MATH 6118-090 Non-Euclidean Geometry

Exercise Set #2

- 1. Suppose f is an isometry and suppose there exist two distinct points P and Q such that f(P) = P and f(Q) = Q. Show that f is either the identity or a reflection.
- 2. Prove that if a line $\ell_1 \neq \ell$ is sent to itself under a reflection through ℓ , then ℓ_1 and ℓ intersect at right angles.
- 3. Suppose that f and g are two isometries such that f(A) = g(A) and f(B) = g(B), and f(C) = g(C) for some nondegenerate triangle $\triangle ABC$. Show that f = g. That is, show that f(P) = g(P) for any point P.
- 4. Prove the Star Trek lemma for an acute angle for which the center *O* is outside the angle.
- 5. (Bow Tie Lemma) Let A, A', B and C lie on a circle, and suppose $\angle BAC$ and $\angle BA'C$ subtend the same arc. Show that $\angle BAC \cong \angle BA'C$.

- 6. In Figure 1, if |AB| = |AC| = |BC|, what is the angle at *D*?
- 7. Suppose that two lines intersect at *P* inside a circle and meet the circle at *A* and *A'* and at *B* and *B'*, as shown in Figure 2. Let α and β be the measures of the arcs $\widehat{A'B'}$ and \widehat{AB} respectively. Prove that

$$\angle APB = \frac{\alpha + \beta}{2}.$$

8. Suppose an angle α is defined by two rays which intersect a circle at four points. Suppose the angular measure of the outside arc it subtends is β and the angular measure of the inside arc it subtends is γ . (So in Figure 3, $\angle AOB = \beta$ and $\angle A'OB' = \gamma$.) Show

Figure 3