Def: permutation - an arrangement of a given number of objects from a specified set into an ordered list. Def: combination - a selection of a given number of objects from a specified set into an unordered list.

Example 10.17: There are five members of the Math Club.
(a) In how many ways can we choose a president and treasurer?
$(5 \cdot 4=20)$
(b) In how many ways can we choose two people for a committee?
$(20 / 2=10)$
Notation: $P(n, r)$ is the number of permutations of r objects from a set of n, sometimes also $n P r$. $C(n, r)$ is the number of combinations of r objects from a set of n, sometimes also $n C r$ or $\binom{n}{r}$.

Def: factorial - multiplying a positive integer by every positive integer less than itself. eg. $k!=k \cdot(k-1) \cdot(k-2) \cdot \ldots \cdot 3 \cdot 2 \cdot 1 \quad 0!=1$

Example 10.18: Compute each of the following:

- $1!=1$
- $4!=24$
- $4!+3!=24+6=30$
- $\frac{8!}{7!}=8$
- $2!=2$
- $4 \cdot 3!=4!=24$
- $4!-3!=24-6=18$
- $\frac{8!}{8!}=1$
- $3!=6$
- $(4 \cdot 3)!=12$!
- $\frac{8!}{5!}=8 \cdot 7 \cdot 6$
- $\frac{8!}{0!}=8$!

Thm: $P(n, r)=\frac{n!}{(n-r)!} \quad C(n, r)=\frac{P(n, r)}{r!}=\frac{n!}{r!(n-r)!}$
Formulas for Permutations and Combinations: 5-letter 'code words' with no repetition.
Example 10.19: Compute each of the following:

- $P(7,2)=\frac{7!}{5!}=7 \cdot 6$
- $C(7,2)=\frac{7!}{2!5!}=\frac{7 \cdot 6}{2}=21$
- $P(8,8)=\frac{8!}{0!}=8$!
- $C(8,8)=\frac{8!}{0!8!}=\frac{1}{1}=1$
- $P(25,2)=\frac{25!}{23!}=25 \cdot 24$
- $C(25,2)=\frac{25!}{2!23!}=\frac{25 \cdot 24}{2}=25 \cdot 12$

Example 10.20: The stamp club has nine members, including its president, Alicia. A four-person refreshment committee is to be formed.

- How many committees include Alicia?

$$
\begin{array}{r}
\left(C(8,3)=\frac{8!}{3!5!}=\frac{8 \cdot 7 \cdot 6}{3 \cdot 2 \cdot 1}=56\right) \\
\left(C(8,4)=\frac{8!}{4!4!}=\frac{8 \cdot 7 \cdot 6 \cdot 5}{4 \cdot 3 \cdot 2 \cdot 1}=7 \cdot 2 \cdot 5=70\right) \\
\left(C(9,4)=\frac{9!}{4!5!}=\frac{9 \cdot 8 \cdot 7 \cdot 6}{4 \cdot 3 \cdot 2 \cdot 1}=3 \cdot 7 \cdot 6=126=70+56\right)
\end{array}
$$

- How many committees are there altogether?

Example 10.21: We must arrange 4 red flags, 3 blue flags, and 2 green flags. How many different ways can we do this (assuming that switching two same-colored flags creates the same arrangement).

$$
\left(C(9,4) \cdot C(5,3) \cdot C(2,2)=\frac{9 \cdot 8 \cdot 7 \cdot 6}{4!} \cdot \frac{5 \cdot 4 \cdot 3}{3!} \cdot \frac{2 \cdot 1}{2!}=\frac{9!}{4!3!2!}\right)
$$

- How many different arrangements are there of the letters in ATLANTA?

$$
\left(\frac{7!}{3!2!!1!1!}=\frac{7 \cdot 6 \cdot 5 \cdot 4}{2}=420\right)
$$

In class problems: p. $639 \# 26$, p. $640 \# 30$.
Homework 4 (due $3 / 2 / 10$):
Section 10.3 \# 2, 4, 5, 8, 10, 11, 13, 20, 21, 25a-c, 31ab, 32
Section $10.4 \# 1,3,4,5,7,9,10,35$

