
Quadrilateral GeometryQuadrilateral Geometry

MA 341 – Topics in Geometry
Lecture 19



Varignon’s Theorem I
The quadrilateral formed by joining the 
midpoints of consecutive sides of any 
quadrilateral is a parallelogram.

PQRS is a parallelogram.
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Proof
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RS || BD
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Proof
Q B

QR || AC
PS || AC
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Starting with any quadrilateral gives us a Starting with any quadrilateral gives us a 
parallelogram

What type of quadrilateral will give us 
a square?
a rhombus?
a rectangle?
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Varignon’s Corollary: Rectangle
The quadrilateral formed by joining the 
midpoints of consecutive sides of a 
quadrilateral whose diagonals are 
perpendicular is a rectangle.

PQRS is a parallelogram
Each side is parallel to one of p
the diagonals
Diagonals perpendicular 
id  f ll l   sides of parallelogram are 

perpendicular
p r ll l r m is  r ct n l
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Varignon’s Corollary: Rhombus
The quadrilateral formed by joining the 
midpoints of consecutive sides of a 
quadrilateral whose diagonals are congruent 
is a rhombus.

PQRS is a parallelogram
Each side is half of one of Each side is half of one of 
the diagonals
Diagonals congruent  sides Diagonals congruent  sides 
of parallelogram are 
congruent
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Varignon’s Corollary: Square
The quadrilateral formed by joining the 
midpoints of consecutive sides of a 
quadrilateral whose diagonals are congruent 
and perpendicular is a square.

12-Oct-2011 MA 341 9



Quadrilateral Centers

Each quadrilateral gives rise to 4 triangles 
using the diagonals.
P and Q = centroids of ∆ABD and ∆ CDBQ f D D
R and S = centroids of ∆ABC and ∆ ADC
The point of intersection of the segments The point of intersection of the segments 
PQ and RS is the centroid of ABCD
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Centroid
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Quadrilateral Centers

The centerpoint of a quadrilateral is the p
point of intersection of the two segments 
joining the midpoints of opposite sides of j
the quadrilateral. Let us call this point O.
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Centerpoint
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Centroid & Centerpoint
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Theorem
The segments joining the midpoints of the 
opposite sides of any quadrilateral bisect 
each other.

Proof:
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Theorem
The segment joining the midpoints of the 
diagonals of a quadrilateral is bisected by 
the centerpoint.
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Proof
N d t  h  th t PMRN   Need to show that PMRN  a 
parallelogram
I  ∆ADC  PN  idli  d In ∆ADC, PN a midline and 
PN||DC and PN= ½DC

 ∆BD    dl  d In ∆BDC, MR a midline and 
MR||DC and MR= ½DC 

||MR||PN and MR=PN
PMRN a parallelogram
Diagonals bisect one another. 
Then MN intersects PR at its 
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Theorem
Consider a quadrilateral ABCD and let E, F, G, H 
be the centroids of the triangles ∆ABC, ∆BCD, 
∆ ∆∆ACD, and ∆ABD.

1. EF||AD, FG||AB, GH||BC, and EH||CD;
2 K =9  K2. KABCD =9  KEFGH.
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Proof
M = midpoint of BC  Then AM = median MBC = midpoint of BC. Then AMBC = median 
of ∆ABC and E lies 2/3 of way between A 
and MBC, EMBC= 1/3 AMBC.
DMBC = median of ∆DCB and DF:FMBC=2:1 
 in ∆ADMBC we have EF || AD and EF= 
1/3 AD1/3 AD.
Also

FG || AB and FG= 1/3 ABFG || B and FG  /3 B
GH || BC and GH=1/3 BC
EH || CD and EH=1/3 CD

Th  EFGH ADCB ith i il it  Thus, EFGH~ADCB with similarity 
constant 1/3. Therefore, 
K B D =9KEFGH
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Theorem
The sum of the squares of the lengths of the 
sides of a parallelogram equals the sum of the 
squares of the lengths of the diagonals.

AB2+BC2+CD2+AD2=AC2+BD2
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Proof

By Law of Cosines ∆ABE
AB2 = BE2 + AE2 2AE BE cos(BEA)AB2 = BE2 + AE2 - 2AE·BE cos(BEA)

Note that cos BEA=FE/BE, so
AB2 = BE2 + AE2 - 2AE·FEAB  BE  AE 2AE FE

Apply Stewart's Theorem to ∆EBC we have
BC2=BE2 + EC2+2EC· FE

B D ll l  d l  b  h hABCD parallelogram diagonals bisect each other
Thus AE=EC. Adding the first two equations we 
getget

AB2 + BC2 = 2BE2 + 2AE2

Apply this same process to ∆CAD and we have
CD2 + AD2 = 2DE2 + 2CE2.
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Proof

Now, add these equations and recall that 
AE=EC and BE=ED.
AB2+BC2+CD2+AD2 = BE2+2AE2+2DE2+2CE2D D E E DE E
.                            = 4AE2 + 4BE2

                            = (2AE)2 + (2BE)2.                            = (2AE) + (2BE)
.                            = AC2 + BD2

12-Oct-2011 MA 341 22



Varignon’s Theorem II
The area of the Varignon parallelogram is 
half that of the corresponding 
quadrilateral, and the perimeter of the 
parallelogram is equal to the sum of the 
diagonals of the original quadrilateraldiagonals of the original quadrilateral.
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Proof

Recall SP = midline of ∆ABD and KASP = ¼ KABD

KDSR = ¼ KDAC

KCQR = ¼ KCBDKCQR ¼ KCBD

KBPQ = ¼ KBAC

ThereforeTherefore,
KASP+KDSR+KCQR+KBPQ= ¼(KABD+KCBD)+¼(KDAC+KBAC)

 ¼K ¼K= ¼KABCD+¼KABCD

= ½ KABCD
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Proof

Then,
KPQRS = KABCD - (KASP+KDSR+KCQR+KBPQ)

= KABCD – ½ KABCD ABCD ½ ABCD 
= ½KABCD

Also PQ = ½ AC = SR and SP = ½ BD = QR
Easy to see that the perimeter of the Easy to see that the perimeter of the 
Varignon parallelogram is the sum of the 
diagonals.diagonals.
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Wittenbauer’s Theorem
Given a quadrilateral ABCD a parallelogram 
is formed by dividing the sides of a 
quadrilateral into three equal parts, and 
connecting and extending adjacent points on 
either side of each vertex  Its area is 8/9 either side of each vertex. Its area is 8/9 
of the quadrilateral. The centroid of ABCD 
is the center of Wittenbauer'sis the center of Wittenbauer s
parallelogram (intersection of the 
diagonals).
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