MATH 341 - FALL 2011 ASSIGNMENT 4

September 21, 2011
Geometry for College Students by Martin Isaacs, page 23:
1E. 1 Draw two medians of a triangle. This subdivides the interior of the triangle into four pieces: three triangles and a quadrilateral. Show that two of the three small triangles have equal areas and that the area of the third is equal to that of the quadrilateral.

1E. 2 An arbitrary point P is chosen on the base $B C$ of an isosceles $\triangle A B C$ and perpendiculars $P U$ and $P V$ are drawn from P to the other two sides of the triangle. (It may be that U or V lies on an extension of $A B$ or $A C$ and not on the actual side of the triangle. This can happen, for instance, if $\angle A$ is obtuse and point P is very near B or C.) Show that the sum $P U+P V$ of the lengths of the two perpendiculars is constant as P move along $B C$. In other words, this quantity is independent of the choice of P.

1E. 3 Since a triangle is determined by angle-side-angle, there should be a formula for
$K_{A B C}$ expressed in terms of a and $\angle B$ and $\angle C$. Show that:

$$
K_{A B C}=\frac{1}{2} a^{2} \frac{\sin B \sin C}{\sin (B+C)} .
$$

