
Nagel , Speiker, Napoleon, 
Torricelli

MA 341 – Topics in Geometry
Lecture 17
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Centroid
The point of concurrency of the three medians.
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Circumcenter
Point of concurrency of the three perpendicular 
bisectors.
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Orthocenter
Point of concurrency of the three altitudes.
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Incenter
Point of concurrency of the three angle bisectors.
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Symmedian Point
Point of concurrency of the three symmedians.
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Gergonne Point
Point of concurrency of the three segments from 
vertices to intangency points.
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Spieker Point
The Spieker point is the incenter of the medial 
triangle.
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Nine Point Circle Center
The 9 point circle center is midpoint of the Euler 
segment.



Mittenpunkt Point
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The mittenpunkt of ΔABC is the 
symmedian point of the excentral triangle



Nagel Point
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Nagel point = point of concurrency of 
cevians to points of tangency of excircles



Nagel Point
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The Nagel Point
Ea has the unique property 
of being the point on the 
perimeter that is exactly 
half way around the triangle 
from A.
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a a  =sAB+BE AC+CE=

a a and BE s AB s c CE s AC s b= - = - = - = -
Then

a

a

BE s c
CE s b

-
=

-



The Nagel Point
Likewise
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b

b

CE s a
AE s c

-
=

-

c

c

AE s b
BE s a

-
=

-

Apply Ceva’s Theorem

c a b

c a b

AE BE CE s b s c s a 1
BE CE AE s a s b s c

- - -
= ´ ´ =

- - -



The Nagel Segment
1. In triangle ΔABC, let G, I, N be the centroid, 

incenter, and Nagel point, respectively. Then I, 
G, N lie on a line in that order.

2. The centroid is one-third of the way from the 
incenter to the Nagel point, NG = 2 IG.
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The Nagel Segment
1. Continuing the analogy if P, Q, R are the 

midpoints of sides BC,CA,AB, respectively, then 
the incenter of ΔPQR is the midpoint of IN.
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The Segments
1. The Euler Segment (midpoint = 9 pt circle center)
2. The Nagel Segment (midpoint = Spieker pt)
3. Centroid divides each segment in 2:1 ratio
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Napoleon Point
Construct a triangle ΔABC.
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Napoleon Point
Construct an equilateral 
triangle on each side of ΔABC 
outside ΔABC .

A

B

C

A′

B′

C′
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Napoleon Point
Construct the 
three centroids 
of triangles 
ΔA’BC, ΔAB’C, 
and ΔABC’ and 
label them U, V, 
and W, 
respectively.
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Napoleon Point
1. Napoleon’s Theorem: ΔUVW 

is always equilateral. 

Napoleon triangle
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Napoleon Point
2. AU, BV, and 

CW are 
concurrent.
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Torricelli Point
aka Fermat Point

Construct a triangle ΔABC.
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Torricelli Point
Construct an equilateral 
triangle on each side of ΔABC 
outside ΔABC .

A

B

C

A′

B′

C′
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Torricelli Point
Connect AA’, BB’ 
and CC’.  These 
lines are 
concurrent in the 
Torricelli point.
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Torricelli Point
Construct the 
circumcircles for 
each of the 
equilateral 
triangles.

The Torricelli 
point is the point 
of intersection of 
the circumcircles.
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Fermat Point
The first description also 
due to Fermat.
His interest
was in a different
direction.
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Fermat Point

The 3 angles between F 
and each of the 
vertices are each 120°, 
so it is the equiangular 
point of the triangle.
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Fermat Point

Also, the Fermat point 
minimizes sum of the 
distances to the 
vertices.
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Nagel point=Caneyville     Circumcenter=Rock Creek     Centroid=New Haven
Incenter = Springfield     Gergonne = Cornishville Symmedian = Calvary &  

Hopewell Rd, Mercer Co
Orthocenter = Bluegrass Parkway & US 60, Versailles



Various Centers
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Menelaus’s Theorem
The three points P, Q, and R one the sides AC, AB, and  
BC, respectively, of ΔABC are collinear if and only if
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AQ BR CP
· · 1

QB RC PA
= -

P

Q

R
B

A

C



Menelaus’s Theorem
Assume P, Q, and R are collinear.
From the vertices drop perpendiculars to the line. 
ΔCHcR ~ ΔBHbR
ΔCHcP ~ ΔAHaP
ΔAHaQ ~ ΔBHbQ. 
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Ha

Hb
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C



Menelaus’ Theorem
Therefore
BR/CR = BHb/CHc, 
CP/AP = CHc/AHa, 
AQ/BQ = AHa/BHb. 
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a b c

b c a

AH BH CHAQ BR CP
· · · · 1

QB RC PA BH CH AH
= =

Hc

Ha

Hb

P

Q

R
B

A

C

BR/RC is a negative ratio if we take direction into 
account. This gives us our negative.



Menelaus’s Theorem
For the reverse implication, assume that we have three 
points such that  AQ/QB·BR/RC·CP/PA = 1. Assume 
that the points are not collinear. Pick up any two. Say P 
and Q. Draw the line PQ and find its intersection R' 
with BC. Then 
AQ/QB·BR’/R’C·CP/PA = 1. 
Therefore BR'/R‘C = BR/RC, from which R' = R.
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Miquel’s Theorem
If P, Q, and R are on BC, AC, and AB respectively, 
then the three circles determined by a vertex and 
the two points on the adjacent sides meet at a point 
called the Miquel point. 
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Miquel’s Theorem
Let ABC be our triangle and let P,Q, and R be the 
points on the sides of the triangle. Construct the 
circles of the theorem. Consider two of the circles, 
C1 and C2, that pass through P. They intersect at P, 
so they must intersect at a second point, call it G. 
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In circle C2
QGP + QAP = 180
In circle C1
RGP + RBP = 180

C2

C1

G

A

B

C

Q

P

R



Miquel’s Theorem

Thus, QGR and C are 
supplementary and so Q, 
G, R, and C are concyclic. 
These circle then 
intersect in one point. 
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C2

C1

G

A

B

C

Q

P

R

QGP QGR RGP 360
(180 A) QGR (180 B) 360

QGR A B
180 C

+ + =
- + + - =

= +
= -

  
  

  




Morley’s Theorem
The adjacent trisectors of the angles of a triangle are 
concurrent by pairs at the vertices of an equilateral 
triangle.
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A

B

C


