Def: experimental probability $\left(P_{e}\right)$ - suppose an experiment is performed n times, and the outcome of the experiment is event E for r of those n times. Then the experimental probability $P_{e}(E)$ that E will occur on any given trial is $P_{e}(E)=\frac{r}{n}$.

- I flip a coin ten times, it lands on head 4 times. What is $P_{e}(H) ? P_{e}(T) ? \quad\left(P_{e}(H)=0.4, P_{e}(T)=0.6\right)$

Theorem: Law of Large Numbers - As an experiment is performed repeatedly, the experimental probability of a particular outcome begins to approximate a fixed number.

Example: John Kerrich flipped a coin 10,000 times, recalculating the experimental probability after each flip. Although there were relatively long strings of H or T , overall it tended toward 0.5.

Example 10.1: Open the book to a random page and record the right hand page number. After 20 pages, what is the experimental probability that the page number is divisible by 3 ?
($7 / 20=.35$)
Example 10.2: Determine P_{e} (a HS boy is between 68 and 70 inches tall).
$(.1875+.2375+.175=.60)$
Example 10.3: Compute P_{e} (a student got in the $70 \mathrm{~s}[\mathrm{a} \mathrm{C}]$ on the calculus final).
$(6 / 28=.21)$
Example 10.4: What is P_{e} (at most 1 head)?
$(8 / 50=.16)$
Def: outcome - a result of one trial of an experiment
Def: sample space S - the set of all outcomes of an experiment
Def: event E - a set of some of the outcomes of the experiment $(E \subset S)$
Def: mutually exclusive events - events A and B are mutually exclusive if the occurrence of one prevents the other from happening. ($A \cap B=\emptyset$)
When summing the roll of two dice, $S=\{2,3,4,5,6,7,8,9,10,11,12\}$, we can say event A is rolling a 7 , event B is rolling an 11 , event E is rolling a 7 or an 11 .
Example 10.5: Compute $P_{e}(7)=12 / 50=0.24, P_{e}(11)=2 / 50=0.04, P_{e}(7$ or 11$)=14 / 50=0.28$.
Show that $P_{e}(7)+P_{e}(11)=P_{e}(7$ or 11$) . \quad(0.24+0.04=0.28)$
Property: If A and B are mutually exclusive events, then $P_{e}(A$ or $B)=P_{e}(A)+P_{e}(B)$.
Example 10.6: When flipping a penny and a dime 50 times, A is the event 'the dime shows a head', B is the event 'the penny and the dime land same side up'. Compute $P_{e}(A), P_{e}(B), P_{e}(A \cup B)$.

This shows a more general property: $P_{e}(A \cup B)=P_{e}(A)+P_{e}(B)-P_{e}(A \cap B)$.
Def: independent events - events A and B are independent if the occurrence of one does not affect the occurrence (or non-occurrence) of the other.
Example 10.7: Compute $P_{e}(A)=24 / 50=.48, P_{e}(B)=23 / 50=.46, P_{e}(A \cap B)=14 / 50=.28$.
Show that $P_{e}(A \cap B) \approx P_{e}(A) \cdot P_{e}(B) \quad(0.28 \approx(0.48) \cdot(0.46)=0.22)$
Property: If A and B are independent events, then $P_{e}(A$ and $B) \approx P_{e}(A) \cdot P_{e}(B)$.
Example 10.8: Estimating $P_{e}(A), P_{e}(B), P_{e}(C)$.
With a few basic assumptions, we can simulate other experimental probabilities - such as using three coins to determine the probability that a family with three children has at least one boy.

Section 10.1 HW: \# 1, 6, 8, 19, 20, 28, 32 (part of HW3)

