MATH 341 — FALL 2011 ASSIGNMENT 5 Due Sept 30, 2011

September 13, 2011

Geometry for College Students by Martin Isaacs, pages 32-33:

- 1F.3 Let *P* be a point exterior to a circle centered at point *O* and draw the two tangents to the circle from *P*. Let *S* and *T* be the two points of tangency. Show that *OP* bisects $\angle SPT$ and $PS \cong PT$.
- 1F.5 In $\triangle ABC$ prove that $\angle A$ is a right angle if and only if the length of the median from *A* to *BC* is exactly half the length of side *BC*.

For the remainder of the semester we will use the following notation. For $\triangle ABC$ we let *a*, *b*, and *c* denote the lengths of the sides opposite *A*, *B* and *C* respectively, *i.e.* a = BC, b = AC, and c = AB. Define the *semiperimeter s* to be $s = \frac{a+b+c}{2}$. Let h_a , h_b , and h_c denote the lengths of the altitudes from *A*, *B*, and *C*, respectively. Let l_a , l_b , and l_c denote the lengths of the segments of the angle bisectors from *A*, *B*, and *C*, respectively, from the vertex to the opposite side. Let m_a , m_b , and m_c denote the lengths of the angle of the segments of the medians from *A*, *B*, and *C*, respectively.

The above figure shows h_a , l_a , and m_a .

- 3. Consider $\triangle ABC$ with a = 8, b = 3 and c = 6. Let AD be the altitude at A, AF the bisector at A, and AM be the median at A.
 - a) Find *CD*, *CF*, and *CM*.
 - b) Find h_a , l_a , and m_a .
- 4. Given any triangle $\triangle ABC$ show that h_a can be expressed by the following formula without using Stewart's Theorem

$$h_a = \frac{2}{a}\sqrt{s(s-a)(s-b)(s-c)}$$