MATH 6118-090
 Non-Euclidean Geometry

 Exercise Set \#7

 Exercise Set \#7}

1. In the upper half plane model, \mathscr{H}, carefully draw the asymptotic triangle with vertices $i, 1+i$, and 1 . Is the map

$$
\gamma=\left[\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right]
$$

an isometry of \mathscr{H} ? In the same diagram, carefully draw the image of the asymptotic triangle under the action of γ.
2. In the upper half plane model, \mathscr{H}, carefully draw the asymptotic triangle with vertices i, $-1+i$, and $1+i$. In the same diagram, carefully draw the image of this triangle under the isometry

$$
\gamma=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]
$$

3. Let $P=\frac{8+i}{13}, Q=\frac{13+i}{20}$, and $\gamma=\left[\begin{array}{cc}2 & -1 \\ -3 & 2\end{array}\right]$. What are γP and γQ ? Sketch P, Q and their images. Is γ an isometry? Why? Use all of this information to find the distance between P and Q in \mathscr{H}.
4. Let $P=2+4 i$ and $Q=\frac{6+4 i}{3}$ be two points in the upper half plane, \mathscr{H}. Let

$$
\gamma=\left[\begin{array}{cc}
1 & 2 \\
-1 & 2
\end{array}\right]
$$

What are γP and γQ ? What is the Poincaré distance from P to Q in \mathscr{H}.
5. Suppose that T is a fractional linear transformation such that $T(1)=1, T(0)=0$, and $T(\infty)=\infty$. Prove that T is the identity map. That is, show that $T(z)=z$ for all z.
6. Show that the dilation $\delta_{\lambda}(z)=\lambda z$ is an isometry of \mathscr{H}. Find an isometry which sends $a+b i$ to I by composing a dilation δ_{λ} and a horizontal translation τ_{r} for some λ and r. (HINT: You have to find the specific λ and r that will work for this example.)

