How to Enter Answers in WeBWorK

Addition + a+b gives a+b

Subtraction - a-b gives a-b

Multiplication * a*b gives ab

Multiplication may also be indicated by a space or juxtaposition, such as 2x, 2x, 2x, or 2(x+y).

Division / a/b gives $\frac{a}{b}$

Exponents $^{\bullet}$ or ** $a^{\circ}b$ gives a^{b} as does $a^{**}b$

Parentheses, brackets, etc (...), [...], {...}

Syntax for entering expressions

- Be careful entering expressions just as you would be careful entering expressions in a calculator.
- Sometimes using the * symbol to indicate multiplication makes things easier to read. For example (1+2)*(3+4) and (1+2)(3+4) are both valid. So are 3*4 and 3 4 (3 space 4, not 34) but using an explicit multiplication symbol makes things clearer.
- Use parentheses (), brackets [], and curly braces {} to make your meaning clear.
- Do not enter 2/4+5 (which is $5\frac{1}{2}$) when you really want 2/(4+5) (which is 2/9).
- Do not enter 2/3*4 (which is 8/3) when you really want 2/(3*4) (which is 2/12).
- Entering big quotients with square brackets, **e.g**. [1+2+3+4]/[5+6+7+8], is a good practice.
- Be careful when entering functions. It is always good practice to use parentheses when entering functions. Write sin(t) instead of sint or sin t. WeBWorK has been programmed to accept sin t or even sint to mean sin(t). But sin 2t is really sin(2)t, i.e. (sin(2))*t. Be careful.
- Be careful entering powers of trigonometric, and other, functions. You write (sin(t))^2 for the square of sin(t), and *never* sin^2t.
- For example for the expression $2+3\sin^2(4x)$, $2+3\sin^2(4x)$ is wrong. You should enter: $2+3*(\sin(4*x))^2$. Why does the last expression work?

Please Excuse My Dear Aunt Sally

Operations in parentheses are always done first (4*x) and then $(\sin(4*x))$], next all exponents are taken, giving $(\sin(4*x))^2$, next all multiplications and divisions are performed, giving $3*(\sin(4*x))^2$. Finally, all additions and subtractions are performed, giving $2+3*(\sin(4*x))^2$.

• Remember that multiplication and division have the same precedence and there are no universal rules as to which should be done first in the **absence** of parentheses. WeBWorK and many computers read things from left to right, so 2/3*4 means (2/3)*4=8/3. But some other computers will read 2/3*4 as 2/(3*4)=1/6. The same lack of consistent rules concerns powers, expressions like 2^3^4.

The only way to insure that you are entering what you want to enter is the use of parentheses!!!

- Use the Preview Button to see exactly how your entry appears to the system. For example, to tell the difference between 1+2/3+4 and [1+2]/[3+4] click the Preview Button.
- If a problem calls for a decimal answer, give at least four decimal digits, or as many as the problem specifies. For example, write 2.3453 instead of 2.34.

Intervals in WeBWorK

What is the domain of $f(x) = \sqrt{x}$? One answer is $x \ge 0$ (x is greater than or equal to o). The best way to enter this in WeBWorK is by using interval notation: [0,infinity). Other intervals:

(2,3] is the set $2 < x \le 3$.

(-infinity,5) is the set x < 5.

(-infinity, infinity) is the set of all real numbers.

(2,3]U[4,5) is the set $\{2 < x \le 3 \text{ or } 4 \le x < 5\}$. (This is a union of two intervals and can be very important.)

Mathematical Constants Available In WeBWorK

pi This gives π ≈ 3.14159265358979. So cos(pi) is −1.

e This gives $e \approx 2.718281828459045$. So, $ln(e^*2)$ is 1 + ln(2)

Scientific Notation Available In WeBWorK

2.1E2 gives 210

2.1E-2 gives 0.021

aEb gives $a \times 10^b$

Cube roots and *n*th Roots

 $x^{(1/3)}$ gives $\sqrt[3]{x}$, the cube root of x

 $x^{(1/n)}$ gives $\sqrt[n]{x}$, the *n*th root of *x*

 $x^{(p/q)}$ gives $(\sqrt[q]{x})^p$

Mathematical Functions Available In WeBWorK

- abs() |x|, the absolute value
- cos() the cosine function. Note: the cosine function uses radian measure
- sin() the sine function. Note: the sine function uses radian measure
- tan() the tangent function. Note: the tangent function uses radian measure
- sec() the secant function. Note: the secant function uses radian measure and $\sec(x) = \frac{1}{\cos(x)}$
- exp() the exponential function, e^x
- log() The natural logarithm function. Note that this is NOT the common log function from pre-fact(n) = $n(n-1)(n-2)\cdots(3)(2)(1)$ calculus.
- ln() Another, more common name for the natural logarithm, ln(x)
- logten() The common logarithm or log base 10, $\log_{10}(x)$
- arcsin() The inverse sine function. asin() is another name for arcsine.
- arccos() The inverse cosine function. acos() is another name for arccosine.
- arctan() The inverse tangent function. atan() is another name for arctangent.
- sqrt() The square root function
- sgn() The sign function $sgn(x) = \begin{cases} -1 & \text{if } x < 0 \\ 0 & \text{if } x = 0 \\ 1 & \text{if } x > 0 \end{cases}$
- step() The step function step(x) = $\begin{cases} 0 & x < 0 \\ 1 & x \ge 0 \end{cases}$ (o if x < 0, 1 if x >= 0)
- fact() The factorial function (defined only for non-negative integers), $fact(n) = (n)(n-1)(n-2)\cdots(3)(2)(1)$

