Def: constants - describe static situations in which change is not under consideration. (eg. 12 in a dozen, $2+5=7$)
Def: variables - changeable quantities

Ways variables are used:

- to describe generalized properties: $a+(b+c)=(a+b)+c$ for all real a, b, c.
(Here a, b, c are generalized variables - they represent an arbitrary member of a set)
- to express relationships: Jolie was born on her 3-year old sister Kendra's birthday. How are their ages related? $(J=K-3, K=J+3, K-J=3)$
- to serve as unknowns in equations: $\square+5=9,(2 x-6)(x-1)=0$
- to express formulas: $d=r t, A=l w, P=2 l+2 w$
p. $496 \# 2$: In each situation below, classify the role of the variables as one of the following types: generalized; expressing a relationship; expressing a formula; an unknown.
(a) For all real numbers $x, y, z: x(y+z)=x y+x z \quad$ Generalized variables
(b) Elena is 4 inches shorter than her husband, Joe, so $E=J-4$. Expressing a relationship
(c) To construct a circular flower bed covering 400 square feet of ground, the radius r of the bed must satisfy $\pi r^{2}=400 . \quad \bullet$ Unknown
(d) Tickets to the play are $\$ 5$ for adults and $\$ 3$ for children. If A adults and C children attend the play, the total proceeds are $5 A+3 C$. Expressing a formula

Def: numerical expression - any representation of a number that involves numbers and operation symbols. $(3+8)$
Def: algebraic expression - an expression involving variables, numbers and operation symbols. $(4 x+8 y)$
p. 496 \#4: Penny is p years old. Form algebraic expressions with the variable p that represent the ages requested.
(a) Penny's age in 5 years $(p+5)$
(b) Penny's age 8 years ago $(p-8)$
(c) The current age of Penny's little brother, who in two more years will be half of Penny's age. $\left(\frac{1}{2}(p+2)-2\right)$
(d) The current age of Penny's mother, who, three years ago was 4 times Penny's age. $(4(p-3)+3)$

Def: domain of a variable - the set of all values for which the expression is meaningful.
Def: to evaluate an expression - to replace all the variables with particular values.
Def: equation - two algebraic expressions with the same value

There are two types of equations:
Def: identity equation - an equation that is true for all evaluations of the variables. $\left((x+y)^{2}=\left(x^{2}+2 x y+y^{2}\right)\right)$
Def: conditional equation - an equation that is true only for specific evaluations of the variables. $\left(a^{2}+b^{2}=c^{2}\right)$

Def: solution set - the set of all values in the domain of the variables that satisfy the given equation.
Def: equivalent equations - two equations that have the same solution set.

We use equivalent equations to simplify equations. You must be careful though, as some operations are not completely equivalent.

Def: function on a set D - a rule that associates each element $x \in D$ precisely one value y.
Def: domain of a function - the set on which the function is defined (D in the above definition).

We typically use letters or words to name the function. $f(x), \operatorname{sqrt}(z)$, etc.
Functions can also be thought of as a set of ordered pairs $\{(x, y) \mid x \in D a n d y=f(x)\}$. We can then use the Vertical Line Test to check if it is a function.

Def: image or value of f at x - what comes out of the function when you plug x in.
Def: range of a function - the set of all images of f on D. (range $f=\{y \mid y=f(x)$ for some $x \in D\}$)

Example 8.3: Let f be the function defined by the formula $f(x)=x(10-x)$ on the domain $D=$ $\{1,3,5,7,9\}$.

x	1	3	5	7	9
$f(x)$	9	21	25	21	9

The range of f is $\{9,21,25\}$.

Example 8.4: Guess the rule

x 2 5 6 0 1 $f(x)$ -1 8 11 -7 -4

x	5	2	4	0	-2	-5
$f(x)$	24	3	15	-1	3	24

Ways to describe or visualize functions:

- as formulas: $A(r)=\pi r^{2}, f(n)=f_{n}=\frac{n(n+1)}{2}$
(Functions defined on \mathbb{N} are called sequences)
- as tables:

Student	A	B	C
Grade	8	7	10

- as arrow diagrams

Note: Functions of the form $f(x)=m x+b$ are called linear functions.

Section 8.1 HW: \#3, 10, 13, 17, 20, 21, 24, 29, 32, 45 (part of HW1)

