MATH 341 - FALL 2011
 ASSIGNMENT 5
 Due Sept 30, 2011

September 13, 2011
Geometry for College Students by Martin Isaacs, pages 32-33:
1F. 3 Let P be a point exterior to a circle centered at point O and draw the two tangents to the circle from P. Let S and T be the two points of tangency. Show that $O P$ bisects $\angle S P T$ and $P S \cong P T$.

1F. 5 In $\triangle A B C$ prove that $\angle A$ is a right angle if and only if the length of the median from A to $B C$ is exactly half the length of side $B C$.

For the remainder of the semester we will use the following notation. For $\triangle A B C$ we let a, b, and c denote the lengths of the sides opposite A, B and C respectively, i.e. $a=B C, b=A C$, and $c=A B$. Define the semiperimeter s to be $s=\frac{a+b+c}{2}$. Let h_{a}, h_{b}, and h_{c} denote the lengths of the altitudes from A, B, and C, respectively. Let l_{a}, l_{b}, and l_{c} denote the lengths of the segments of the angle bisectors from A, B, and C, respectively, from the vertex to the opposite side. Let m_{a}, m_{b}, and m_{c} denote the lengths of the medians from A, B, and C, respectively.

The above figure shows h_{a}, l_{a}, and m_{a}.
3. Consider $\triangle A B C$ with $a=8, b=3$ and $c=6$. Let $A D$ be the altitude at $A, A F$ the bisector at A, and $A M$ be the median at A.
a) Find $C D, C F$, and $C M$.
b) Find h_{a}, l_{a}, and m_{a}.
4. Given any triangle $\triangle A B C$ show that h_{a} can be expressed by the following formula without using Stewart's Theorem

$$
h_{a}=\frac{2}{a} \sqrt{s(s-a)(s-b)(s-c)}
$$

