MATH 6118-090 Non-Euclidean Geometry

Exercise Set \#2

1. Suppose f is an isometry and suppose there exist two distinct points P and Q such that $f(P)=P$ and $f(Q)=Q$. Show that f is either the identity or a reflection.
2. Prove that if a line $\ell_{1} \neq \ell$ is sent to itself under a reflection through ℓ, then ℓ_{1} and ℓ intersect at right angles.
3. Suppose that f and g are two isometries such that $f(A)=g(A)$ and $f(B)=g(B)$, and $f(C)=g(C)$ for some nondegenerate triangle $\triangle A B C$. Show that $f=g$. That is, show that $f(P)=g(P)$ for any point P.
4. Prove the Star Trek lemma for an acute angle for which the center O is outside the angle.
5. (Bow Tie Lemma) Let A, A^{\prime}, B and C lie on a circle, and suppose $\angle B A C$ and $\angle B A^{\prime} C$ subtend the same arc. Show that $\angle B A C \cong \angle B A^{\prime} C$.

Figure 1

Figure 2
6. In Figure 1, if $|A B|=|A C|=|B C|$, what is the angle at D ?
7. Suppose that two lines intersect at P inside a circle and meet the circle at A and A^{\prime} and at B and B^{\prime}, as shown in Figure 2. Let α and β be the measures of the arcs $\widetilde{A^{\prime} B^{\prime}}$ and $\overparen{A B}$ respectively. Prove that

$$
\angle A P B=\frac{\alpha+\beta}{2} .
$$

8. Suppose an angle α is defined by two rays which intersect a circle at four points. Suppose the angular measure of the outside arc it subtends is β and the angular measure of the inside arc it subtends is γ.(So in Figure 3, $\angle A O B=\beta$ and $\angle A^{\prime} O B^{\prime}=\gamma$.) Show

$$
\alpha=\frac{\beta-\gamma}{2}
$$

Figure 3

