
The Radical Axis

MA 341 – Topics in Geometry
Lecture 24
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What is the Radical Axis?
Is it √x ? √y?

Is it one of the Axis powers gone rogue?  

No, it is the following:

The radical axis of two circles is the locus 
of points at which tangents drawn to both 
circles have the same length. 
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What is the Radical Axis?
P

B

A

Is AP = BP ?
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Previously
We had looked at three circles that were 
externally tangent to one 
another.  We had shown that
the three tangent lines were
concurrent.
(See Incircle)
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Is there something more?

Consider the following figures:

External tangency is not necessary! Tangency is not necessary!



Circle-Line Concurrency

Theorem: Given 3 circles with noncollinear
centers and with every two have a point in 
common. For each pair of circles draw 
either common secant or common tangent, 
then these three constructed lines are 
concurrent.
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Power of a point
Let P be a point and c1 be a circle of radius r 
centered at O.  

The power of P with respect to c1 is defined 
to be:

Pwr(P) = d2 – r2,
where d = OP.
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Power of a point

O P

r

d

Pwr(P)=d2 – r2
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Power of a point
Pwr(P) = 25-4=21

Pwr(Q) = 4-4=0

Pwr(R) = 1-4=-3
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Power of a point
Lemma: Let P be a point and c1 be a circle of 
radius r centered at O.  

1. Pwr(P) > 0 iff P lies outside c1;
2. Pwr(P) < 0 iff P lies inside c1;
3. Pwr(P) = 0 iff P lies on c1.

Proof:
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Background on Power

Theorem [1.35]: Given a circle and a point P not 
on the circle, choose an arbitrary line through P 
meeting the circle at X and Y. The quantity 
PX·PY depends only on P and is independent of 
the choice of line through P.
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Background on Power

Let a second line through P intersect circle at U 
and V.
Need to show PU PV = PX PY.



26-Oct-2011 MA 341 25

Background on Power

Draw UX and VY.
U = Y (Why?)
XPU = VPY
ΔXPU ~ ΔVPY
PX/PV = PU/PY
PX PY = PU PV 



The Power Lemma
Lemma: Fix a circle and a point P. Let p be 
the power of P with respect to the circle.
a) If P lies outside the circle and a line 

through P cuts the circle at X and Y, 
then p = PX·PY.

b) If P is inside the circle on chord XY, 
then p = -PX·PY.

c) If P lies on a tangent to the circle at 
point T, then p = (PT)2.
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Proof:

1. PX·PY does not depend on the choice of 
line.  Let the line go through O, the center 
of the circle.
XY = diameter = 2r
PO = d
PX = PO – XO = d – r 
PY = PO + OY = d + r
PX·PY = (d – r)(d+r) = d2 – r2
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Proof:

2. PX·PY does not depend on the choice of 
line.  Let the line go through O, the center 
of the circle.
XY = diameter = 2r
PO = d
PX = PO – XO = r – d 
PY = PO + OY = r + d
PX·PY = (r – d)(r + d) = r2 – d2 = -p 
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Proof:

3.ΔPTO is a right triangle.
(PT)2 = d2 – r2 = p 
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Locus of Points

Lemma: Fix 2 circles centered at A and B, 
A=B. There exist points whose powers 
with respect to the two circles are equal. 
The locus of all points  is a line 
perpendicular to AB.
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Locust of Points
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Proof
Suppose that A and B lie on the x-axis.
(Is this a reasonable assumption? Why?)
Let A=(a,0) and B=(b,0), a = b.
Let P=(x,y), then
(PA)2=(x-a)2 + y2 and (PB)2=(x-b)2 + y2

Let r = radius of circle at A, s=radius at B
Powers of P are equal IFF
(x-a)2 + y2 – r2 = (x-b)2 + y2 - s2
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Proof
(x-a)2 + y2 – r2 = (x-b)2 + y2 - s2
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 
(x-a)2 – r2 = (x-b)2 - s2

x2 – 2ax + a2 – r2 = x2 – 2bx + b2 - s2

2(a-b)x = r2 – s2 + b2 – a2

2 2 2 2r s b ax
2(a b)

  






Radical Axis
Given two circles with different centers 
their radical axis is the line consisting of 
all points that have equal powers with 
respect to the two circles.
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Radical Axis
Corollary:
a) If two circles intersect at two points A 

and B, then their radical axis is their 
common secant AB.

b) If two circles are tangent at T, their 
radical axis is their common tangent 
line.
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Proof of (a)
A point common to two circles has power 0 
with respect to BOTH circles.
Pwr(A)=0=Pwr(B), which is radical axis. 
Radical axis is line containing A and B.
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Proof of (b)
T lies on both circles, so 
Pwr1(T)=Pwr2(T)=0 and T lies  on the 
radical axis. 
If P lies on radical axis of one circle and 
lies on one circle, then Pwr(P)=0 so it also 
lies on other circle since it is on radical 
axis. 
Thus, P lies on both circles, but T is the 
only point that lies on both circles.
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Radical Axis
Corollary:
Given three circles with noncollinear
centers, the three radical axes of the 
circles taken in pairs are distinct 
concurrent lines.
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Proof
Radical axis is perpendicular to the line 
between the centers of the circles. 
Centers non-collinear implies radical axes 
distinct and nonparallel. 
Each pair intersects!!
Let P be a point and let p1, p2, and p3 be 
the powers of P with respect to the 3 
circles.
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Proof
On one radical axis we have p1 = p2

On another we have, and p2 = p3

At P the radical axes meet and we have
p1 = p2 = p3

Thus, p1 = p3 and P lies on the third radical 
axis.
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