Scheduling Group Meetings?

- Be sure to understand the difference between base area and lateral surface area, and realize that they both comprise surface area.

Surface Area of Right Prisms and Cylinders: $S A=2 B+p h$
Example 12.19: Find the Surface Area of the gift box.

$$
\left(B=800 \mathrm{~cm}^{2}, p=120 \mathrm{~cm}, S A=2(800)+120(10)=1600+1200=2800 \mathrm{~cm}^{2}\right)
$$

Example 12.20: Find the base area and lateral surface area of the can.

$$
\left(B=\pi(2.5)^{2}=6.25 \pi \mathrm{~cm}^{2}, p=5 \pi \mathrm{~cm}\right)
$$

$$
\left(\text { Amount of metal }=2(6.25 \pi)=12.5 \pi \mathrm{~cm}^{2} . \text { Amount of cardboard }=(5 \pi)(9)=45 \pi \mathrm{~cm}^{2}\right)
$$

Surface Area of Right Regular Pyramids: $S A=B+\frac{1}{2} p s$
Example 12.21: Find the slant height and SA of the pyramid.

$$
\left(s=\sqrt{13^{2}-5^{2}}=\sqrt{144}=12 \mathrm{~cm}, S A=(10)^{2}+\frac{1}{2}(40)(12)=100+240=340 \mathrm{~cm}^{2}\right)
$$

Surface Area of Right Circular Cones: $S A=\pi r^{2}+\pi r s$
Example 12.22: Find the lateral surface area of the cone.

$$
\left(\pi r s=\pi(1)(6)=6 \pi \mathrm{~cm}^{2}\right)
$$

Volume of Right Prisms and Cylinders: $V=B h$
Example 12.23: Volumes of the gift box and can.

$$
\begin{array}{r}
\left(V_{\text {box }}=B h=800(10)=8000 \mathrm{~cm}^{3}\right) \\
\left(V_{\text {can }}=B h=\left(\pi(2.5)^{2}\right)(9)=6.25 \pi(9)=56.25 \pi \mathrm{~cm}^{3}\right)
\end{array}
$$

Volume of General Prisms and Cylinders: $V=B h$

- Make sure you have the height (perpendicular to the base), and not the slant height!

We can split a rectangular prism along its diagonals into 3 equal pyramids, thus:
Volume of General Pyramids and Cones: $V=\frac{1}{3} B h$
Example 12.24: Volume of the Pyramid of Khafre

$$
\left(V=\frac{1}{3}\left(215^{2}\right)(145)=\frac{1}{3}(46225)(145)=2234208.3 \mathrm{~m}^{3}\right)
$$

Volume of a Sphere: $V=\frac{4}{3} \pi r^{3}$
Example 12.25: Volume of an ice cream cone

$$
\left(V_{\text {top }}=\frac{1}{2}\left(\frac{4}{3} \pi(1.5)^{3}\right)=2.25 \pi \mathrm{in}^{3}, V_{\text {cone }}=\frac{1}{3}\left(\pi(1.5)^{2}\right)(5)=3.75 \pi \mathrm{in}^{3}, V=6 \pi \mathrm{in}^{3}\right)
$$

Surface Area of a Sphere: $S A=4 \pi r^{2}$
Example 12.26: Comparing Earth to Jupiter
Theorem: Similarity Principle of Measurement
Example 12.27: Using the Similarity Principle
Homework 7 (due 4/6/10):

- Section 12.3 \# 2ac, 3, 4ab, 5, 6, 9, 32
- Section 12.4 \# 2b, 3c, 4d, 5d, 6ab, 19a, 23

