Problems for the Final Exam
MATH 6102 - Spring 2007

1. Define a function f on the real line by f(z) = z+ [2?] — |x], where |z] is the greatest integer
less than or equal to x. Where is f not continuous? Explain your answer.
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2. Find the radius of convergence for the power series Z
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3. A function f satisfies the two conditions
@) =1+ (f()" and f(0) = 1.
Find the first four terms in the Taylor series expansion of f about z = 0.

4. Find the Taylor series and the radius of convergence for
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f(:n):/o 7 about z = 0.

5. If f(1) =1 and f/(1) = 2, compute
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6. If a,b,c,d € R find

. sinazsinbx
lim ——.
z—0 sin cx sin dx
7. Suppose that f is differentiable with derivative f'(z) = (1 + x3)_1/2. Show that ¢ = f~!
satisfies ¢’ (z) = 3[g(z)]>. DO NOT FIND f(z).

8. Find f~! for each of the following:

(a) f(z) =2+ ],

(b) f(0.ajagas...) = 0.azaqas ... for all numbers between 0 and 1.

9. Suppose that f and g are two differentiable functions which satisfy fg¢’ — f’g = 0. Prove that
if @ and b are adjacent zeros of f!, and g(a) and g(b) are not both 0, then g(z) = 0 for some
x between a and b.
HINT: Derive a contradiction from the assumption that g(z) # 0 for all x between @ and b.

!This means that f(a) = f(b) = 0 and f(z) # 0 for all z € (a,b).



Problems from which to Final Exam Questions to be Taken

10. If f is three times differentiable and f’(z) # 0, the Schwarzian derivative of f at x is defined

to be
@) 3 (1@
71 =y 73 <f’(:v)> |

(a) Show that
D(fog)=[2fog) 4"+ 2g.

. ar +b
(b) Show that if f(x) = o d

P(fog)=2g.
11. Find f’ in terms of ¢’ if

with ad — bc # 0, then 2 f = 0. Show then that in this case

12. Find f'(x) if

13. Find f'(z) if f(x) = g(t + z), and if f(¢) = g(t + ).
14. Find (f~1)'(0) if i
flz)= /0 1 + sin(sin(t)) dt.

15. Prove that if f is continuous, then

[t /([ 108}

HinT: Differentiate both sides.
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16. Let C1, C, and (5 be curves passing through the origin, as shown in the figure above. Each
point on C' can be joined to a point of Cy with a vertical line segment and to a point of Cy
with a horizontal line segment. We will say that C bisects C7 and Cj if the regions A and B
have equal areas for every point on C.

(a) If Cy is the graph of f(x) = 2%, > 0 and C is the graph of f(z) = 222, > 0, find Cy
so that C bisects C7 and Cs.

(b) Find Cy if C} is the graph of 2™, and C' is the graph of f(z) = cz™ for some ¢ > 1.
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