As we mentioned in 12.1, we typically use squares as our units for area, however we can use any shape that tiles the plane.
Def: The area of a region R is the number of a chosen unit which are required to cover the region without overlap.

Example 12.6 - Making Measurements in Nonstandard Units
(square grid) $A_{\text {orange }}=2$ units, $A_{\text {blue }}=6$ units \quad (triangular grid) $A_{\text {orange }}=6$ units, $A_{\text {blue }}=18$ units.
Def: If R and S are two regions in the plane that have the same size and shape, then they are congruent $(R \cong S)$.

- The Congruence Property of Area: If two regions are congruent, their areas are the same.
- The Addition Property of Area: If a region is dissected into nonoverlapping subregions, the area of the full region is the sum of the areas of the subregions.

Example 12.7 - The Pendulum and the Ax: Which has bigger area?
Area of a Rectangle with length l and width w is $A=l w$.
Area of a Parallelogram with base b and height h is $A=b h$.
Example 12.9 - Using the Parallelogram Area Formula to find area and lengths.
Area of a Triangle with base b and height h is $A=\frac{1}{2} b h$.
Example 12.10 - Using the Triangle Area Formula to find area and lengths.
Area of a Trapezoid with bases of length a and b and height h is $A=\frac{1}{2}(a+b) h$.
Example 12.11 - Finding the Areas of Lattice Polygons
Def: The length of a polygonal curve is the sum of the lengths of the sides.
Def: The length of a nonpolygonal curve is estimated by the lengths of closer and closer polygonal curves.

Def: The perimeter of a region is the length of its boundary.
Example 12.13 (modified) - Finding Perimeters (and Area!)

$$
\begin{aligned}
& \left(A_{\text {green }}=14 \mathrm{~cm}^{2}, A_{\text {orange }}=12 \mathrm{~cm}^{2}, A_{\text {red }}=32 \mathrm{~cm}^{2}, A_{\text {blue }}=24 \mathrm{~cm}^{2}\right) \\
& \quad\left(P_{\text {green }}=22 \mathrm{~cm}, P_{\text {orange }}=16 \mathrm{~cm}, P_{\text {red }}=32 \mathrm{~cm}, P_{\text {blue }}=24 \mathrm{~cm}\right)
\end{aligned}
$$

Def: The circumference of a circle is the perimeter of the circle.
Circumference of a Circle with radius r and diameter $d=2 r$ is $C=2 \pi r=\pi d$.
Area of a Circle with radius r is $A=\pi r^{2}$.
Discussion: triangulating figures to calculate area (like 12.2\#13), converting units.
Homework 6 (due 3/30/10):

- Section 12.1 \#7, 8, 9, 11, 18, 22, 26
- Section $12.2 \# 6,8,13,14,16,17,23,53,54$

