Name:	
Section:	

MA 201: Exam I Practice

Please read the following carefully.

- There are 10 questions on this exam and there are 10 points possible for each question. The exam is worth 100 points total.
- You may use a simple calculator but you may not use a cellphone or calculator which stores notes.
- For any question which asks you to explain something you must write in complete English sentences. You can lose points for incomplete or incomprehensible explanations.
- For any computation problem you must show all work. You will lose points if it is not made clear how you arrive at an answer.
- Follow all instructions carefully. If a problem says to use a particular method, you *must* use that method. No points can be awarded if you fail to use the specified method.
- Relax and don't spend too much time on any one problem! Good luck.

Question	Possible	Earned
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
Total:	100	

Name:	
Section:	

MA 201: Exam II Practice

- 1. If a and b are whole numbers both divisible by c prove that a b is also divisible by c.
- 2. Prove that the product of an even number and an even number is always an even number.
- 3. Which of the numbers 3, 5, and 13 are divisors of 774,544,680? Explain your answers with 1-3 sentences each.
- 4. (a) Give the definition for the greatest common divisor of the numbers a and b.
 - (b) Give the definition for the least common multiple of the numbers a and c.
 - (c) Find the greatest common divisor of the numbers 630 and 60.
 - (d) Find the least common multiple of the numbers 630 and 60.
- 5. Mark the following as true or false. Explain each answer with one sentence, giving examples where appropriate.
 - (a) Every whole number larger than 1 can be written as a product of prime powers.
 - (b) One way to find the least common multiple of a and b is to just multiply a and b together.
 - (c) The least common multiple of a and b is less than or equal to $a \cdot b$.
 - (d) Suppose d = GCD(a, b). Then d divides and a and d divides b.
- 6. (a) Demonstrate the addition 133 + 199 with blocks, strips, and mats. Indicate all exchanges that you make.
 - (b) Demonstrate the addition 133 + 199 with place value diagrams. Indicate all exchanges that you make.
 - (c) Consider the arithmetic problem:

Explain why it is misleading to say that we "carry the one" when we add the 9 and 5 digit. Describe this step in a more conceptually relevant way.

- 7. (a) Explain the missing factor model of division.
 - (b) Show a 3rd grade student how to solve 72 ÷ 9 with the missing factor model. You may assume that the 3rd grader has a multiplication table but *does not know anything about algebra*. You will lose points if you write something the 3rd grader won't understand.
 - (c) Use the missing factor model to explain to a group of older students why $a \div 0$ is not defined for the case where $a \neq 0$. Also, provide an intuitive explanation (or example) of why $a \div 0$ does not make sense.

- 8. (a) Convert 32 to base five.
 - (b) Convert $(133)_{five}$ to base ten.
 - (c) Compute $(212)_{five} + (323)_{five}$ in base five.
- 9. (a) Use expanded notation to compute $21 \cdot 415$.
 - (b) Compute $21 \cdot 415$ with the instructional algorithm.
 - (c) Explain how the computation in parts (a) and (b) are related.
- 10. (a) Use repeated subtraction (taking many multiples at a time) to compute $12,082 \div 9$.
 - (b) Use the scaffold method to compute $12,082 \div 9$.
 - (c) Explain how the computations in (a) and (b) are related.
- 11. Below you have an arithmetic problem and a model. Come up with an appropriate word problem for the arithmetic problem and solve it using the model. Draw diagrams and show lots of work.
 - (a) $5 \cdot 5$ in the multiplication tree model.
 - (b) $45 \div 5$ in the repeated subtraction model.