Problems for the Final Exam
 MATH 6102 - Spring 2007

1. Define a function f on the real line by $f(x)=x+\left\lfloor x^{2}\right\rfloor-\lfloor x\rfloor$, where $\lfloor x\rfloor$ is the greatest integer less than or equal to x. Where is f not continuous? Explain your answer.
2. Find the radius of convergence for the power series $\sum_{n=1}^{\infty} \frac{x^{n}}{n^{n}}$.
3. A function f satisfies the two conditions

$$
f^{\prime}(x)=1+(f(x))^{10} \text { and } f(0)=1
$$

Find the first four terms in the Taylor series expansion of f about $x=0$.
4. Find the Taylor series and the radius of convergence for

$$
f(x)=\int_{0}^{x} \frac{d t}{\sqrt{1+t^{2}}} \text { about } x=0
$$

5. If $f(1)=1$ and $f^{\prime}(1)=2$, compute

$$
\lim _{x \rightarrow 1} \frac{[f(x)]^{2}-1}{x^{2}-1}
$$

6. If $a, b, c, d \in \mathbb{R}$ find

$$
\lim _{x \rightarrow 0} \frac{\sin a x \sin b x}{\sin c x \sin d x}
$$

7. Suppose that f is differentiable with derivative $f^{\prime}(x)=\left(1+x^{3}\right)^{-1 / 2}$. Show that $g=f^{-1}$ satisfies $g^{\prime \prime}(x)=\frac{3}{2}[g(x)]^{2}$. DO NOT FIND $f(x)$.
8. Find f^{-1} for each of the following:
(a) $f(x)=x+\lfloor x\rfloor$.
(b) $f\left(0 . a_{1} a_{2} a_{3} \ldots\right)=0 . a_{2} a_{1} a_{3} \ldots$ for all numbers between 0 and 1 .
9. Suppose that f and g are two differentiable functions which satisfy $f g^{\prime}-f^{\prime} g=0$. Prove that if a and b are adjacent zeros of f^{1}, and $g(a)$ and $g(b)$ are not both 0 , then $g(x)=0$ for some x between a and b.
Hint: Derive a contradiction from the assumption that $g(x) \neq 0$ for all x between a and b.

[^0]10. If f is three times differentiable and $f^{\prime}(x) \neq 0$, the Schwarzian derivative of f at x is defined to be
$$
\mathscr{D} f(x)=\frac{f^{\prime \prime \prime}(x)}{f^{\prime}(x)}-\frac{3}{2}\left(\frac{f^{\prime \prime}(x)}{f^{\prime}(x)}\right)^{2} .
$$
(a) Show that
$$
\mathscr{D}(f \circ g)=[\mathscr{D} f \circ g] \cdot g^{\prime 2}+\mathscr{D} g .
$$
(b) Show that if $f(x)=\frac{a x+b}{c x+d}$, with $a d-b c \neq 0$, then $\mathscr{D} f=0$. Show then that in this case $\mathscr{D}(f \circ g)=\mathscr{D} g$.
11. Find f^{\prime} in terms of g^{\prime} if
(a) $f(x)=g(x+g(a))$.
(b) $f(x)=g(x \cdot g(a))$
(c) $f(x)=g(x+g(x))$
(d) $f(x)=g(x)(x-a)$
(e) $f(x)=g(a)(x-a)$
(f) $f(x+3)=g\left(x^{2}\right)$
12. Find $f^{\prime}(x)$ if
$$
f(x)=\sin \left(\frac{x}{x-\sin \left(\frac{x}{x-\sin x}\right)}\right) .
$$
13. Find $f^{\prime}(x)$ if $f(x)=g(t+x)$, and if $f(t)=g(t+x)$.
14. Find $\left(f^{-1}\right)^{\prime}(0)$ if
$$
f(x)=\int_{0}^{x} 1+\sin (\sin (t)) d t
$$
15. Prove that if f is continuous, then
$$
\int_{0}^{x} f(u)(x-u) d u=\int_{0}^{x}\left(\int_{0}^{u} f(t) d t\right) d u
$$

Hint: Differentiate both sides.

16. Let C_{1}, C, and C_{2} be curves passing through the origin, as shown in the figure above. Each point on C can be joined to a point of C_{1} with a vertical line segment and to a point of C_{2} with a horizontal line segment. We will say that C bisects C_{1} and C_{2} if the regions A and B have equal areas for every point on C.
(a) If C_{1} is the graph of $f(x)=x^{2}, x \geq 0$ and C is the graph of $f(x)=2 x^{2}, x \geq 0$, find C_{2} so that C bisects C_{1} and C_{2}.
(b) Find C_{2} if C_{1} is the graph of x^{m}, and C is the graph of $f(x)=c x^{m}$ for some $c>1$.

[^0]: ${ }^{1}$ This means that $f(a)=f(b)=0$ and $f(x) \neq 0$ for all $x \in(a, b)$.

