MATH 341 - FALL 2011 ASSIGNMENT 7

Due October 14, 2011

Geometry for College Students by Martin Isaacs:

1. [Isaacs, 2C.2] Show that the circumcenter of $\triangle A B C$ is the orthocenter of its medial triangle.
2. [Isaacs, 2E.2] Suppose that the centroid and the incenter of $\triangle A B C$ are the same point. Show that $\triangle A B C$ is equilateral.
3. [Isaacs, 2E.3] Show that in a right triangle, the inradius, circumradius and semiperimeter are related by the formula $s=r+2 R$.
4. Show that for a right triangle $5 m_{c}^{2}=m_{a}^{2}+m_{b}^{2}$.
5. Let $\triangle A B C$ be the triangle with vertices $(7,-1),(8,6)$, and $(-1,3) .{ }^{1}$
(a) Find the area of $\triangle A B C$.
(b) Find the coordinates of the centroid of $\triangle A B C$.
(c) Find the coordinates of the orthocenter of $\triangle A B C$.
(d) Find the coordinates of the circumcenter of $\triangle A B C$.
(e) Find the coordinates of the incenter of $\triangle A B C$.
(f) Find the coordinates of the center of the Nine Point circle of $\triangle A B C$.
(g) Find the length of the Euler segment of $\triangle A B C$.
(h) Find the lengths of the medians of $\triangle A B C$.
(i) Find the circumradius of $\triangle A B C$.
(j) Find the inradius of $\triangle A B C$.
(k) Find the radius of the Nine Point circle for $\triangle A B C$.
[^0]
[^0]: ${ }^{1}$ You may use GeoGebra to help with this problem, but you do not have to do so.

