MATH 6118-090 Non-Euclidean Geometry

Exercise Set #7

1. In the upper half plane model, \mathcal{H} , carefully draw the asymptotic triangle with vertices i, 1 + i, and 1. Is the map

$$\gamma = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}$$

an isometry of \mathcal{H} ? In the same diagram, carefully draw the image of the asymptotic triangle under the action of γ .

2. In the upper half plane model, \mathcal{H} , carefully draw the asymptotic triangle with vertices *i*, -1 + i, and 1 + i. In the same diagram, carefully draw the image of this triangle under the isometry

$$\gamma = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}.$$

3. Let $P = \frac{8+i}{13}$, $Q = \frac{13+i}{20}$, and $\gamma = \begin{bmatrix} 2 & -1 \\ -3 & 2 \end{bmatrix}$. What are γP and γQ ? Sketch P, Q and their

images. Is γ an isometry? Why? Use all of this information to find the distance between *P* and *Q* in \mathcal{H} .

4. Let P = 2 + 4i and $Q = \frac{6+4i}{3}$ be two points in the upper half plane, \mathcal{H} . Let

$$\gamma = \begin{bmatrix} 1 & 2 \\ -1 & 2 \end{bmatrix}.$$

What are γP and γQ ? What is the Poincaré distance from P to Q in \mathcal{H} .

- 5. Suppose that T is a fractional linear transformation such that T(1) = 1, T(0) = 0, and $T(\infty) = \infty$. Prove that T is the identity map. That is, show that T(z) = z for all z.
- 6. Show that the dilation $\delta_{\lambda}(z) = \lambda z$ is an isometry of \mathcal{H} . Find an isometry which sends a + bi to I by composing a dilation δ_{λ} and a horizontal translation τ_r for some λ and r. (**HINT**: You have to find the specific λ and r that will work for this example.)