Pedal Triangles and the Simson Line

MA 341 - Topics in Geometry Lecture 18

Miquel's Theorem

If P, Q, and R are on BC, AC, and AB respectively, then the three circles determined by a vertex and the two points on the adjacent sides meet at a point called the Mirrol Paint C

Miquel's Theorem

Let \triangle ABC be our triangle and let P,Q, and R be the points on the sides of the triangle. Construct the circles of the theorem. Consider two of the circles, C_1 and C_2 , that pass through P. They intersect at P, so they must intersect at a second point, call it G.

In circle C_2 $\angle QGP + \angle QAP = 180$ In circle C_1 $\angle RGP + \angle RBP = 180$

10-Oct-2011

MA 341

Miquel's Theorem

$$\angle QGP + \angle QGR + \angle RGP = 360$$

$$(180 - \angle A) + \angle QGR + (180 - \angle B) = 360$$

$$\angle QGR = \angle A + \angle B$$

$$= 180 - \angle C$$

Thus, $\angle QGR$ and $\angle C$ are supplementary and so Q, G, R, and C are concyclic. These circle then intersect in one point.

10-Oct-2011

MA 341

Pedal Triangle

For any triangle $\triangle ABC$ and any point P, let A', B', C' be the feet of the perpendiculars from P to the (extended) sides of $\triangle ABC$.

10-Oct-2011

MA 341

Pedal Triangle

Form the triangle $\triangle A'B'C'$.

Do we always get a triangle?

10-Oct-2011

MA 341

Pedal Triangle

Form the triangle $\triangle A'B'C'$.

Pedal Triangle

Can we characterize the points where the pedal triangle is a "degenerate triangle"?

Simson-Wallace Line

Theorem (Wallace, Simson): Given a reference triangle $\triangle ABC$, if P lies on the circumcircle of $\triangle ABC$ then the pedal triangle is degenerate.

The Simson Line Proof: Assume that P is on circumcircle of $\triangle ABC$

The Simson Line Proof: First, assume that P is on the circumcircle. WLOG we can assume that P is on arc AC that does not contain B and P is at least as far from C as it is from A. If necessary you can relabel the points to make this so.

Tl	C:1	1:
ıne	Simson	Line

The converse of this theorem is also true. That is if $\Delta A'B'C'$ is degenerate then P must lie on the circumcircle of ΔABC .

10-Oct-2011

MA 341

Lemma 1

Choose P on the circumcircle of $\triangle ABC$. Let Q be the intersection of the perpendicular to BC through P with the circumcircle (Q \neq P).

Let X be foot of P in BC. Let Z be foot of P in AB. If $Q \neq A$, then ZX || QA.

10-Oct-2011

MA 341

Proof

MA 341

Assume $X \neq Z$. If P=B, then P=B=X=Z, so P \neq B. So, consider the unique circle with diameter PB.

 $\angle PXB = 90 = \angle PZB$

 \Rightarrow X,Z are concyclic with P & B.

 $\Rightarrow \angle PXZ = \angle PBZ$

 $\angle PBZ = \angle PBA = \angle PQA$

 \Rightarrow XZ||QA

10-Oct-2011

17

Lemma 2 If the altitude AD of \triangle ABC meets the circumcircle at P, then the Simson line of P is parallel to the line tangent to the circle at A.

Pi	roof
∠PYB=90 and ∠PZB Thus, P,Y,Z,B concy Thus, ∠PBY=∠PZY Likewise P,X,A,Y concyclic Thus, ∠PXY=∠PAY ΔPAB~ΔPXZ	A A
(PA)(PZ)=(PB)(PX)	MA 341 22

Properties of Simson Line P is called the pole of the line A'B'. A'B'. MA 341 23

Proof

Proof: Extend PY_p to R and QY_Q to S. AS || X_0Y_0 and AR|| X_0Y_0

10-Oct-2011

Lemma 5

Two Simson lines are perpendicular iff their poles are on opposite ends of a diameter.

10-Oct-2011

Properties of Simson Line B

Find the orthocenter of $\triangle ABC$ and construct HP.

10-Oct-2011

9

