Def: When all of the outcomes in the sample space S are equally likely, the theoretical probability (or just probability) of event E is $P(E)=\frac{n(E)}{n(S)}$

- The phrase equally likely is important. You must be careful as to what your sample space is. When rolling two dice, the sample space consists of 36 elements - not 11 .
Example 10.23: Probability of getting a score of an 11 with two dice.
Example 10.24: Probability of getting a score of 5 or 8 with two dice.
Example 10.25: Probability of getting a face card or a diamond.
Example 10.26: All 24 students in Mr. Henry's preschool are either 3 or 4 years old, as shown in the table at the top of the next page. A student is selected at random.
- What is the probability that the student is 3 years old?
- What is the probability that the student is 3 years old, given that a boy was selected?

Def: conditional probability - the probability that event B occurs given that event A has already occured: $P(B \mid A)=\frac{P(A \cap B)}{P(A)}$
This can be rewritten as: $P(A \cap B)=P(A) \cdot P(B \mid A)$.
If A and B are independent, then $P(B \mid A)=P(B)$.
Example 10.27: A red die and a white die are rolled. What is the probability of obtaining an even number on the red die and a multiple of three on the white die?

$$
(3 / 6 \cdot 2 / 6=6 / 36)
$$

Example 10.28: An urn contains three identical red and two identical white balls. Two balls are drawn one after the other without replacement.

- What is the probability that the first ball is red?
- What is the probability that the second ball is red, given that the first ball was red?
- What is the probability that both balls are red?
$(3 / 5 \cdot 2 / 4=6 / 20)$
Example 10.29: There are 10 boys and 13 girls in Mr. Fleck's fourth grade class, and 12 boys and 11 girls in Mrs. Patero's fourth grade class. A picnic committee of six people is selected at random from the total group of students in both classes.
- What is the probability that all committee members are girls?

$$
(C(24,6) / C(46,6))
$$

- What is the probability that all committee members are girls, given that all come from Mr. Fleck's class?
$(C(13,6) / C(23,6))$
- What is the probability that the committee has 3 girls and 3 boys? $\quad(C(22,3) \cdot C(24,3) / C(46,6))$
- What is the probability that the committee has 3 girls and 3 boys given that Mary Akers and Ann-Marie Harboth are on the committee? $\quad(C(22,3) \cdot C(22,1) / C(44,4))$

Thm: Let A and \bar{A} be complementary events (ie $A \cup \bar{A}=S$ and $A \cap \bar{A}=\emptyset$), then $P(A)=1-P(\bar{A})$.
Example 10.30: Compute the probability of obtaining a score of at least 4 on a single roll of two dice. $(1-3 / 36=33 / 36)$

Example 10.31: A hand of 5 cards is drawn from a standard deck. What is the probability that both colors (red and black) are represented in the hand?

$$
(P(\bar{E})=P(R \cup B)=P(R)+P(B)=C(26,5) / C(52,5)+C(26,5) / C(52,5) \approx 0.05 \text { then } P(E)=0.95)
$$

Theorem: Properties of Probability
Def: odds in favor of event E - the ratio of the number of ways E happen to the number of ways E doesn't happen $=n(A)$ to $n(\bar{A})$ or $n(A): n(\bar{A})$.

Example 10.33: Determining the odds of rolling a 7 or 11
Example 10.34: If the odds in favor of event E are 5 to 4, compute $P(E)=5 / 9$ and $P(\bar{E})=4 / 9$.
Example 10.35: Given the $P(E)=22 / 52$ compute the odds in favor of $E(22: 30)$, and the odds against $E(30: 22)$.

Def: expected value of an experiment - the 'typical' amount you expect to obtain from it. If the possible values of the experiment are $v_{1}, v_{2}, \ldots, v_{n}$, and they occur with probabilities $p_{1}, p_{2}, \ldots, p_{n}$ respectively, then $e=p_{1} v_{1}+p_{2} v_{2}+\ldots+p_{n} v_{n}$.

Expected value of a dice roll: $1 / 6 \cdot 1+1 / 6 \cdot 2+1 / 6 \cdot 3+1 / 6 \cdot 4+1 / 6 \cdot 5+1 / 6 \cdot 6=3.5$
Example 10.36: An American roulette wheel has 38 numbered compartments, green 0 and 00 , and numbers 1 through 36 (alternating red and black). How much do you expect to win if you consistently bid $\$ 5$ on red?

$$
\left(\frac{18}{38} \cdot 5+\frac{20}{38} \cdot(-5)=-0.26\right)
$$

Example 10.37: Suppose we have a game where you pay $\$ 21$ flip three coins at once. You win $\$ 100$ if all three land heads, you win $\$ 20$ if two land hands, and you win nothing if more than one lands tails. Would you play the game?

$$
(1 / 8 \cdot 100+3 / 8 \cdot 20+4 / 8 \cdot 0=20)
$$

Homework 4: (due 3/2/10)
Section $10.3 \# 2,4,5,8,10,11,13,20,21,25 a-c, 31 \mathrm{ab}, 32$
Section 10.4 \# 1, 3, 4, 5, 7, 9, 10, 35

