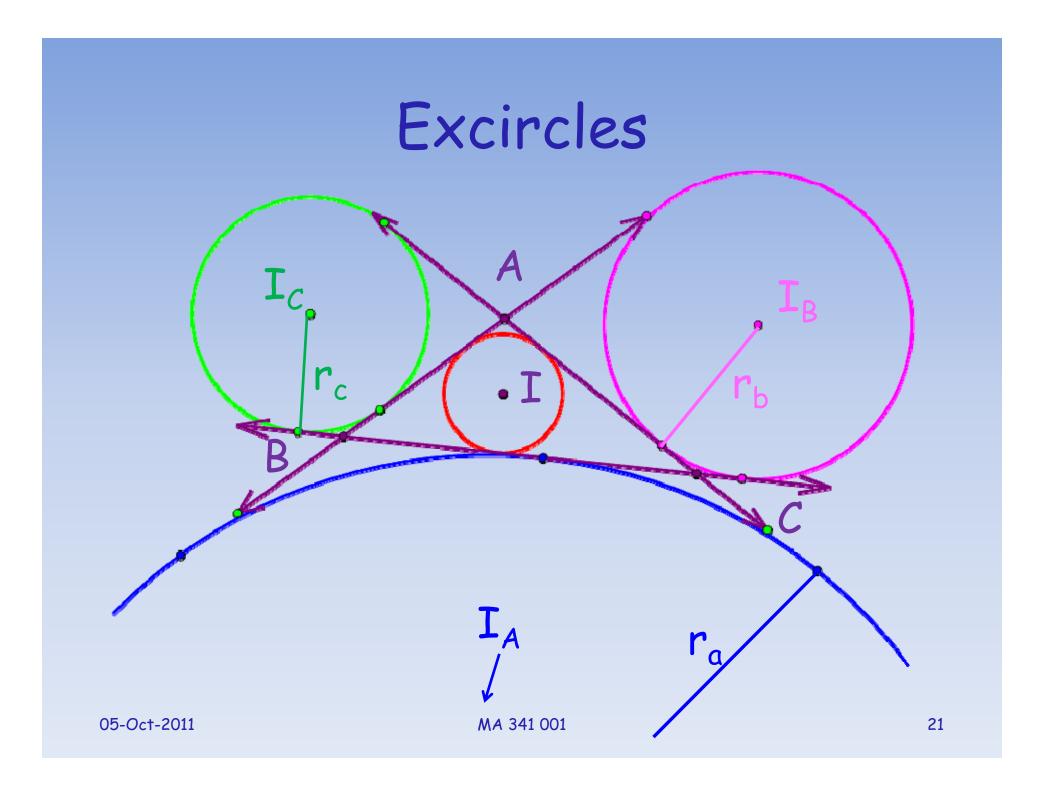
In several versions of geometry triangles are defined in terms of lines not segments.



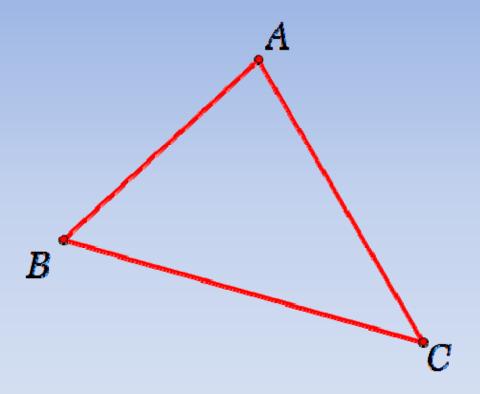
Do these sets of three lines define circles?

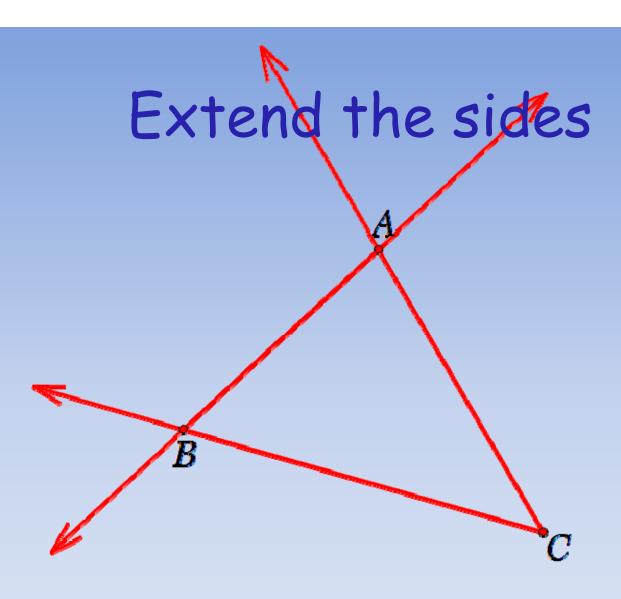
Known as tritangent circles

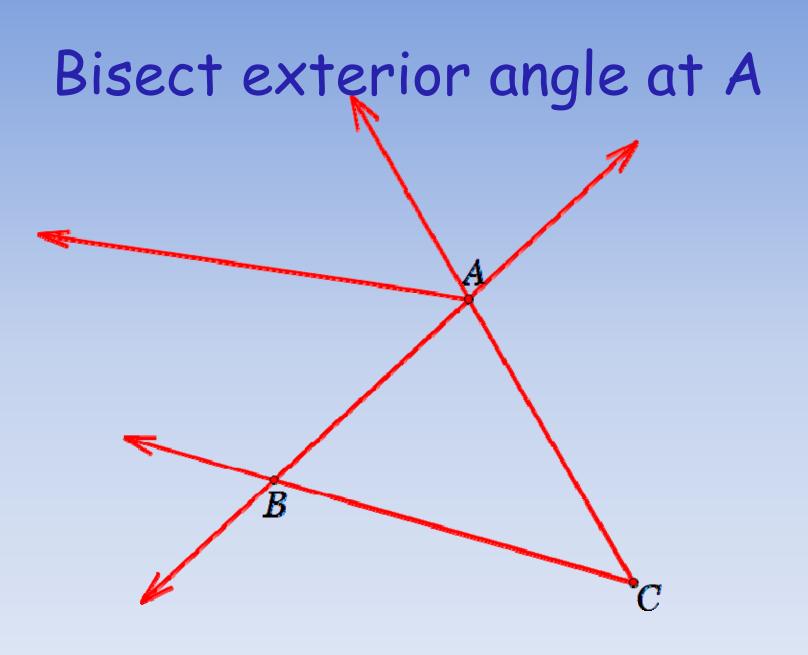


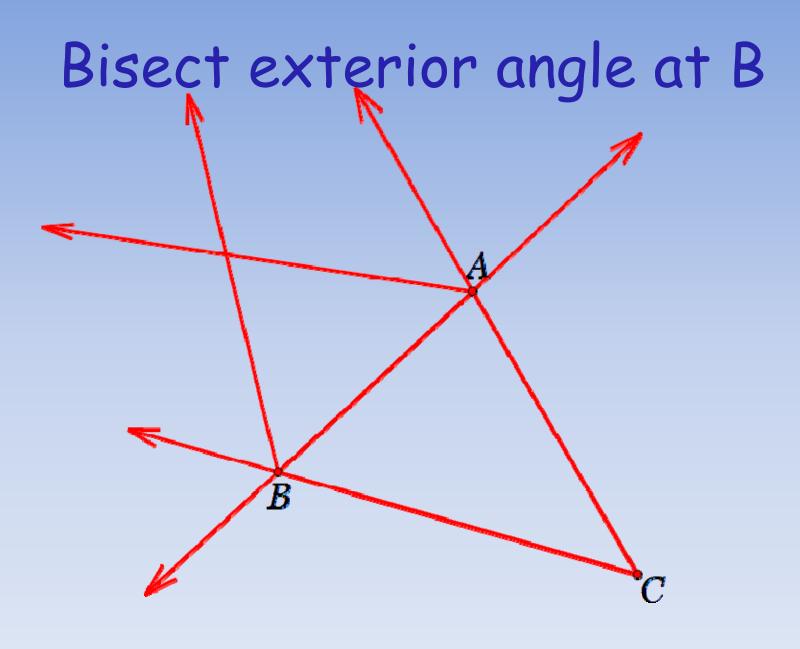


Construction of Excircles

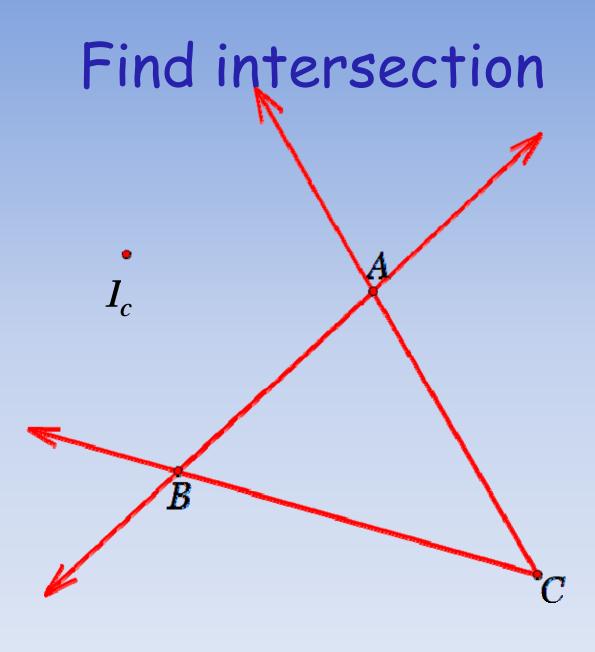




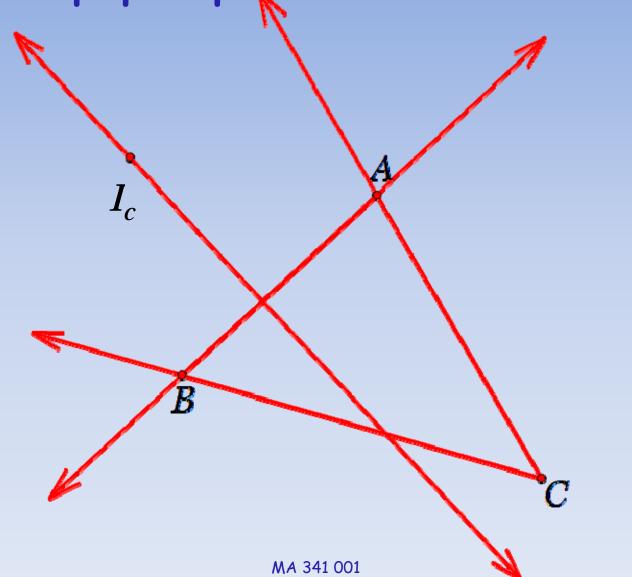




05-Oct-2011 MA 341 001 25



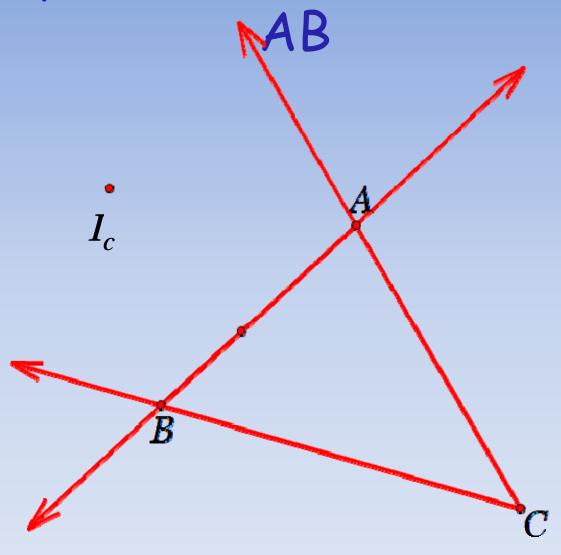
Drop perpendicular to AB

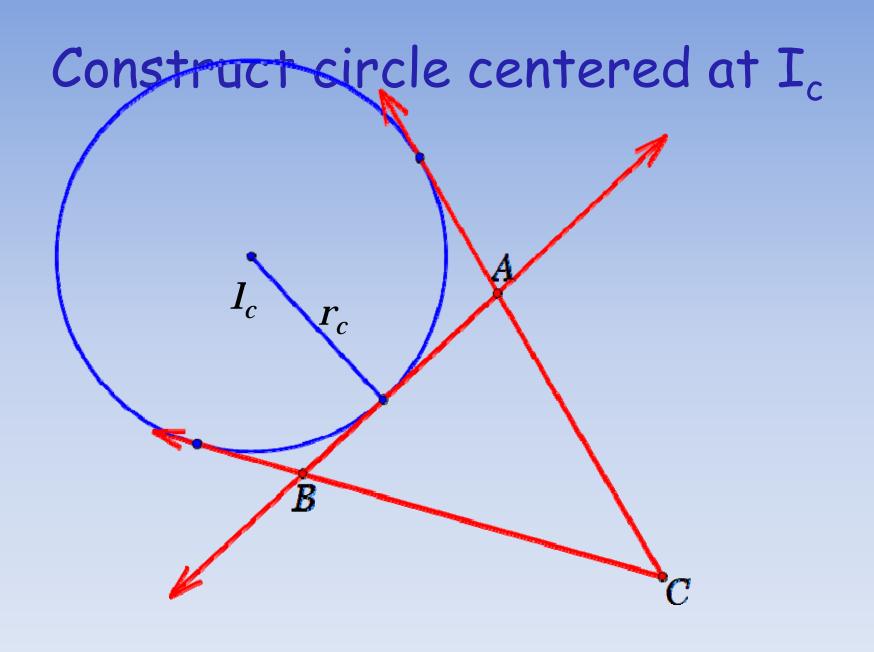


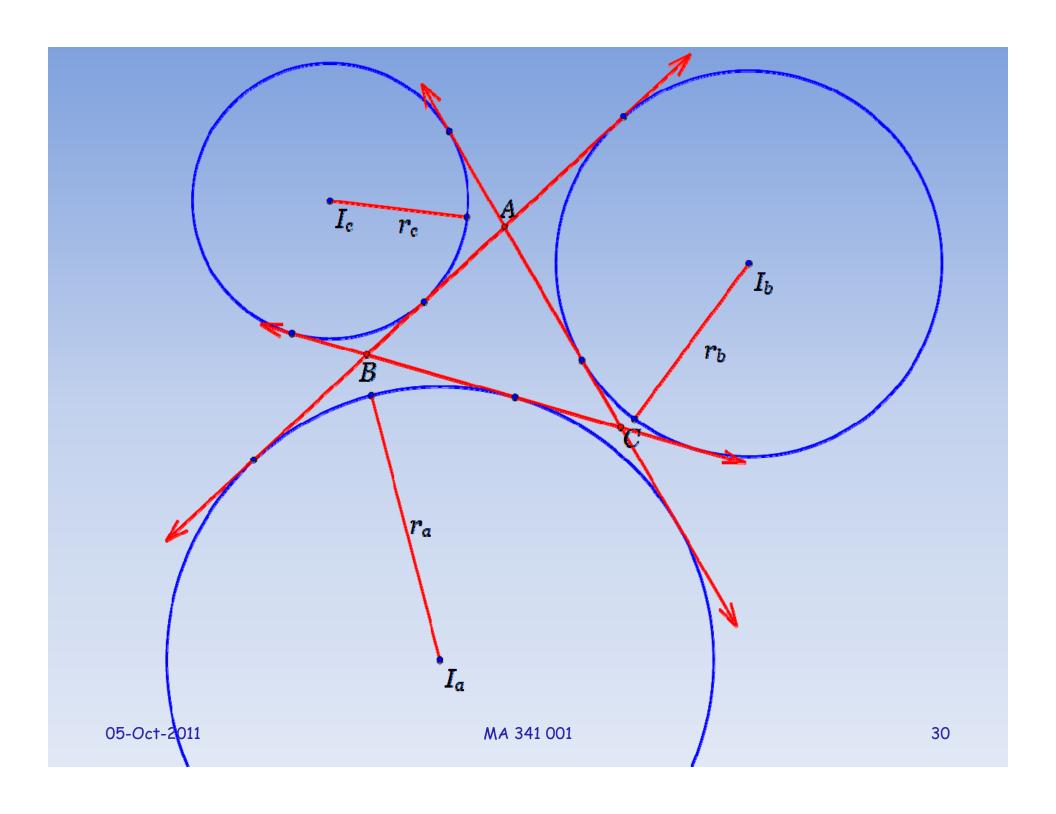
27

05-Oct-2011

Find point of intersection with

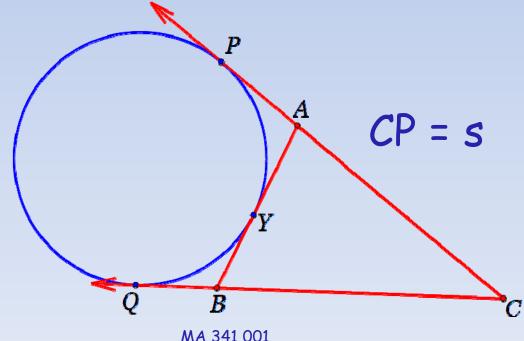






The I_a , I_b , and I_c are called excenters. r_a , r_b , r_c are called exradii

Theorem: The length of the tangent from a vertex to the opposite exscribed circle equals the semiperimeter, s.



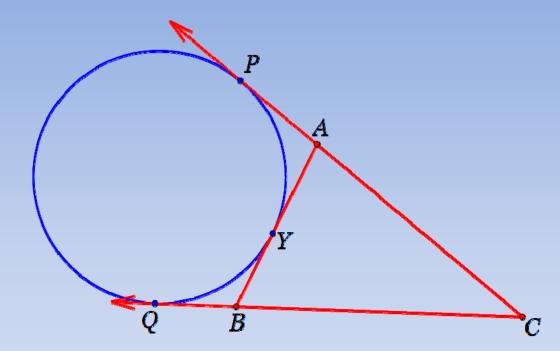
05-Oct-2011 MA 341 001 32

1.
$$CQ = CP$$

$$2. AP = AY$$

3.
$$CP = CA + AP$$

= $CA + AY$



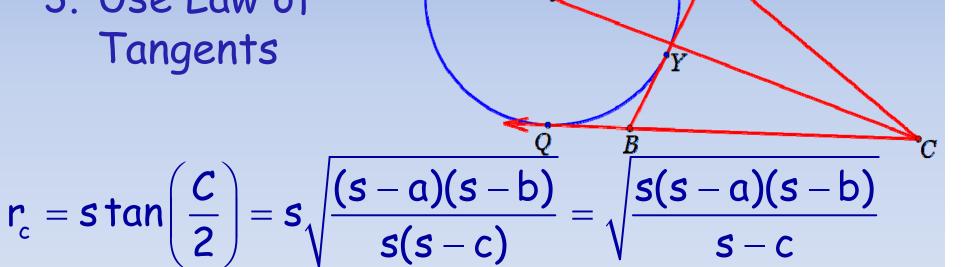
5.
$$CP + CQ = AC + AY + BY + BC$$

6.
$$2CP = AB + BC + AC = 2s$$

$$7. CP = s$$

Exradii

- 1. $CP \perp I_CP$
- 2. $tan(C/2)=r_C/s$
- 3. Use Law of Tangents



Exradii

Likewise

$$r_{a} = \sqrt{\frac{s(s-b)(s-c)}{s-a}}$$

$$r_{b} = \sqrt{\frac{s(s-a)(s-c)}{s-b}}$$

$$r_{c} = \sqrt{\frac{s(s-a)(s-b)}{s-c}}$$

Theorem: For any triangle $\triangle ABC$

$$\frac{1}{r} = \frac{1}{r_a} + \frac{1}{r_b} + \frac{1}{r_c}$$

Excircles

$$\frac{1}{r_{a}} + \frac{1}{r_{b}} + \frac{1}{r_{c}} = \sqrt{\frac{s-a}{s(s-b)(s-c)}} + \sqrt{\frac{s-b}{s(s-a)(s-c)}} + \sqrt{\frac{s-c}{s(s-a)(s-b)}}$$

$$= \frac{s-a}{\sqrt{s(s-a)(s-b)(s-c)}} + \frac{s-b}{\sqrt{s(s-a)(s-b)(s-c)}} + \frac{s-c}{\sqrt{s(s-a)(s-b)(s-c)}}$$

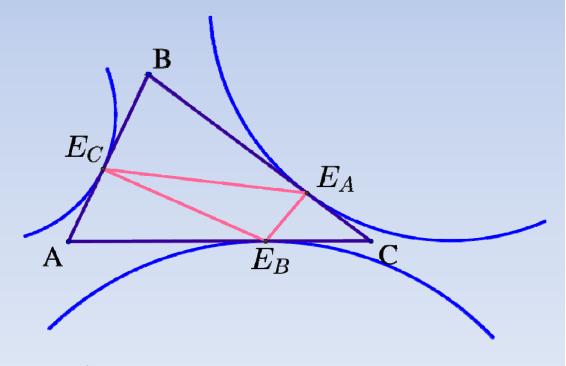
$$= \frac{3s - (a+b+c)}{\sqrt{s(s-a)(s-b)(s-c)}}$$

$$= \frac{s}{\sqrt{s(s-a)(s-b)(s-c)}} = \frac{s}{K}$$

$$= \frac{1}{r}$$

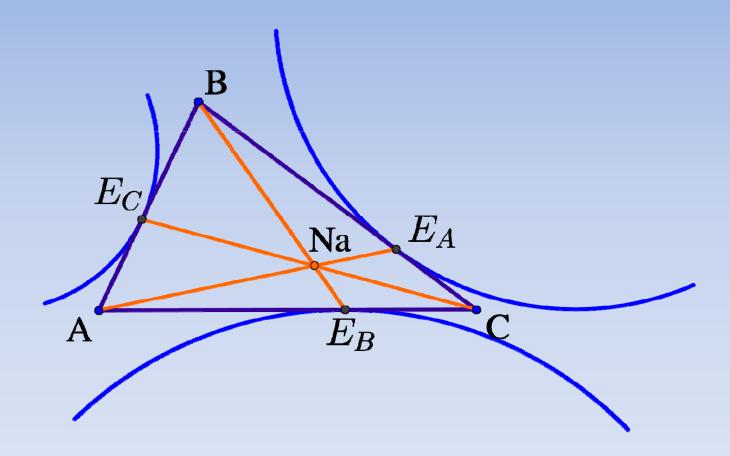
Nagel Point

In $\triangle ABC$ find the excircles and points of tangency of the excircles with sides of $\triangle ABC$.



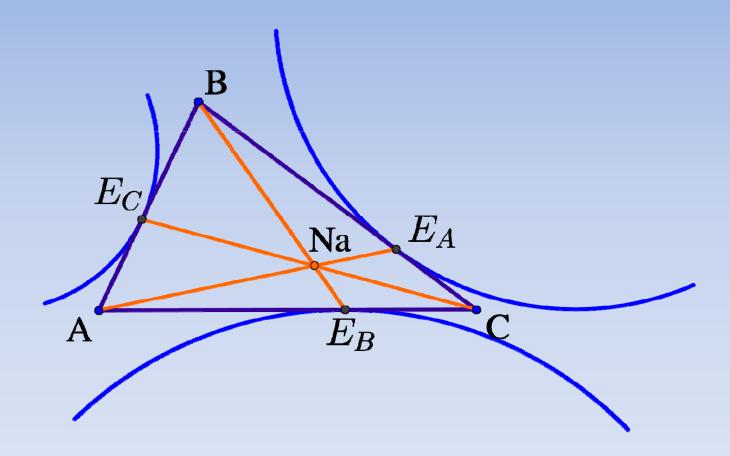
Nagel Point

These cevians are concurrent!



Nagel Point

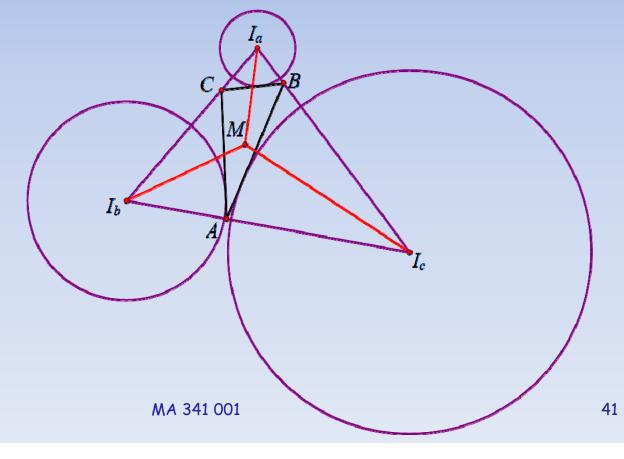
Point is known as the Nagel point



Mittenpunkt Point

The mittenpunkt of ΔABC is the symmedian point of the excentral triangle $(\Delta I_a I_b I_c$ formed from centers of

excircles)

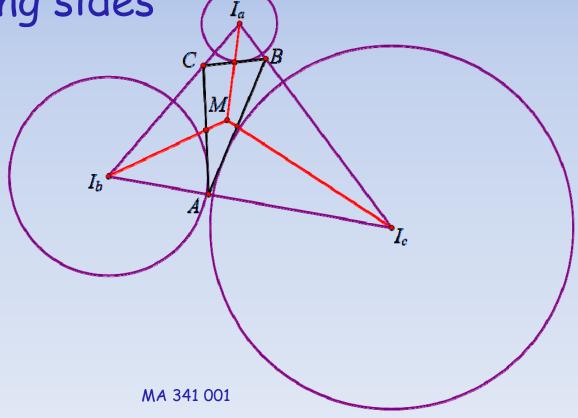


05-Oct-2011

Mittenpunkt Point

The mittenpunkt of $\triangle ABC$ is the point of intersection of the lines from the excenters through midpoints of corresponding sides \bigcap_{I_a}

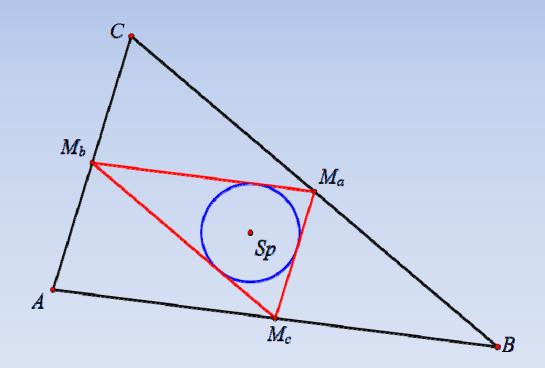
05-Oct-2011



42

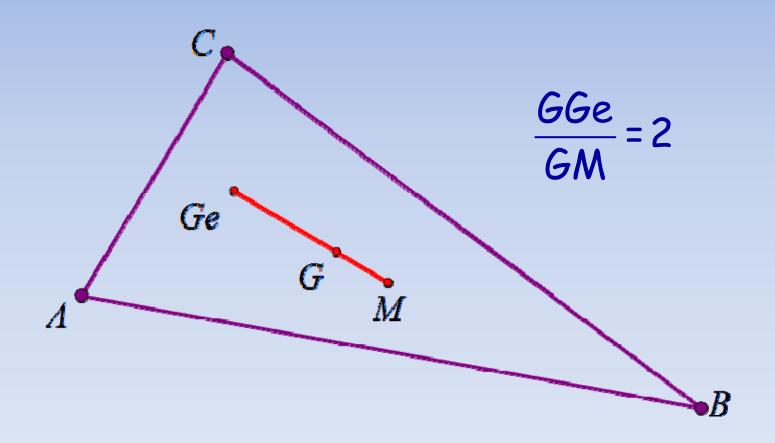
Spieker Point

The Spieker center is center of Spieker circle, i.e., the incenter of the medial triangle of the original triangle.



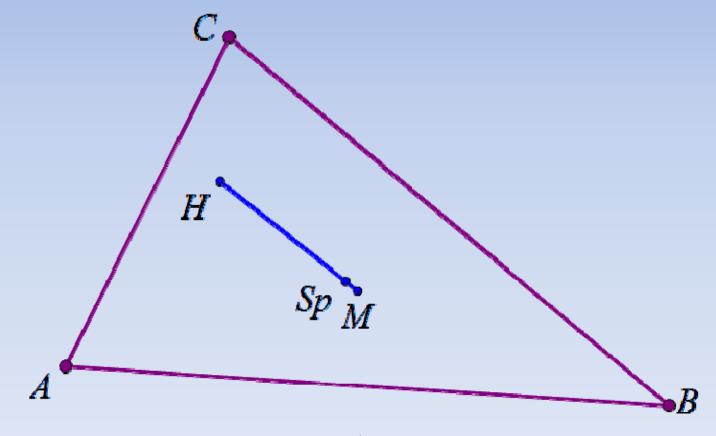
Special Segments

Gergonne point, centroid and mittenpunkt are collinear



Special Segments

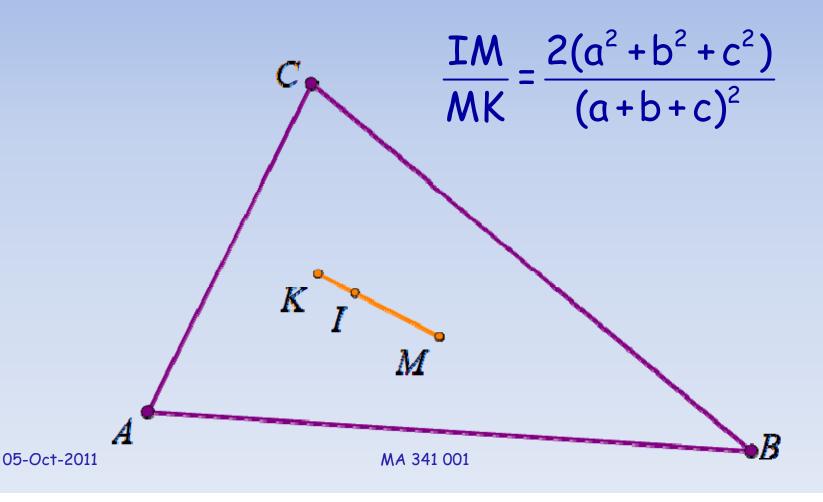
Mittenpunkt, Spieker center and orthocenter are collinear



05-Oct-2011 MA 341 001 45

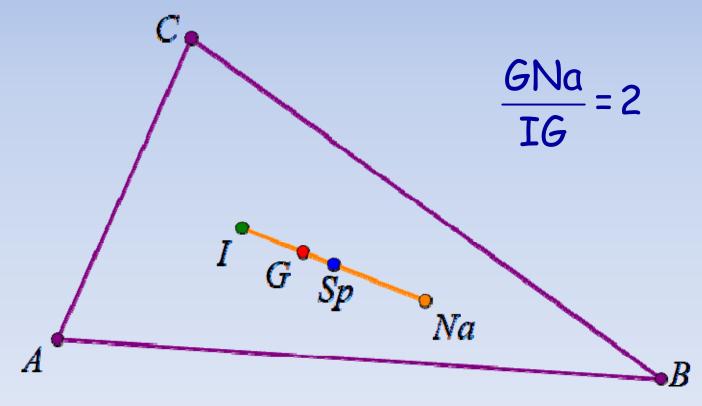
Special Segments

Mittenpunkt, incenter and symmedian point K are collinear with distance ratio



Nagel Line

The Nagel line is the line on which the incenter, triangle centroid, Spieker center Sp, and Nagel point Na lie.



05-Oct-2011

MA 341 001

Various Centers

