
Chapter 2

Euclidean Geometry

2.1 The Pythagoreans

Consider possibly the best known theorem in geometry.

Theorem 2.1 (The Pythagorean Theorem) Suppose a right angle triangle 4ABC has
a right angle at C, hypotenuse c, and sides a and b. Then

c2 = a2 + b2.

b

a

b

a

b

a

b

a

c

c

c

c

A

C B C ′

Proof: On the side AB of 4ABC, construct a square of side c. Draw congruent triangles
on each of the other three sides of this square, as in Figure 2.1.

Since the angles at A and B sum to 90◦, the angle CBC ′ is 180◦. That means that we
have a line. Thus, the resulting figure is a square. The area of the larger square can be
calculated in two different ways. First, it is a square of side a + b. Second, we add together
the area of the square and the four triangles.

(a + b)2 = 4(
1
2
ab) + c2

a2 + 2ab + b2 = 2ab + c2

a2 + b2 = c2

6
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as we wanted.

What assumptions did we accept in this proof? There were several.

• The area of a square of side s is s2.

• The interior angles of a triangle sum to 180◦.

Aren’t these reasonable assumptions, though? Clearly, any time I draw a square the area
will be equal to the square of the side. Is that true? Is it always true that the interior angles
of a triangle sum to 180◦? Consider drawing the square on a piece of paper and then lay
the paper on a globe. If the globe is big, with respect to the paper, then the square looks
pretty much like it does on the flat paper. On the other hand, consider the triangle on the
globe that is made from the the Prime Meridian, the Equator and the line of longitude at
90◦ W. Each of these lines meets the other at a 90◦ angle. Thus the sum of the interior
angles is 270◦ — much more than 180◦. In fact, any triangle drawn on the surface of the
globe will have an angle sum more than 180◦. Also, the area of the square drawn on the
globe will be slightly more than the square of the side. In our flat frame of reference the
errors are too small to detect.

Theorem 2.2 (The Converse of the Pythagorean Theorem) Suppose we are in a ge-
ometry where the Pythagorean theorem is valid. Suppose that in triangle 4ABC we have

a2 + b2 = c2.

Then the angle at C is a right angle.
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Proof: As in Figure 2.1 let the perpendicular at A intersect the line BC at the point
D. Let r = |AD| and s = |DC|. Then by the Pythagorean theorem, r2 + s2 = b2 and
r2 + (a ± s)2 = c2. The choice of sign depends on whether C is acute or obtuse. Thus,
expanding the second equation and substituting the first gives

a2 ± 2sa + b2 = c2.

Since c2 = a2 + b2, we have that 2sa = 0. Thus s = 0 and D = C making C a right angle.
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2.2 Euclid’s Axioms for Geometry

I mentioned Euclid’s Axioms earlier. Now, we want to be more careful in the way that we
frame the axioms and make our definitions. This is the basis with which we must work for
the rest of the semester. If we do a bad job here, we are stuck with it for a long time.

Since we do not want to have to second guess everything that we prove, we will want
to agree on some facts that are absolute and unquestionable. These should be accepted by
all and should be easily stated. These will be our axioms. Euclid chose to work with five
axioms. (Hilbert in his later work chose to work with 16 axioms.)
Postulate 1: We can draw a unique line segment between any two points.

Postulate 2: Any line segment can be continued indefinitely.

Postulate 3: A circle of any radius and any center can be drawn.

Postulate 4: Any two right angles are congruent.

Postulate 5: Given a line ` and a point P not on `, there exists a unique line `2 through
P which does not intersect `.1

What assumptions have we made here? First of all, we have assumed that a set of points,
called the Euclidean plane exists. With this assumption comes the concept of length, of
lines, of circles, of angular measure, and of congruence. It also assumes that the plane is
two-dimensional. All this in five little sentences.

Let’s consider what Hilbert does in his choices, and then what Birkhoff chose.

2.2.1 Hilbert’s Axioms for Neutral Geometry

GROUP I : Incidence Axioms

I–1: For every point P and for every point Q not equal to P there exists a unique line `
that passes through P and Q.

I–2: For every line ` there exist at least two distinct points incident with `.

I–3: There exist three distinct points with the property that no line is incident with all
three of them.

GROUP II : Betweeness Axioms

B–1: If A ∗ B ∗ C, then A, B, and C are three distinct points all lying on the same line,
and C ∗ B ∗ A.

B–2: Given any two distinct points B and D, there exist points A, C, and E lying on
←→
BD

such that A ∗ B ∗ D, B ∗ C ∗ D, and B ∗ D ∗ E.

B–3: If A, B, and C are three distinct points lying on the same line, then one and only one
of the points is between the other two.

B–4: (plane separation axiom) For every line ` and for any three points A, B, and C
not lying on `:

1This is actually Playfair’s postulate. We will give the statement of Euclid later.
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(a) if A and B are on the same side of ` and B and C are on the same side of `, then
A and C are on the same side of `.

(b) if A and B are on opposite sides of ` and B and C are on opposite sides of `,
then A and C are on the same side of `.

GROUP III : Congruence Axioms

C–1: If A and B are distinct points and if A′ is any point, then for each ray r emanating
from A′ there is a unique point B′ on r such that B′ 6= A′ and AB ∼= A′B′.

C–2: If AB ∼= CD and AB ∼= EF , then CD ∼= EF . Moreover, every segment is congruent
to itself.

C–3: If A ∗ B ∗ C, A′ * B′ * C ′, AB ∼= A′B′, and BC ∼= B′C ′, then AC ∼= A′C ′.

C–4: Given any ∠BAC and given any ray
−−→
A′B′ emanating from a point A′, then there is a

unique ray
−−→
A′C ′ on a given side of line

←−→
A′B′ such that ∠B′A′C ′ ∼= ∠BAC.

C–5: If ∠A ∼= ∠B and ∠A ∼= ∠C, then ∠B ∼= ∠C. Moreover, every angle is congruent to
itself.

C–6: (SAS ) If two sides and the included angle of one triangle are congruent respectively
to two sides and the included angle of another triangle, then the two triangles are
congruent.

GROUP IV: Continuity Axioms

Archimedes’ Axiom: If AB and CD are any segments, then there is a number n

such that if segment CD is laid off n times on the ray
−−→
AB emanating from A, then a

point E is reached where n · CD ∼= AE and B is between A and E.

Dedekind’s Axiom: Suppose that the set of all points on a line ` is the union Σ1∪Σ2

of two nonempty subsets such that no point of Σ1 is between two points of Σ2 and
vice versa. Then there is a unique point, O, lying on ` such that P1 ∗ O ∗ P2 if and
only if P1 ∈ Σ1 and P2 ∈ Σ2 and O 6= P1, P2.

(The following two Principles follow from Dedekind’s Axiom, yet are at times more
useful.)

Circular Continuity Principle: If a circle γ has one point inside and one point
outside another circle γ′, then the two circles intersect in two points.

Elementary Continuity Principle: If one endpoint of a segment is inside a circle
and the other outside the circle, then the segment intersects the circle.

Hilbert also used five undefined terms: point, line, incidence, betweenness, and congru-
ence.
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2.2.2 Birkhoff’s Axioms for Neutral Geometry

The setting for these axioms is the “Absolute (or Neutral) Plane”. It is universal in the
sense that all points belong to this plane. It is denoted by A2.

Axiom 1: There exist nonempty subsets of A2 called “lines,” with the property that each two
points belong to exactly one line.

Axiom 2: Corresponding to any two points A, B ∈ A2 there exists a unique number d(AB) =
d(BA) ∈ R, the distance from A to B, which is 0 if and only if A = B.

Axiom 3: (Birkhoff Ruler Axiom) If k is a line and R denotes the set of real numbers, there exists
a one-to-one correspondence (X ↔ x) between the points X ∈ k and the numbers
x ∈ R such that

d(A,B) = |a− b|
where A ↔ a and B ↔ b.

Axiom 4: For each line k there are exactly two nonempty convex sets R′ and R′′ satisfying

(a) A2 = R′ ∪ k ∪R′′

(b) R′ ∩R′′ = φ, R′ ∩ k = φ, and R′′ ∩ k = φ. That is, they are pairwise disjoint.

(c) If X ∈ R′ and Y ∈ R′′ then XY ∩ k 6= φ.

Axiom 5: To each angle ∠ABC there exists a unique real number x with 0 ≤ x ≤ 180 which is
the (degree) measure of the angle

x = ∠ABC◦.

Axiom 6: If
−−→
BD ⊂ Int (∠ABC), then

∠ABD◦ + ∠DBC◦ = ∠ABC◦.

Axiom 7: If
−−→
AB is a ray in the edge, k, of an open half plane H(k; P ) then there exist a one-to-

one correspondence between the open rays in H(k; P ) emanating from A and the set
of real numbers between 0 and 180 so that if

−−→
AX ↔ x then

∠BAX◦ = x.

Axiom 8: (SAS ) If a correspondence of two triangles, or a triangle with itself, is such that two
sides and the angle between them are respectively congruent to the corresponding two
sides and the angle between them, the correspondence is a congruence of triangles.

2.2.3 Return to Euclid’s Axioms

The only axioms not listed in either of the two previous lists are parallel axioms. This
is because, as we shall see later, there is a choice of parallelism and that will define the
geometry.

We need some definitions to work with our choice of Euclid’s Axioms.
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Definition 2.1 Distance. Distance is a real-valued function which assigns to any pair of
points in the plane a non-negative real number satisfying the following properties:

d(P, Q) = d(Q,P )
d(P, Q) ≥ 0, and there is equality if and only if P = Q
d(P, R) ≤ d(P, Q) + d(Q,R), the Triangle Inequality.

We call such a function a metric. We say that the distance from P to Q is d(P,Q).
The author of the text will often use |PQ| = d(P,Q).

A line segment is the shortest path between two points. A line is an indefinite continu-
ation of a line segment.

The circle CP (r) centered at P of radius r is the set of points

CP (r) = {Q | |PQ| = r}.
We will introduce the concept of congruence using the idea of isometries.

Definition 2.2 Isometry. An isometry of the plane is a map from teh plane to itself which
preserves distances. That is, f is an isometry if for any two points P and Q in the plane
we have

d(f(P ), f(Q)) = d(P, Q).

In your dealings with the Euclidean plane you have run across several isometries: trans-
lations, rotations, and reflections. We will formalize these definitions a little later.

Definition 2.3 Congruence. Two sets of points (defining a triangle, angle, or some other
figure) are congruent if there exists an isometry which maps one set to the other.

This idea of congruence is completed by the following axioms, which guarantee the
existence of the isometries we will need.

Postulate 6. Given any points P and Q, there exists an isometry f so that f(P ) = Q. (Translations
are examples of such.)

Postulate 7. Given a point P and two points Q and R which are equidistant from P , there exists
an isometry which fixes P and maps Q to R. (Rotations and reflections are examples
of these.)

Postulate 8. Given any line `, there exists an isometry which fixes every point in ` but fixes no
other points in the plane. (A reflection through ` is such an example.)

Please note that, for example, Postulate 6 does not guarantee the existence of trans-
lations. In fact, depending on how translations are defined, translations do not exist in
spherical geometry, but Axiom 6 does hold.

Definition 2.4 Right Angle. Two lines `1 and `2 intersect at right angles if any two adja-
cent angles at the point of intersection are congruent. That is, they intersect at right angles
if there exists an isometry which sends an angle to one of its adjacent angles.

We do need to deal with the Axioms of Completeness, as did Hilbert and Birkhoff. How
do we know that a ”geometric line” can be put into a one-to-one correspondence with the
set of real numbers and why do we need to know that?
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2.3 Triangle Congruence

You will notice that in our list of eight postulates we do not mention any way to determine
if two triangles are congruent, other than the definition. We had several methods at our
disposal when we studied geometry earlier. What happened to them?

In all honesty, we are looking at geometry in a different way. We are using the group of
isometries to determine the geometry. This is the approach that Felix Klein advocated in
his Erlangen Programme. We will see that by determining just exactly what the isometries
are in a particular situation, we will be able to describe the geometry of the situation.

We are used to having at least three congruence criteria for triangles: side-angle-side
(SAS), angle-side-angle (ASA), and side-side-side (SSS). Shouldn’t those hold here? Of
course, but we will have to prove them from our postulates. We will want to do so without
using the parallel postulate so that we know that they will be valid in our neutral geometry,
or a geometry without a parallel axiom chosen.

If you will remember, the other choices for corresponding parts of triangles did not form
congruence criteria when you studied them before: side-side-angle (SSA) and angle-angle-
angle (AAA). However, angle-angle-side (AAS) did set up a congruence. Note that if you
will remember AAS worked because we appealed to the fact that all triangles summed to
180◦, so we could then state that the third angles were congruent and we had reduced this
situation to ASA. This proof depends on the Euclidean parallel postulate, so we would want
to try to prove this differently, if it is true in neutral geometry.

The proof that we will give depends on a consequence of one of the Continuity Axioms,
which we will take up later. Suffice it to say that we will accept the following lemma without
proof at this time.2

Lemma 2.1 Two distinct circles intersect in zero, one, or two points. If there is exactly
one point of intersection, then that point lies on the line joining the two centers.

Theorem 2.3 (SSS) If the corresponding sides of two triangles 4ABC and 4DEF have
equal lengths, then the two triangles are congruent.

Proof: Recall that the definition of congruence requires us to produce an isometry φ so
that φ(A) = D, φ(B) = E, and φ(C) = F .

First, assume that the triangles are not degenerate (i.e., that each of {A,B, C} and
{D,E, F} form sets of non-collinear points). If they are degenerate, then you should be
able to prove this relatively easily from the Triangle Inequality.

Now, by Axiom 6 there must be an isometry f1 that sends A to D. Now, f1 is an
isometry and |AB| = |CD|, so

|Df1(B)| = |f1(A)f1(B)| = |AB| = |DE|,

so by Postulate 7, there exists an isometry f2 such that f2(D) = D and f2(f1(B)) = E.
Now, if f2(f1(C)) = F , then we are done because the isometry f2 ◦ f1 is the necessary
isometry.

So, assume that f2(f1(C)) 6= F and consider the circle centered at D with radius AC
and the circle centered at E with radius BC. By Lemma 2.1 these two circles intersect in at
most two points. One of these points is F and the other must be f2(f1(C)). By Postulate

2Its proof does not depend on the result of the theorem we are going to prove.
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8 there is an isometry f3 which fixes every point on DE but fixes no other point. Since F
is not on DE it must be mapped to another point and that point must be f2(f1(C)), and
vice versa. Let φ = f3 ◦ f2 ◦ f1. Then

φ(A) = D

φ(B) = E

φ(C) = F

and the two triangles are congruent, by definition.

When one triangle is congruent to another, we will write 4ABC ≡ 4A′B′C ′.
Since we indicated earlier that the isometries are going to help us determine the geome-

try, we need to categorize the isometries. To do this, we need to understand that there is a
right hand and a left hand. We must choose which direction is positive, and it is a choice —

A = D
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it is not something determined a priori. This choice is called an orientation. More formally,
a nondegenerate triangle 4ABC is said to be oriented clockwise if the path from A to B
to C is oriented clockwise. If a nondegenerate triangle is not oriented clockwise, then we
say it is oriented counterclockwise.

Definition 2.5 Direct Isometry. An isometry is a direct isometry or a proper isometry if
the image of every clockwise triangle is oriented clockwise. An isometry which is not direct
is called a improper isometry. Due to the baggage associated with this terminology (and due
to tradition) we often call these orientation preserving and orientation reversing isometries.

Definition 2.6 Translation. An isometry ϕ is a translation if ϕ is an orientation preserv-
ing isometry and either ϕ is the identity or ϕ has no fixed points.

Definition 2.7 Rotation. An isometry ϕ is a rotation if ϕ is an orientation preserving
isometry and either ϕ is the identity or there is exactly one point P such that ϕ(P ) = P .
We call P the center of rotation for ϕ.

Definition 2.8 Reflection. An isometry ϕ is a reflection through the line ` if ϕ(P ) = P
for every P ∈ ` and if ϕ(P ) 6= P if P 6∈ `.

2.4 Euclid’s Real Fifth Postulate

Euclid stated his postulate in a less favorable form. We believe this for several reasons.
First, the statement is:
Postulate 5: Suppose a line meets two other lines so that the sum of the angles on one
side is less than two right angles. Then the two other lines meet at a point on that side.

This is not a nice, simple statement. Apparently, Euclid did not like the statement
because he did not use it until Proposition 29 in his elements. We stated it in the form of
Playfair’s Postulate. We need to show that these are equivalent.

Theorem 2.4 Let P be a point not on `, and let Q lie on ` so that PQ is perpendicular to
`3 Let `2 be the line through P which is parallel to ` (as guaranteed by Playfair’s Postulate).
Then `2 intersects PQ at a right angle.

Proof: Assume that `2 is not perpendicular to PQ. Let `3 denote the reflection of `2

through the line PQ. Now, `3 6= `2. Since ` is perpendicular to PQ, the reflection of
` through PQ is itself. Thus, `3 cannot intersect `, because if it did then the reflection
of the point of intersection would be a point of intersection between `2 and `, which do
not intersect. This gives us more than one line through P which is parallel to `, which
contradicts Postulate 5, so `2 must be perpendicular to PQ.

You might ask how we know that this point Q exists. If is does not exist, we would not
have a contradiction. Never fear, we have its existence due to the next lemma.

Lemma 2.2 Let ` be a line and P a point not on `. Then there exists a point Q on ` so
that ` is perpendicular to PQ.

3Q is called the foot of P in `.
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Proof: See the text.

Note that the converse of Theorem 2.4 is also true.

Theorem 2.5 Suppose that ` is perpendicular to `1 and `2, then `1 is parallel to `2.

Proof: See the text.

Corollary 1 Suppose that ` intersects two other lines `1 and `2 so that the alternate interior
angles are congruent. Then `1 and `2 are parallel.

Proof: We will prove this much as the text does, but I want you to note that we do not
need to appeal to a parallel postulate in order to prove this theorem.

-¾

-¾

7
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QR′
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`2

k

Figure 2.1:

Let k intersect `1 and `2 at P and Q, respectively, as in Figure 2.1. Let M be the
midpoint of PQ. Drop a perpendicular from O to `1 and let the foot of the perpendicular
be R, thus MR is perpendicular to `1. Now, consider the rotation centered at M which
sends P to Q. Let the image of R under this rotation be R′. Now R′ does not a priori lie
on the line `2. However, we do have that 4MRP ≡ 4MR′Q since one is the image of the
other under an isometry. Now, ∠MPR ≡ ∠MQR′, since the alternate interior angles are
congruent. Thus, R′ must lie on `2. Therefore, ∠PRM ≡ ∠QR′M are right angles. Thus,
by Theorem 2.4 `1 and `2 are parallel.

Note that this is not the usual manner in which you encounter this theorem. You usually
encounter its converse:

Theorem 2.6 Suppose that `1 and `2 are parallel and that k is a transversal intersecting
`1 and `2. Then, alternate interior angles are congruent.

This statement is equivalent to Euclid’s Fifth Postulate, whereas Corollary 1 is true in
Neutral Geometry. You must be careful in stating these results. One is true in much more
generality than the other, yet both seem so much the same.

Corollary 2 (Euclid’s Axiom V) Suppose a line ` meets two other lines `1 and `2 so
that the sum of the angles on one side is less than two right angles. Then the two other
lines meet at a point on that side.

Proof: See the text.

Theorem 2.7 The three angles of a triangle sum to two right angles.

The best proof of this is the one that you give to students of this result.
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2.5 The Star Trek Lemma

This is a very common result in Euclidean geometry. It is only true in Euclidean geometry.
It is used often and its proof gives us more practice in theorem-proving.

Let A, B, and C be points on a circle centered at O. We will call angle ∠BAC an
inscribed angle since it is inscribed in a circle. The angular measure of the arc BC is the
measure of the central angle ∠BOC, where the angle is measured on the same side of O as
the arc. We say that ∠BAC subtends the arc BC.

Lemma 2.3 (Star Trek Lemma) The measure of the inscribed angle is half of the angu-
lar measure of the arc it subtends.

Proof: There are several cases to the proof of the lemma. We will look only at the case
where ∠BAC is an acute angle and the center, O, lies in the interior of the angle, as in
Figure 2.2.

B

A

C

O

Figure 2.2:

Note that OA, OB and OC are all radii, so we have several isosceles triangles. Extend
the segment OA until it meets the circle at a point D. Since 4AOB is isosceles, ∠BAO ≡
∠OBA. Also, since the sum of the angles is 180◦,

∠BOD = ∠OBA + ∠BAO = 2∠BAO.

Similarly, ∠COD = 2∠CAO. Thus, adding these together, we have ∠BOC = 2∠BAC.

2.6 Similar Triangles

The concept of similar triangles seems so innocuous and so basic, it cannot be related to the
Parallel Axiom, can it? It is. It is extremely important in Euclidean geometry. There are
numbers of theorems and concepts that rely on similar triangles: slope and trigonometry
are just two of these concepts.



2.7. POWER OF A POINT 17

Theorem 2.8 Let B′ and C ′ be on AB and AC, respectively, on the triangle 4ABC. Then
B′C ′ is parallel to BC if and only if

|AB′|
|AB| =

|AC ′|
AC

.

Let’s defer the proof of this until later — we only want to use it now to see what some of
the definitions need to be. Note that since B′C ′ is parallel to BC, then the corresponding
angles of 4ABC and 4AB′C ′ are congruent. We call such triangles similar.

Definition 2.9 We say that two triangles 4ABC and 4A′B′C ′ are similar if their corre-
sponding angles are congruent, in which case we write 4ABC ∼ 4A′B′C ′.

Lemma 2.4 If 4ABC ∼ 4A′B′C ′, then

|A′B′|
|AB| =

|A′C ′|
|AC| =

|B′C ′|
|BC| .

Proof: Since ∠BAC ∼= ∠B′A′C ′, there is an isometry which sends A′ to A and sends B′

and C ′ to points on AB and AC, respectively. Since ∠ABC ∼= ∠A′B′C ′, the line B′C ′ is
parallel to BC, so by Theorem 2.8,

|A′B′|
|AB| =

|A′C ′|
|AC| .

Similarly, by sending B′ to B, we can show that

|A′B′|
|AB| =

|B′C ′|
|BC| .

Combining, we get the desired result.

2.7 Power of a Point

Theorem 2.9 Let P be a point inside a circle Γ. Let QQ′ and RR′ be two chords which
intersect at P . Then

|PQ| · |PQ′| = |PR| · |PR′|.

Proof: By the Star Trek Lemma, ∠RR′Q ∼= ∠RQ′Q and ∠Q′RR′ ∼= ∠Q′QR′. Since the
angles at P are vertical angles, the triangles 4PQ′R′ and 4PR′Q are similar. Thus,

|PR|
|PQ| =

|PQ′|
|PR′| ,

and our result follows by cross-multiplication.

Theorem 2.10 Let P be a point outside a circle Γ. Let QQ′ and RR′ be two chords which
intersect at P . Then

|PQ| · |PQ′| = |PR| · |PR′|.
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P

Q

Q′

R

R′

Figure 2.3:

Proof: This time our setup is slightly different.
However, it is easy to see how to proceed. From Theorem 2.8 we have that ∠PQ′R ∼=

∠PR′Q. The angle ∠P is shared by the two triangles. Using the fact that the angle sum
of a triangle is 180◦, then the third angles are equal. Thus, 4PQ′R ∼= 4PR′Q. Setting up
the appropriate ratios gives us the result.

Thus, for any point P and any chord of the circle Γ, QQ′, the product Π(P ) =
±|PQ||PQ′| is a constant in absolute value. This is defined to be the power of a point
with respect to a circle. We choose the sign to be positive if P is outside the circle and
negative if P is inside the circle.

Assume that the circle has center O and radius r. Then, choose QQ′ to be a diameter
of Γ that goes through P . If P is outside Γ, It then follows that

|PQ| = |OP | − |OR| = |OP | − r and |PQ′| = |OP |+ |OR| = |OP |+ r.

P

Q

Q′

R
R′

Figure 2.4:
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Thus, Π(P ) = |PQ||PQ′| = |OP | − r2. I leave it to you to check that the same is true if P
lies inside Γ.

2.8 Medians and Centroid

In 4ABC let A′, B′, and C ′ be the midpoints of the sides BC, AC, and AB respectively.
The line segments AA′, BB′, and CC ′ are called the medians of 4ABC.

Theorem 2.11 The three medians of a triangle 4ABC intersect at a common point G.
Furthermore,

|AG|
|A′G| =

|BG|
|B′G| =

|CG|
|C ′G| = 2.

The common point of intersection is called the centroid of the triangle 4ABC.

2.9 Incircle, Excircles, and Law of Cosines

Theorem 2.12 The angle bisectors of a triangle intersect at a common point I called the
incenter, which is the center of the unique circle inscribed in the triangle (called the incircle).

Proof: Consider the angle ∠ABC and let D be a point on the angle bisector. Let E and
E′ be the points on BA and BC, respectively, so that ∠BED and ∠BE′D are right angles.
Thus, 4BED ∼= 4BE′D by AAS, since they share BD. Thus, |DE| = |DE′| and the circle
centered at D with radius |DE| is tangent to both BA and BC.

Let I be the intersection of the angle bisectors of ∠ABC and ∠ACB. The perpendiculars
from I to AB and BC are congruent from what we saw above. Likewise, the perpendiculars
from I to BC and AC are congruent. Thus, the perpendiculars from I to AB and AC are
congruent, so I lies on the angle bisector of ∠BAC. (Why?) Thus, the three angle bisectors
intersect at a common point.

For a triangle 4ABC we can define two angle bisectors at each vertex. We have the
interior angle bisector at A, about which we just studied. We also have an exterior angle
bisector at A. Note, that this is NOT the extension of the interior angle bisector to the
exterior of the triangle. It is the angle bisector of the angle supplementary to the angle,
∠BAC.

We can define three excenters, Ia, Ib, and Ic, as follows. The excenter Ia is the point of
intersection of the interior angle bisector of A and the exterior angle bisectors at B and C.
It is the center of a circle which is tangent to BC and the extended sides AB and AC, and
lies outside 4ABC. This circle is called an excircle.

Let the inradius r be the radius of the incircle, and let ra, rb, and rc be the exradii. Let
s = 1

2(a + b + c) be the semiperimeter of 4ABC.

Theorem 2.13 Let r be the inradius of 4ABC, and let s be the semiperimeter of 4ABC.
Then

area(4ABC) = |4ABC| = rs.

Theorem 2.14 (Law of Cosines) For any triangle 4ABC, we have

c2 = a2 + b2 − 2ab cos(C).
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Proof: Let D be the altitude dropped from A to BC. Then by the Pythagorean Theorem

c2 = |AD|2 + |DB|2.

Now,

|AD| = b sin(C)
|DB| = |a− b cos(C)|

Thus,

c2 = b2 sin2(C) + a2 − 2ab cos(C) + b2 cos2(C)
c2 = a2 + b2 − 2ab cos(C)

as we needed.

Theorem 2.15 (Heron’s Formula) For any triangle 4ABC

|4ABC| =
√

s(s− a)(s− b)(s− c).

Proof: Note that

|4ABC| = 1
2
ab sin(C).

By the Law of Cosines,

cos(C) =
a2 + b2 − c2

2ab

Thus, applying some algebra

|4ABC| =
1
2
ab

√
1− cos2(C)

=
1
2
ab

√
4a2b2 − (a2 + b2 − c2)2

2ab

=
1
4

√
(2ab + a2 + b2 − c2)(2ab− a2 − b2 + c2)

=
1
4

√
((a + b)2 − c2)(c2 − (a− b)2)

=
1
4

√
(a + b + c)(a + b− c)(c− a + b)(c + a− b)

=

√
a + b + c

2
a + b− c

2
−a + b + c

2
a− b + c

2
=

√
s(s− a)(s− b)(s− c)

Heron’s formula is named for Heron of Alexandria, who lived sometime between 100 BC
and 300 AD. We know that the formula dates back to at least Archimedes (ca. 250 BC).
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2.10 The Circumcenter and its Spawn

We have seen the centroid—center of mass — and the incenter. There is yet another center
of a triangle. We remember that given any three points there is a unique circle passing
through them. How do you find that circle?

Take the perpendicular bisectors of the sides of a triangle formed by the three points.
These bisectors meet in a common point, called the circumcenter. The radius of the cir-
cumcircle is called the circumradius.

Theorem 2.16 Given a triangle 4ABC, the perpendicular bisectors of the sides are con-
current. The point is the center of a circle which passes through the vertices of the triangle.
The point is called the circumcenter of the triangle.

Proof: We must have that two of the perpendicular bisectors intersect. Let p1 and p2

denote the perpendicular bisectors of AB and AC respectively. If p1 is parallel to p2, then
since AC is perpendicular to p2, AC is perpendicular to p1. Since AB is perpendicular to
p1, then AB must be parallel to AC or they coincide. Thus, we would not have a triangle.4

Thus, two perpendicular bisectors intersect in a point O. Let M denote the midpoint of
AB. Then 4AOM ∼= 4BOM , since the angle at M is a right angle, AM ∼= BM , and
OM ∼= OM . Hence, AO ∼= BO. Using AC we can also show that AO ∼= CO. Thus, the
triangles 4BON and 4CON are congruent, where N is the midpoint of BC. Hence, ON
is perpendicular to BC and we are done.

Theorem 2.17 (Extended Law of Sines) In triangle 4ABC

a

sinA
=

b

sinB
=

c

sinC
= 2R.

Proof: In 4ABC, let ON be the perpendicular bisector of BC. Then 4BOC is isosceles,
∠BON ∼= ∠CON and BN = CN = a/2. By the Star Trek Lemma ∠BOC = 2A. Thus,
∠BON = ∠A. Thus,

R sinA =
a

2
and

2R =
a

sinA
.

Similarly,

2R =
b

sinB
=

c

sinC
,

as we needed.

2.11 The Euler Line

What happens if the circumcenter, O, coincides with the centroid, G? That would mean
that the medians of the triangle are the perpendicular bisectors as well. This will force the
triangle to be an equilateral triangle. What happens if the triangle is not equilateral? Is
there any relationship between the circumcenter and the centroid? They will be distinct.

4This actually uses a result that is equivalent to Euclid’s fifth postulate.
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Theorem 2.18 In an arbitrary triangle, the three altitudes intersect in a common point,
called the orthocenter.

There are several ways to prove this. You can do it in a very straightforward manner.
However, you will miss a neat result that follows from the following type of proof.

Proof: If 4ABC is equilateral, then the altitudes are the perpendicular bisectors and
medians, so the altitudes all meet at G = O. Assume that 4ABC is not equilateral, so
that O 6= G.

Let H be the point on the line OG so that |GH| = 2|OG| and the points O, G, and
H appear in that order. Let A′ be the midpoint of BC, so that G ∈ AA′ and OA′ is the
perpendicular bisector of BC.

Consider the triangles 4GOA′ and 4GHA. Now, ∠OGA′ = ∠HGA since they are
vertical angles. We have proven that the centroid divides the median in a 2:1 ratio, so
|AG| = 2|GA′|. We constructed the point H so that |GH| = 2|OG|, so the two triangles
are similar. Hence, AH is parallel to OA′. If we extend AH to where it intersects BC in
a point D, then AD is perpendicular to BC and AD is an altitude of 4ABC. A similar
argument works for the other sides.

Theorem 2.19 (The Euler Line) The circumcenter O, the centroid G, and the ortho-
center H are collinear. Furthermore, G lies between O and H and

|OG|
|GH| =

1
2
.

This line is called the Euler line. It was not discovered in any ancient writings and
apparently, Leonhard Euler (1707–1783) was the first to discover this result.

2.12 Feuerbach’s Circle

The following theorem is not extremely important, but it is ”fun”. Let A′, B′, and C ′ be the
midpoints of the sides of a triangle 4ABC. Let D, E, and F be teh bases of the altitudes.
Let H be the orthocenter, and let A′′, B′′, and C ′′ be teh midpoints of AH, BH, and CH,
respectively.

Theorem 2.20 (The Nine Point Circle Theorem) The nine points A′, B′, C ′, A′′,
B′′, C ′′, D, E, and F all lie on a circle.

Proof: B′ and C ′ are midpoints. Therefore, B′C ′ is parallel to BC.
Consider the triangle 4AHB. B′′ is the midpoint of HB and C ′ is the midpoint of AB.

Thus, B′′C ′ is parallel to AH. Now, remember that AH is perpendicular to BC, so it is
perpendicular to B′C ′. Therefore B′′C ′ is perpendicular B′C ′.

Similarly, B′C ′′ is parallel to AH, out of 4AHC. Also, B′′C ′′ is parallel to BC and
hence to B′C ′. Therefore, B′C ′B′′C ′′ is a rectangle.

Construct the circle with diameter C ′C ′′. Since, ∠C ′B′′C ′′ and ∠C ′B′C ′′ are right
angles, B′ and B′′ lie on this circle, and since |B′B′′| = |C ′C ′′| we have B′B′′ is a diameter.

Since CF is an altitude, C ′FC ′′ is a right angle, placing F on the circle.
Since B′B′′ is a diameter and ∠B′EB′′ is a right angle, E lies on the circle.
Now, make a similar argument to show that C ′A′′C ′′A′ is a rectangle, so A′ and A′′ lie

on the circle, and A′A′′ is a diameter, so D lies on the circle.
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Theorem 2.21 (Feuerbach’s Theorem) The nine point circle of 4ABC is tangent to
the incircle and the excircles of 4ABC.

Theorem 2.22 1. The nine-point circle is the circumcircle of the medial triangle.

2. The nine-point circle has radius one-half that of the circumcircle.

3. The nine-point circle is the circumcircle of the triangle whose vertices are the mid-
points of the segments joining 4ABC’s vertices to the orthocenter.

4. The nine-point circle passes through the points where 4ABC’s sides are cut by the
lines that join 4ABC’s vertices with its orthocenter.

2.13 Pedal Triangles and the Simson Line

The Euler line is not unique in the study of triangles. There are other interesting points
and lines associated to any triangle.

A cyclic quadrilateral is a quadrilateral that can be inscribed in a circle. We proved the
following in the homework.

Theorem 2.23 A convex quadrilateral ABCD is a cyclic quadrilateral if and only if ∠ABC+
∠CDA = 180◦.

Let 4ABC be an arbitrary triangle and let P be a point either inside or outside the
triangle. Let X be the foot of the perpendicular to the extended side BC and through
P . Define points Y and Z on the extended sides AC and AB respectively, similarly. The
triangle 4XY Z is called the pedal triangle with respect to the point P and the triangle
4ABC.

Lemma 2.5 Let P be a point inside 4ABC, and let 4XY Z be the pedal triangle with
respect to P . Then ∠APB = ∠ACB + ∠XZY .

Proof: Let CP intersect AB at C ′. Then write

∠APB = ∠APC ′ + ∠C ′PB.

SInce ∠ABC ′ is an exterior angle of 4APC, we have that ∠APC ′ = ∠PAC + ∠ACP .
Now, ∠PZA = ∠AY P = 90◦, so they sum to 180◦ and AY PZ is a cyclic quadrilateral.
Thus,

∠PAC = ∠PAY = ∠PZY,

which implies ∠APC ′ = ∠PZY + ∠ACP . Similarly, ∠C ′PB = ∠XZP + ∠PCB. Thus,

∠APB = ∠APC ′ + ∠C ′PB

= (∠PZY + ∠XZP ) + (∠ACP + ∠PCB)
= ∠XZY + ∠ACB,

as desired.
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Theorem 2.24 (The Simson Line) Let Γ be the circumcircle for 4ABC. Let P be a
point on Γ, and let 4XY Z be the pedal triangle with respect to P . Then 4XY Z is a
degenerate triangle, i.e. the points X, Y , Z are collinear. This line is called the Simson
line.

Proof: Without loss of generality, we may assume P lies on the arc AC. Then ∠APB =
∠ACB, since they subtend the same arc. Hence, by Lemma 2.5 ∠XZY = 0. That is
4XY Z is degenerate. Thus, X,Y , and Z are collinear.

2.14 Triangle Centers and Relative Lines

Recall that an excircle of a triangle 4ABC is a circle outside the triangle that is tangent
to all three of the lines that extend the sides of the triangle. We have three such circles,
each tangent to a side and the extensions of the other two sides.

Lemma 2.6 The lines connecting the point of tangency of each excircle of 4ABC to the
opposite vertex will intersect in a point, called the Nagel point, N .

One more point of interest is the center of the incircle for 4ABC’s medial triangle. This
circle is called the Spieker circle and its center is called the Spieker point, S.

Lemma 2.7 The Nagel segment is a line segment from the incenter, I, to the Nagel point,
N , which contains the Spieker point, S, and the centroid, G.

There is more about this Nagel segment and the Spieker circle.

Lemma 2.8 For 4ABC,

1. The Spieker circle is the incircle of 4ABC’s medial triangle.

2. The Spieker circle has radius one-half of 4ABC’s incircle.

3. The Spieker circle is the incircle of the triangle whose vertices are the midpoints of
the segments that join 4ABC’s vertices with its Nagel point.

4. The Spieker circle is tangent to the sides of 4ABC’s medial triangle where that tri-
angle’s sides are cut by the lines that join 4ABC’s vertices with its Nagel point.

Note the similarity to the nine-point circle. In addition, we have the following.

Lemma 2.9 The Spieker point is the midpoint of the Nagel segment. The centroid is one-
third of the way from the incenter to the Nagel point.

These theorems of concurrence we have considered to this point are related to the
concurrence of three lines. Lines are not the only items of interest in geometry. Miquel’s
Theorem considers the concurrence of sets of three circles associated with a triangle.

Theorem 2.25 (Miquel’s Theorem) If three points are chosen, one on each side of a
triangle, then the three circles determined by a vertex and the two points on the adjacent
sides meet at a point called the Miquel point.
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Proof: Let 4ABC be our triangle and let D,E,and F be arbitrary points on the sides
of the triangle. Construct the circles determined by pairs of these points and a vertex.
Consider two of the circles, C1 and C2, with centers I and J . They must intersect at D,
so they must intersect at a second point, call it G. In circle C2, we have that the angles
∠EGD and ∠ECD are supplementary. In circle C1 ∠FGD and ∠ABD are supplementary.
Then,

∠EGD◦ + ∠DGF ◦ + ∠EGF ◦ = 360◦

(180◦ − ∠C◦) + (180◦ − ∠B◦) + ∠EGF ◦ = 360◦

∠EGF ◦ = ∠C◦ + ∠B◦ = 180◦ − ∠A◦

so that ∠EGF and ∠EAF are supplementary, and hence E, A, F , and G form a cyclic
quadrilateral. Thus, all three circles are concurrent. Note that you must modify this proof,
slightly, if the Miquel point is outside of the triangle.

2.15 Morley’s Theorem

Theorem 2.26 (Morley’s Theorem) The adjacent trisectors of the angles of a triangle
are concurrent by pairs at the vertices of an equilateral triangle.

The following proof is due to John Conway.

Proof: Let the angles A,B,and C measure 3α, 3β, and 3γ respectively. Let x+ mean
x + 60◦. Now, we have that α + β + γ = 60◦, since 3α + 3β + 3γ = 180◦. Then there
certainly exist seven abstract triangles having the angles:

1 2 3 4 5 6 7
α++, β, γ α, β++, γ α, β, γ++ α, β+, γ+ α+, β, γ+ α+, β+, γ 0+, 0+, 0+

since in every case the triple of angles adds to 180 degrees. Now these triangles are only
determined up to scale, i.e., up to similarity. Determine the scale by saying that certain
lines are all to have the same length.

Triangle number 7, with angles 0+, 0+, 0+, is clearly equilateral, so we can take all its
edges to have some fixed length L. Then arrange the edges joining B+ to C+ in triangle 4,
C+ to A+ in triangle 5, and A+ to B+ in triangle 6 also to have length L. We will scale the
other triangles appropriately.

Then it’s easy to see that these all fit together to make up a triangle whose angles are
3A, 3B, 3C, and which is therefore similar to the original one, so proving Morley’s theorem.
To see this, you just have to check that any two sides that come together have the same
length, and that the angles around any internal vertex add to 360 degrees. The latter is
easy, and the former is proved using congruences such as that that takes the vertices A,
C+, B+ of triangle number 4 to the points A, B++, Y of triangle number 2.


