Scheduling Group Meetings

The Pythagorean Theorem: If a right triangle has legs of length a and b and its hypotenuse has length c, then $a^{2}+b^{2}=c^{2}$.

Dissection proof of the Pythagorean Theorem.
Example 12.16: Using the Pythagorean Theorem.

$$
\left(x^{2}=13^{2}+37^{2}=169+1369=1538, y^{2}=65^{2}-52^{2}=4225-2704=1521\right)
$$

Converse of the Pythagorean Theorem: If a triangle has sides of length a, b, and c, and $a^{2}+b^{2}=c^{2}$, then the triangle is a right triangle with hypotenuse of length c.

Example 12.18: Check if each of the following are right triangles:

- $15,17,8$
- $10,5,5 \sqrt{3}$
- $5,11,12$

$$
\left.\begin{array}{rl}
\left(8^{2}+15^{2}=64+225\right. & =289
\end{array}=17^{2}\right), ~\left(5^{2}+(5 \sqrt{3})^{2}=25+75=100=10^{2}\right), ~\left(5^{2}+11^{2}=25+121=146 \neq 12^{2}\right)
$$

Class Discussion Problems:

1. $(2 x)^{2}+x^{2}=15^{2}, 5 x^{2}=225, x^{2}=45, x=\sqrt{45}$
2. $8^{2}+(7+x)^{2}=y^{2}, 8^{2}+x^{2}=10^{2}, x=6,64+169=y^{2}, y=\sqrt{233}$
3. $2^{2}+4^{2}=x^{2}, x=\sqrt{20}, 3^{2}+x^{2}=y^{2}, y=\sqrt{29}$
4. $h^{2}+1^{2}=2^{2}, h=\sqrt{3}, A=\frac{1}{2}(2)(\sqrt{3})=\sqrt{3}$

Definitions from 11.3 that may prove useful: Pyramid, Cone, Prism, Cylinder
Homework 7 (due 4/6/10):

- Section 12.3 \# 2ac, 3, 4ab, 5, 6, 9, 32
- Section 12.4 \# 2b, 3c, 4d, 5d, 6ab, 19a, 23

