ASSIGNMENT 4

05-February-2007

1. Let f be integrable on $[a, b]$, and suppose that g is a function on $[a, b]$ so that $f(x)=g(x)$ except for finitely many $x \in[a, b]$. Show that g is integrable and that $\int_{a}^{b} f=\int_{a}^{b} g$.
Hint: You will not want to use the properties of the integral, only the definitions and theorems through Theorem 4.4.
2. Let f be integrable on $[a, b]$ and let $c \in[a, b]$. Prove that $\int_{c}^{c} f=0$.
3. Calculate $\lim _{x \rightarrow 0} \frac{1}{x} \int_{0}^{x} e^{t^{2}} d t$. Hint: Think l'Hospital.
4. Let f be defined as follows:

$$
f(t)= \begin{cases}t & \text { for } t<0 \\ t^{2}+1 & \text { for } 0 \leq t \leq 2, \\ 4 & \text { for } t>2\end{cases}
$$

(a) Determine the function $F(x)=\int_{0}^{x} f(t) d t$.
(b) Sketch F. Where is F continuous?
(c) Where is F differentiable? Find F^{\prime} at all points of differentiability.
5. Let f be a continuous function on \mathbb{R} and define

$$
F(x)=\int_{x-1}^{x+1} f(t) d t \text { for } x \in \mathbb{R}
$$

Show that F is differentiable on \mathbb{R} and compute F^{\prime}.
6. Use the last example in the notes to show that

$$
\int_{0}^{1 / 2} \arcsin x d x=\frac{\pi}{12}+\frac{\sqrt{3}}{2}-1
$$

7. Let g be a strictly increasing continuous function mapping $[0,1]$ to $[0,1]$. Give a geometric argument showing

$$
\int_{0}^{1} g(x) d x+\int_{0}^{1} g^{-1}(u) d u=1 .
$$

No WebWork assignment this week.

