MATH 341 - FALL 2011
 ASSIGNMENT 8

Due October 17, 2011
I strongly suggest - in fact, demand - that you use GeoGebra or Geometer's Sketchpad to do this homework. The calculations by hand would be daunting, to say the least. You should upload your solutions to BlackBoard - either the GeoGebra file or a Word document with your work - by 11:59 PM on Monday, October 17, 2011.

1. Consider the triangle with vertices $A=(0,0), B=(10,0)$ and $C=(1,9)$. Find the coordinates of the following points and the lengths of the following segments.
(a) area of $\triangle A B C$;
(b) midpoints of the sides, M_{A}, M_{B}, M_{C};
(c) circumcenter, O;
(d) circumradius, R;
(e) orthocenter, H;
(f) lengths of the altitudes, h_{a}, h_{b}, and h_{c};
(g) centroid, G;
(h) lengths of the medians, m_{a}, m_{b}, and m_{c};
(i) incenter, I;
(j) inradius, r;
(k) center of the nine-point circle;
(l) radius of the nine-point circle;
(m) Gergonne point, Ge;
(n) symmedian point, K;
(o) lengths of the symmedians, s_{a}, s_{b}, and s_{c};
(p) centers of the excircles, I_{a}, I_{b}, and I_{c};
(q) the exradii, r_{a}, r_{b}, r_{c};
(r) the Nagel point, N;
(s) the Spieker point, $S p$;
(t) the Napoleon point, N_{a};
(u) the Fermat, or Torricelli, point, F;
(v) the length of the Euler segment;
(w) the length of the Nagel segment.
2. For this triangle, verify the following with your computations.
(a) Verify that the centroid, G, divides the Euler segment in a $2: 1$ ratio.
(b) Verify that the centroid, G, divides the Nagel segment in a 2:1 ratio.
(c) Verify that the Spieker point, $S p$, is the midpoint of the Nagel segment.
(d) Verify that the center of the nine-point circle is the midpoint of the Nagel segment.
(e) Verify that Napoleon's triangle is an equilateral triangle.
(f) Verify that $\frac{1}{r}=\frac{1}{r_{a}}+\frac{1}{r_{b}}+\frac{1}{r_{c}}$.
