MATH 341 — FALL 2011 ASSIGNMENT 7

Due October 14, 2011

Geometry for College Students by Martin Isaacs:

- 1. [Isaacs, 2C.2] Show that the circumcenter of $\triangle ABC$ is the orthocenter of its medial triangle.
- 2. [Isaacs, 2E.2] Suppose that the centroid and the incenter of $\triangle ABC$ are the same point. Show that $\triangle ABC$ is equilateral.
- 3. *[Isaacs, 2E.3]* Show that in a right triangle, the inradius, circumradius and semiperimeter are related by the formula s = r + 2R.
- 4. Show that for a right triangle $5m_c^2 = m_a^2 + m_b^2$.
- 5. Let $\triangle ABC$ be the triangle with vertices (7, -1), (8, 6), and (-1, 3).¹
 - (a) Find the area of $\triangle ABC$.
 - (b) Find the coordinates of the centroid of $\triangle ABC$.
 - (c) Find the coordinates of the orthocenter of $\triangle ABC$.
 - (d) Find the coordinates of the circumcenter of $\triangle ABC$.
 - (e) Find the coordinates of the incenter of $\triangle ABC$.
 - (f) Find the coordinates of the center of the Nine Point circle of ΔABC .
 - (g) Find the length of the Euler segment of $\triangle ABC$.
 - (h) Find the lengths of the medians of $\triangle ABC$.
 - (i) Find the circumradius of $\triangle ABC$.
 - (j) Find the inradius of $\triangle ABC$.
 - (k) Find the radius of the Nine Point circle for $\triangle ABC$.

¹You may use *GeoGebra* to help with this problem, but you do not have to do so.