
Chapter 4

Introduction to Hyperbolic
Geometry

The major difference that we have stressed throughout the semester is that there is one
small difference in the parallel postulate between Euclidean and hyperbolic geometry. We
have been working with eight axioms. Let’s recall the first seven and then add our new
parallel postulate.
Axiom 1: We can draw a unique line segment between any two points.
Axiom 2: Any line segment may be continued indefinitely.
Axiom 3: A circle of any radius and any center can be drawn.
Axiom 4: Any two right angles are congruent.
Axiom 6: Given any two points P and Q, there exists an isometry f such that f(P ) = Q.
Axiom 7: Given a point P and any two points Q and R which are equidistant from P ,
there exists an isometry which fixes P and sends Q to R.
Axiom 8: Given any line `, there exists a map which fixes every point in ` and fixes no
other points.

Our new postulate is one of the negations of Playfair’s Postulate.
Axiom 5H: Given any line ` and any point P not on `, there exist two distinct lines `1

and `2 through P which do not intersect `.
Note that in negating Playfair’s Postulate, we have to choose whether we want to have

no parallel lines (leading us to elliptic geometry) or more than one parallel line through
the given point. We shall show that the existence of two distinct parallel lines leads to the
existence of an infinite number of distinct parallel lines.

What could such an animal look like? How could we have multiple parallels? Recall
that the concept of no parallels sounded questionable until we looked at the sphere.

4.1 Neutral Geometry

We have not spent too much time considering the ramifications of the axioms unrelated to
the Parallel Axiom. What can we derive from these alone. Remember, the purpose of a
lot of mathematics in the time between Euclid and Bolyai-Lobachevsky-Gauss was to prove
that the Parallel Postulate did depend on the others.
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4.1.1 Alternate Interior Angles

Definition 4.1 Let L be a set of lines in the plane. A line ` is transversal of L if

1. ` 6∈ L, and

2. ` ∩m 6= ∅ for all m ∈ L.

Let ` be transversal to m and n at points A and B, respectively. We say that each
of the angles of intersection of ` and m and of ` and n has a transversal side in ` and a
non-transversal side not contained in `.
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m
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`

Definition 4.2 An angle of intersection of m and k and one of n and k are alternate
interior angles if their transversal sides are opposite directed and intersecting, and if their
non-transversal sides lie on opposite sides of `. Two of these angles are corresponding
angles if their transversal sides have like directions and their non-transversal sides lie on
the same side of `.

Definition 4.3 If k and ` are lines so that k ∩ ` = ∅, we shall call these lines parallel.

Theorem 4.1 (Alternate Interior Angle Theorem) If two lines cut by a transversal
have a pair of congruent alternate interior angles, then the two lines are non-intersecting.

A B C D

C ′B′
A′

E

m

n

`

Figure 4.1:

Proof: Let m and n be two lines cut by the transversal `. Let the points of intersection
be B and B′, respectively. Choose a point A on m on one side of `, and choose A′ ∈ n on
the same side of ` as A. Likewise, choose C ∈ m on the opposite side of ` from A. Choose
C ′ ∈ n on the same side of ` as C. Then it is on the opposite side of ` from A′.

We are given that ∠A′B′B ∼= ∠CBB′. Assume that the lines m and n are not parallel;
i.e., they have a nonempty intersection. Let us denote this point of intersection by D. D
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is on one side of `, so by changing the labelling, if necessary, we may assume that D lies
on the same side of ` as C and C ′. There is a unique point E on the ray B′A′ so that
B′E ∼= BD. Since, BB′ ∼= BB′, we may apply the SAS Axiom to prove that

4EBB′ ∼= 4DBB′.

From the definition of congruent triangles, it follows that ∠DB′B ∼= ∠EBB′. Now, the sup-
plement of ∠DBB′ is congruent to the supplement of ∠EB′B. The supplement of ∠EB′B
is ∠DB′B and ∠DB′B ∼= ∠EBB′. Therefore, ∠EBB′ is congruent to the supplement of
∠DBB′. Since the angles share a side, they are themselves supplementary. Thus, E ∈ n
and we have shown that {D, E} ⊂ n or that m ∩ n is more that one point. Thus, m and n
must be parallel.

Corollary 3 If m and n are distinct lines both perpendicular to the line `, then m and n
are parallel.

Proof: ` is the transversal to m and n. The alternate interior angles are right angles. All
right angles are congruent, so the Alternate Interior Angle Theorem applies. m and n are
parallel.

Corollary 4 If P is a point not on `, then the perpendicular dropped from P to ` is unique.

Proof: Assume that m is a perpendicular to ` through P , intersecting ` at Q. If n is
another perpendicular to ` through P intersecting ` at R, then m and n are two distinct
lines perpendicular to `. By the above corollary, they are parallel, but each contains P .
Thus, the second line cannot be distinct, and the perpendicular is unique.

The point at which this perpendicular intersects the line `, is called the foot of the
perpendicular.

Corollary 5 If ` is any line and P is any point not on `, there exists at least one line m
through P which does not intersect `.

Proof: By Corollary 2 there is a unique line, m, through P perpendicular to `. Now there
is a unique line, n, through P perpendicular to m. By Corollary 1 ` and n are parallel.

Note that while we have proved that there is a line through P which does not intersect
`, we have not (and cannot) proved that it is unique.

4.2 Weak Exterior Angle Theorem

Let 4ABC be any triangle in the plane. This triangle gives us not just three segments, but
in fact three lines.

Definition 4.4 An angle supplementary to an angle of a triangle is called an exterior
angle of the triangle. The two angles of the triangle not adjacent to this exterior angle are
called the remote interior angles.

Theorem 4.2 (Exterior Angle Theorem) An exterior angle of a triangle is greater than
either remote interior angle. See Figure 4.2
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Figure 4.2:

Proof: We shall show that ∠ACD > ∠A. In a like manner, you can show that ∠ACD >
∠B. Then by using the same techniques, you can prove the same for the other two exterior
angles.

Now, either:
∠A < ∠ACD ∠A ∼= ∠ACD or ∠A > ∠ACD.

If ∠A = ∠BAC ∼= ∠ACD, then by the Alternate Interior Angle Theorem, lines AB and
CD are parallel. This is impossible, since they both contain B.

Assume, then, that ∠A > ∠ACD. Then there exists a ray AE between rays AB and
AC so that

∠CAE ∼= ∠ACD.

By what is known as the Crossbar Theorem, ray AE intersects BC in a point G. Again by
the Alternate Interior Angle Theorem lines AE and CD are parallel. This is a contradiction.

Thus, ∠A < ∠ACD.

Proposition 4.1 (SAA Congruence) In triangles 4ABC and 4DEF given that AC ∼=
DF , ∠A ∼= ∠D, and ∠B ∼= ∠E, then 4ABC ∼= 4DEF .
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Figure 4.3:

Proof: If AB ∼= DE, we are done by Angle-Side-Angle. Thus, let us assume that AB 6∼=
DE. Then, by we must have that either AB < DE or AB > DE.

If AB < DE, then there is a point H ∈ DE so that AB ∼= DH. Then by the SAS
Theorem 4ABC ∼= 4DHF . Thus, ∠B ∼= ∠DHF . But ∠DHF is exterior to 4FHE, so
by the Exterior Angle Theorem ∠DHF > ∠E ∼= ∠B. Thus, ∠DHF > ∠B, and we have
a contradiction. Therefore, AB is not less than DE. By a similar argument, we can show
that assuming that AB > DE leads to a similar contradiction.

Thus, our hypothesis that AB 6∼= DE cannot be valid. Thus, AB ∼= DE and 4ABC ∼=
4DEF by ASA.
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Proposition 4.2 Two right triangles are congruent if the hypotenuse and a leg of one are
congruent respectively to the hypotenuse and a leg of the other.

Proposition 4.3 Every segment has a unique midpoint.
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Figure 4.4:

Proof: Let AB be any segment in the plane, and let C be any point not on line AB. There
exists a unique ray BX on the opposite side of line AB from P such that ∠PAB ∼= ∠XBA.
There is a unique point Q on the ray BX so that AP ∼= BQ. Q is on the opposite side of
line AB from P . Since P and Q are on opposite sides of line AB, PQ ∩ AB 6= ∅. Let M
denote this point of intersection. Either M lies between A and B, A lies between M and
B, B lies between A and M , M = A, or M = B.

We want to show that M lies between A and B, so assume not. Since ∠PAB ∼= ∠QBA,
by construction, we have from the Alternate Interior Angle Theorem that lines AP and BQ
are parallel. If M = A then A, P ,and M are collinear on the line AP and lines AP = AB
which intersects line BQ. We can dispose of the case M = B similarly.

Thus, assume that A lies between M and B. This will mean that the line PA will
intersect side MB of 4MBQ at a point between M and B. Thus, by Pasch’s Theorem
it must intersect either MQ or BQ. It cannot intersect side BQ as lines AP and BQ are
parallel. If line AP intersects MQ then it must contain MQ for P , Q, and M are collinear.
Thus, M = A which we have already shown is impossible. Thus, we have shown that A
cannot lie between M and B.

In the same manner, we can show that B cannot lie between A and M . Thus, we have
that M must lie between A and B. This means that ∠AMP ∼= ∠BMQ since they are
vertical angles. By Angle-Angle-Side we have that 4AMP ∼= 4BMQ. Thus, AM ∼= MB
and M is the midpoint of AB.

Proposition 4.4 i) Every angle has a unique bisector.

ii) Every segment has a unique perpendicular bisector.

Proposition 4.5 In a triangle 4ABC the greater angle lies opposite the greater side and
the greater side lies opposite the greater angle; i.e., AB > BC if and only if ∠C > ∠A.

Proposition 4.6 Given 4ABC and 4A′B′C ′, if AB ∼= A′B′ and BC ∼= B′C ′, then ∠B <
∠B′ if and only if AC < A′C ′.
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4.2.1 Measure of Angles and Segments

At some point we have to introduce a measure for angles and for segments.
The proofs of these results require the axioms of continuity. We need the measurement

of angles and segments by real numbers, and for such measurement Archimedes’s axiom is
required.

Theorem 4.3 A There is a unique way of assigning a degree measure to each
angle such that the following properties hold:

i) ∠A is a real number such that 0 < ∠A < 180◦.

ii) ∠A = 90◦ if and only if ∠A is a right angle.

iii) ∠A = ∠B if and only if ∠A ∼= ∠B.

iv) If the ray AC is interior to ∠DAB, then ∠DAB = ∠DAC + ∠CAB.

v) For every real number x between 0 and 180, there exists an angle ∠A
such that ∠A = x◦.

vi) If ∠B is supplementary to ∠A, then ∠A + ∠B = 180◦.

B Given a segment OI, called the unit segment. Then there is a unique way of
assigning a length |AB| to each segment AB such that the following properties
hold:

i) |AB| is a positive real number and |OI| = 1.

ii) |AB| = |CD| if and only if AB ∼= CD.

iii) B lies between A and C if and only if |AC| = |AB|+ |BC|.
iv) |AB| < |CD| if and only if AB < CD.

v) For every positive real number x, there exists a segment AB such that
|AB| = x.

Definition 4.5 An angle ∠A is acute if ∠A < 90◦, and is obtuse if ∠A > 90◦.

Corollary 1 The sum of the degree measures of any two angles of a triangle is less than
180◦.

This follows from the Exterior Angle Theorem.

Proof: We want to show that ∠A + ∠B < 180◦. From the Exterior Angle Theorem,

∠A < ∠CBD

∠A + ∠B < ∠CBD + ∠B = 180◦,

since they are supplementary angles.

Corollary 2 (Triangle Inequality) If A, B, and C are three noncollinear points, then
|AC| < |AB|+ |BC|.
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4.3 Saccheri-Legendre Theorem

Theorem 4.4 (Saccheri-Legendre Theorem) The sum of the degree measures of the
three angles in any triangle is less than or equal to 180◦;

∠A + ∠B + ∠C ≤ 180◦.

Proof: Let us assume not; i.e., assume that we have a triangle 4ABC in which ∠A +
∠B + ∠C > 180◦. So there is an x ∈ R+ so that

∠A + ∠B + ∠C = 180◦ + x.

D
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B
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E

Figure 4.5: Saccheri-Legendre Theorem

Compare Figure 4.5. Let D be the midpoint of BC and let E be the unique point on
the ray AD so that DE ∼= AD. Then by SAS 4BAD ∼= 4CED. This makes

∠B = ∠DCE ∠E = ∠BAD.

Thus,

∠A + ∠B + ∠C = (∠BAD + ∠EAC) + ∠B + ∠ACB

= ∠E + ∠EAC + (∠DCE + ∠ACD)
= ∠E + ∠A + ∠C

So, 4ABC and 4ACE have the same angle sum, even though they need not be congruent.
Note that ∠BAE + ∠CAE = ∠BAC, hence

∠CEA + ∠CAE = ∠BAC.

It is impossible for both of the angles ∠CEA and ∠C◦AE to have angle measure greater
than 1/2∠BAC◦, so at least one of the angles has angle measure less than or equal to
1/2∠BAC◦.
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Therefore, there is a triangle 4ACE so that the angle sum is 180◦+x but in which one
angle has measure less than or equal to 1/2∠A◦. Repeat this construction to get another
triangle with angle sum 180◦ + x but in which one angle has measure less than or equal to
1/4∠A◦. Now there is an n ∈ Z+ so that

1
2n

∠A ≤ x,

by the Archimedean property of the real numbers. Thus, after a finite number of iterations
of the above construction we obtain a triangle with angle sum 180◦ + x in which one angle
has measure less than or equal to

1
2n

∠A ≤ x.

Then the other two angles must sum to a number greater than 180◦ contradicting Corollary
1.

Corollary 1 In 4ABC the sum of the degree measures of two angles is less than or equal
to the degree measure of their remote exterior angle.

4.3.1 The Defect of a Triangle

Since the angle sum of any triangle in neutral geometry is not more than 180◦, we can
compute the difference between the number 180 and the angle sum of a given triangle.

Definition 4.6 The defect of a triangle 4ABC is the number

defect (4ABC) = 180◦ − (∠A + ∠B + ∠C).

In euclidean geometry we are accustomed to having triangles whose defect is zero. Is
this always the case? The Saccheri-Legrendre Theorem indicates that it may not be so.
However, what we wish to see is that the defectiveness of triangles is preserved. That is,
if we have one defective triangle, then all of the sub and super-triangles are defective. By
defective, we mean that the triangles have positive defect.

Theorem 4.5 (Additivity of Defect) Let 4ABC be any triangle and let D be a point
between A and B. Then defect (4ABC) = defect (4ACD) + defect (4BCD) .

A
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D B

Figure 4.6:
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Proof: Since the ray CD lies in ∠ACB, we know that

∠ACB = ∠ACD + ∠BCD,

and since ∠ADC and ∠BDC are supplementary angles ∠ADC+∠BDC = 180◦. Therefore,

defect (4ABC) = 180◦ − (∠A + ∠B + ∠C)
= 180◦ − (∠A + ∠B + ∠ACD + ∠BCD)
= 180◦ + 180◦ − (∠A + ∠B

+ ∠ACD + ∠BCD + ∠ADC + ∠BDC)
= defect (4ACD) + defect (4BCD) .

Corollary 1 defect (4ABC) = 0 if and only if defect (4ACD) = defect (4BCD) = 0.

A rectangle is a quadrilateral all of whose angles are right angles. We cannot prove the
existence or non-existence of rectangles in Neutral Geometry. Nonetheless, the following
result is extremely useful.

Theorem 4.6 If there exists a triangle of defect 0, then a rectangle exists. If a rectangle
exists, then every triangle has defect 0.

Let me first outline the proof in five steps.

1. Construct a right triangle having defect 0.

2. From a right triangle of defect 0, construct a rectangle.

3. From one rectangle, construct arbitrarily large rectangles.

4. Prove that all right triangles have defect 0.

5. If every right triangle has defect 0, then every triangle has defect 0.

Having outlined the proof, each of the steps is relatively straightforward.

1. Construct a right triangle having defect 0.
Let us assume that we have a triangle 4ABC so that defect (4ABC) = 0. We may
assume that 4ABC is not a right triangle, or we are done. Now, at least two angles
are acute since the angle sum of any two angles is always less than 180◦. Let us assume
that ∠A and ∠B are acute. Also, let D be the foot of C on line AB. We need to
know that D lies between A and B.

Assume not; i.e., assume that G DAB. See Figure 4.7. This means that ∠CAB is
exterior to 4CAD and, therefore, ∠A > ∠CDA = 90◦. This makes ∠A obtuse, a
contradiction. Similarly, if G ABD we can show that ∠B is obtuse. Thus, we must
have that D lies between A and B.

This makes 4ADC and 4BDC right triangles. By Corollary 1 above, since 4ABC
has defect 0, each of them has defect 0, and we have two right triangles with defect 0.
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Figure 4.7:

2. From a right triangle of defect 0, construct a rectangle.
We now have a right triangle of defect 0. Take 4CBD from Step 1, which has a right
angle at D. There is a unique ray CX on the opposite side of BC from D so that

∠DBC ∼= ∠BCX.

Then there is a unique point E on ray CX such that CE ∼= BD.
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Figure 4.8:

Thus, 4CDB ∼= 4BEC by SAS. Then ∠BEC = 90◦ and 4BEC must also have
defect 0. Now, clearly, since defect (4CDB) = 0

∠DBC + ∠BCD = 90◦

and, hence,
∠ECB + ∠BCD = ∠ECD = 90◦.

Likewise, ∠EBD = 90◦ and 2CDBE is a rectangle.

3. From one rectangle, construct arbitrarily large rectangles.
Given any right triangle 4XY Z, we can construct a rectangle 2PQRS so that PS >
XZ and RS > Y Z. By applying Archimedes Axiom, we can find a number n so that
we lay off segment BD in the above rectangle on the ray ZX to reach the point P so
that n · BD ∼= PZ and X lies between P and Z. We make n copies of our rectangle
sitting on PZ = PS. This gives us a rectangle with vertices P , Z = S, Y , and some
other point. Now, using the same technique, we can find a number m and a point R
on the ray ZY so that m·BE ∼= RZ and Y lying between R and Z. Now, constructing
m copies of the long rectangle, gives us the requisite rectangle containing 4XY Z.

4. Prove that all right triangles have defect 0.
Let 4XY Z be an arbitrary right triangle. By Step 3 we can embed it in a rectangle
2PQRS.
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Figure 4.9:

Since 4PQR ∼= 4PSR, we have that ∠RPS + ∠PRS = 90◦ and then, 4PRS has
defect 0. Using Corollary 1 to Theorem 4.5 we find defect (4RXY ) = 0 and thus,
defect (4XY Z) = 0. Therefore, each triangle has defect 0.

5. If every right triangle has defect 0, then every triangle has defect 0.
As in the first step, use the foot of a vertex to decompose the triangle into two right
triangles, each of which has defect 0, from Step 4. Thus, the original triangle has
defect 0.

Corollary 1 If there is a triangle with positive defect, then all triangles have positive defect.

4.4 Hyperbolic Axiom Results

Hyperbolic geometry is often called Bolyai-Lobachevskiian geometry after two of its discovers
János Bolyai and Nikolai Ivanovich Lobachevsky. Bolyai first announced his discoveries in
a 26 page appendix to a book by his father, the Tentamen, in 1831. Another of the great
mathematicians who seems to have preceded Bolyai in his work is Carl Fredrich Gauss. He
seems to have done some work in the area dating from 1792, but never published it. The
first to publish a complete account of non-euclidean geometry was Lobachevsky in 1829. It
was first published in Russian and was not widely read. In 1840 he published a treatise in
German.

We shall call our added axiom the Hyperbolic Axiom.

-¾ `

1
) q
i P

We shall denote the set of all points in the plane by H2, and call this the hyperbolic
plane.

Lemma 4.1 There exists a triangle whose angle sum is less than 180◦.
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Proof: Let ` be a line and P a point not on ` such that two parallels to ` pass through P .
We can construct one of these parallels as previously done using perpendiculars. Let Q be
the foot of the perpendicular to ` through P . Let m be the perpendicular to the line PQ
through P . Then m and ` are parallel. Let n be another line through P which does not
intersect `. This line exists by the Hyperbolic Axiom. Let PX be a ray of n lying between
PQ and a ray PY of m.
claim: There is a point R ∈ ` on the same side of the line PQ as X and Y so that
∠QRP < ∠XPY .

proof of claim. The idea is to construct a sequence of angles

∠QR1P, ∠QR2P, . . . , ∠QRnP, . . .

so that ∠QRj+1P < 1
2∠QRjP . We will then apply Archimedes Axiom for real numbers to

complete the proof.
There is a point R1 ∈ ` so that QR1

∼= PQ. Then 4QR1P is isosceles and ∠QR1P
◦ ≤

45◦. Also, there is a point R2 ∈ ` so that G FR1R2 and R1R2
∼= PR1. Then 4PR1R2 is

isosceles and ∠R1PR2
∼= ∠QR2P . Since ∠QR1P is exterior to 4PR1R2 it follows that

∠R1PR2 + ∠QR2P ≤ ∠QR1P ,

so then ∠QR2P ≤ 221
2

◦. Continuing with this construction, we find a point Rn ∈ ` so that
G QRn−1Rn and

∠QRnP ≤
(

45
2n

)◦
.

Applying the Archimedean axiom we see that for any positive real number, for example
∠XPY , there is a point R ∈ ` so that R is on the same side of the line PQ as X and Y
and ∠QRP < ∠XPY . Thus, we have proved our claim.

Now, the ray PR lies in the interior of ∠QPX, for if not then the ray PX is in the
interior of ∠QRP . By the Crossbar Theorem it follows that the ray PX ∩ ` 6= ∅ which
implies that n and ` are not parallel—a contradiction. Thus, ∠RPQ < ∠XPQ. Then,

∠RPQ + ∠QRP < ∠XPQ + ∠QRP < ∠XPQ + ∠XPY = 90◦.

Therefore, ∠P + ∠Q + ∠R < 180◦ and defect (4PQR) > 0.

The Hyperbolic Axiom only hypothesizes the existence of one line and one point not on
that line for which there are two parallel lines. With the above theorem we can now prove
a much stronger theorem.

Theorem 4.7 (Universal Hyperbolic Theorem) In H2 for every line ` and for every
point P not on ` there pass through P at least two distinct lines, neither of which intersect
`.
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Proof: Drop a perpendicular PQ to ` and construct a line m through P perpendicular to
PQ. Let R be any other point on `, and construct a perpendicular t to ` through R. Now,
let S be the foot of the perpendicular to t through P . Now, the line PS does not intersect
` since both are perpendicular to t. At the same time PS 6= m. Assume that S ∈ m, then
2PQRS is a rectangle. By Theorem 4.6, if one rectangle exists all triangles have defect 0.
We have a contradiction to Lemma 4.1. Thus, PS 6= m, and we are done.

4.5 Angle Sums (again)

We have just proven the following theorem.

Theorem 4.8 In H2 rectangles do not exist and all triangles have angle sum less than
180◦.

This tells us that in hyperbolic geometry the defect of any triangle is a positive real
number. We shall see that it is a very important quantity in hyperbolic geometry.

Corollary 1 In H2 all convex quadrilaterals have angle sum less than 360◦.

4.6 Saccheri Quadrilaterals

Girolamo Saccheri was a Jesuit priest living from 1667 to 1733. Before he died he published
a book entitled Euclides ab omni nævo vindicatus ( Euclid Freed of Every Flaw). It sat
unnoticed for over a century and a half until rediscovered by the Italian mathematician
Beltrami.

He wished to prove Euclid’s Fifth Postulate from the other axioms. To do so he decided
to use a reductio ad absurdum argument. He assumed the negation of the Parallel Postulate
and tried to arrive at a contradiction. He studied a family of quadrilaterals that have come
to be called Saccheri quadrilaterals. Let S be a convex quadrilateral in which two adjacent
angles are right angles. The segment joining these two vertices is called the base. The side
opposite the base is the summit and the other two sides are called the sides. If the sides
are congruent to one another then this is called a Saccheri quadrilateral. The angles
containing the summit are called the summit angles.

Theorem 4.9 In a Saccheri quadrilateral
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i) the summit angles are congruent, and

ii) the line joining the midpoints of the base and the summit—called the altitude—
is perpendicular to both.

A M B

D N C

Proof: Let M be the midpoint of AB and let N be the midpoint of CD.

1. We are given that
∠DAB = ∠ABC = 90◦.

Now, AD ∼= BC and AB ∼= AB, so that by SAS 4DAB ∼= 4CBA, which implies
that BD ∼= AC. Also, since CD ∼= CD then we may apply the SSS criterion to see
that 4CDB ∼= 4DCA. Then, it is clear that ∠D ∼= ∠C.

2. We need to show that the line MN is perpendicular to both lines AB and CD.
Now DN ∼= CN , AD ∼= BC, and ∠D ∼= ∠C. Thus by SAS 4ADN ∼= 4BCN .
This means then that AN ∼= BN . Also, AM ∼= BM and MN ∼= MN . By SSS
4ANM ∼= 4BNM and it follows that ∠AMN ∼= ∠BMN . They are supplementary
angles, hence they must be right angles. Therefore MN is perpendicular to AB.

Using the analogous proof and triangles4DMN and 4CMN , we can show that MN
is perpendicular to CD.

Thus, we are done.

Theorem 4.10 In a Saccheri quadrilateral the summit angles are acute.

Proof: Recall from Corollary 1 to Theorem 4.8 that the angle sum for any convex quadri-
lateral is less that 360◦. Thus, since the Saccheri quadrilateral is convex,

∠A + ∠B + ∠C + ∠D < 360◦

2∠C < 180◦

∠C < 90◦

Thus, ∠C and ∠D are acute.

A convex quadrilateral three of whose angles are right angles is called a Lambert
quadrilateral.

Theorem 4.11 The fourth angle of a Lambert quadrilateral is acute.

Theorem 4.12 The side adjacent to the acute angle of a Lambert quadrilateral is greater
than its opposite side.
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Theorem 4.13 In a Saccheri quadrilateral the summit is greater than the base and the
sides are greater than the altitude.

Proof: Using Theorem 4.9 if M is the midpoint of AB and N is the midpoint of CD, then
2AMND is a Lambert quadrilateral. Thus, AB > MN and, since BC ∼= AB, both sides
are greater than the altitude.

Also, applying Theorem 4.9 DN > AM . Since CD ∼= 2DN and AB ∼= 2AM it follows
that CD > AB, so that the summit is greater than the base.

4.7 Similar Triangles

In euclidean geometry we are used to having two triangles similar if their angles are con-
gruent. It is obvious that we can construct two non-congruent, yet similar, triangles. In
fact John Wallis attempted to prove the Parallel Postulate of Euclid by adding another
postulate.
wallis’ postulate: Given any triangle 4ABC and given any segment DE. There exists
a triangle 4DEF having DE as one of its sides that is similar to 4ABC.

However Wallis’ Postulate is equivalent to Euclid’s Parallel Postulate. Thus, we know
that the negation of Wallis’ Postulate must hold in hyperbolic geometry. That is, under
certain circumstances similar triangles do not exist. We can prove a much stronger state-
ment.

Theorem 4.14 (AAA Criterion) In H2 if ∠A ∼= ∠D, ∠B ∼= ∠E, and ∠C ∼= ∠F , then
4ABC ∼= 4DEF . That is, if two triangles are similar, then they are congruent.

Proof: Since ∠BAC ∼= ∠EDF , there exists an isometry which sends D to A, the ray
DE to the ray AB, and the ray DF to the ray AC. Let the image of E and F under
this isometry be E′ and F ′, respectively. If the two triangles are not congruent, then we
may assume that E′ 6= B and that E′ lies between A and B. Then BC and E′F ′ cannot
intersect by the Alternate Interior Angles Theorem. Then BCE′F ′ forms a quadrilateral.
The quadrilateral has the following angles:

∠E′BC = ∠ABC

∠F ′CB = ∠ACB

∠BE′F ′ = 180◦ − ∠ABC

∠CF ′E′ = 180◦ − ∠ACB

which sum to 360◦. This contradiction leads us to the fact that E′ = B and F ′ = C and
the two triangles are congruent.

E

D

F

B

A

C

E′ F ′

As a consequence of Theorem 4.14 we shall see that
in hyperbolic geometry a segment can be determined with
the aid of an angle. For example, an angle of an equilateral
triangle determines the length of a side uniquely. Thus in
hyperbolic geometry there is an absolute unit of length as
there is in elliptic geometry.


