MATH 341 — FALL 2011 ASSIGNMENT 8

Due October 17, 2011

I strongly suggest — in fact, demand — that you use *GeoGebra* or *Geometer's Sketchpad* to do this homework. The calculations by hand would be daunting, to say the least. You should upload your solutions to *BlackBoard* — either the *GeoGebra* file or a *Word* document with your work — by 11:59 PM on Monday, October 17, 2011.

- 1. Consider the triangle with vertices A = (0,0), B = (10,0) and C = (1,9). Find the coordinates of the following points and the lengths of the following segments.
 - (a) area of $\triangle ABC$;
 - (b) midpoints of the sides, M_A , M_B , M_C ;
 - (c) circumcenter, O;
 - (d) circumradius, R;
 - (e) orthocenter, *H*;
 - (f) lengths of the altitudes, h_a , h_b , and h_c ;
 - (g) centroid, G;
 - (h) lengths of the medians, m_a , m_b , and m_c ;
 - (i) incenter, *I*;
 - (j) inradius, r;
 - (k) center of the nine-point circle;
 - (l) radius of the nine-point circle;
 - (m) Gergonne point, Ge;
 - (n) symmedian point, *K*;
 - (o) lengths of the symmedians, *s*_{*a*}, *s*_{*b*}, and *s*_{*c*};
 - (p) centers of the excircles, I_a , I_b , and I_c ;
 - (q) the exradii, r_a , r_b , r_c ;
 - (r) the Nagel point, N;
 - (s) the Spieker point, *Sp*;
 - (t) the Napoleon point, N_a ;
 - (u) the Fermat, or Torricelli, point, *F*;
 - (v) the length of the Euler segment;
 - (w) the length of the Nagel segment.
- 2. For this triangle, verify the following with your computations.
 - (a) Verify that the centroid, *G*, divides the Euler segment in a 2:1 ratio.
 - (b) Verify that the centroid, G, divides the Nagel segment in a 2:1 ratio.
 - (c) Verify that the Spieker point, *Sp*, is the midpoint of the Nagel segment.
 - (d) Verify that the center of the nine-point circle is the midpoint of the Nagel segment.
 - (e) Verify that Napoleon's triangle is an equilateral triangle.

(f) Verify that
$$\frac{1}{r} = \frac{1}{r_a} + \frac{1}{r_b} + \frac{1}{r_c}$$
.