MATH 6102 - SPRING 2007
 ASSIGNMENT 4
 SOLUTIONS

February 12, 2007

1. Let f be integrable on $[a, b]$, and suppose that g is a function on $[a, b]$ so that $f(x)=g(x)$ except for finitely many $x \in[a, b]$. Show that g is integrable and that $\int_{a}^{b} f=\int_{a}^{b} g$.
Let's use induction here. Assume that $f(x)=g(x)$ expect at one point $u \in[a, b]$. Let B be a bound for $|f|$ and $|g|, B>0$. If $\epsilon>0$ there is a partition P such that $U(f, P)-L(f, P)<\frac{\epsilon}{3}$. We may assume that $t_{k}-t_{k-1}<\frac{\epsilon}{12 B}$ for all k. Since u belongs to at most two of the intervals [$\left.t_{k-1}, t_{k}\right]$, we see that

$$
|U(g, P)-U(f, P)| \leq 2[B-(-B)] \cdot \max \left\{t_{k}-t_{k-1}\right\}<\frac{\epsilon}{3} .
$$

Likewise, $|L(g, P)-L(f, P)|<\frac{\epsilon}{3}$, so $U(g, P)-L(g, P)<\epsilon$. Hence g is integrable. The integrals agree since

$$
\int_{a}^{b} g \leq U(g, P)<U(f, P)+\frac{\epsilon}{3}<L(f, P)+\frac{2 \epsilon}{3} \leq \int_{a}^{b} f+\frac{2 \epsilon}{3}
$$

and similarly $\int_{a}^{b} g>\int_{a}^{b} f-\frac{2 \epsilon}{3}$.
2. Let f be integrable on $[a, b]$ and let $c \in[a, b]$. Prove that $\int_{c}^{c} f=0$.

Any partition of $[c, c]$ must have $\operatorname{mesh}(P)=0$. Since the mesh has length 0 the integral must also be 0 .
Another way to see this is that

$$
\int_{a}^{b} f=\int_{a}^{c} f+\int_{c}^{c} f+\int_{c}^{b} f
$$

Then subtracting off the equal parts from both sides leaves $\int_{c}^{c} f=0$.
3. Calculate $\lim _{x \rightarrow 0} \frac{1}{x} \int_{0}^{x} e^{t^{2}} d t$.

Let's use l'Hospital's Rule here:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\int_{0}^{x} e^{t^{2}} d t}{x} & =\lim _{x \rightarrow 0} \frac{e^{x^{2}}}{1} \\
& =1
\end{aligned}
$$

4. Let f be defined as follows:

$$
f(t)= \begin{cases}t & \text { for } t<0 \\ t^{2}+1 & \text { for } 0 \leq t \leq 2 \\ 4 & \text { for } t>2\end{cases}
$$

(a) Determine the function $F(x)=\int_{0}^{x} f(t) d t$.

Since we know that the function is piecewise continuous, then we can integrate it piecewise.

$$
\begin{aligned}
F(x) & = \begin{cases}\int_{0}^{x} t d t & \text { for } t<0 \\
\int_{0}^{x} t^{2}+1 d t & \text { for } 0 \leq t \leq 2, \\
\int_{0}^{x} 4 d t=\int_{0}^{2} t^{2}+1 d t+\int_{2}^{x} 4 d t & \text { for } t>2\end{cases} \\
& = \begin{cases}\frac{1}{2} x^{2} & \text { for } x<0 \\
\frac{1}{3} x^{3}+x & \text { for } 0 \leq x \leq 2 \\
4 x-\frac{10}{3} & \text { for } x>2\end{cases}
\end{aligned}
$$

(b) Sketch F. Where is F continuous?

F is continuous on \mathbb{R}. This we know from the Second Fundamental Theorem of Calculus.
(c) Where is F differentiable? Find F^{\prime} at all points of differentiability.
$F(x)$ is differentiable when $f(x)$ is continuous. $f(x)$ is not continuous at $x=0$ nor at $x=2$. Thus, F is differentiable at all real numbers except $x=0$ and $x=2$, and $F^{\prime}(x)=f(x)$.
5. Let f be a continuous function on \mathbb{R} and define

$$
F(x)=\int_{x-1}^{x+1} f(t) d t \quad \text { for } x \in \mathbb{R}
$$

Show that F is differentiable on \mathbb{R} and compute F^{\prime}.

Let $F_{0}(x)=\int_{0}^{x+1} f(t) d t$. We know that F_{0} is the composition of $G(x)=\int_{0}^{x} f(t) d t$ and $H(x)=x+1$, i.e., $F_{0}(x)=G(H(x)) . G$ is differentiable by the Fundamental Theorem of Calculus and H is clearly differentiable. Thus, F_{0} is differentiable.
Let $F_{1}(x)=\int_{x-1}^{0} f(t) d t=-\int_{0}^{x-1} f(t) d t$. Now, just as above F_{1} is differentiable. It is clear that $F=F_{0}+F_{1}$ and

$$
F^{\prime}(x)=F_{0}^{\prime}(x)+F_{1}^{\prime}(x)=f(x+1)-f(x-1) .
$$

6. Use the last example in the notes to show that

$$
\int_{0}^{1 / 2} \arcsin x d x=\frac{\pi}{12}+\frac{\sqrt{3}}{2}-1 .
$$

According to the last example, if we let $g(x)=\sin x$ then $g^{-1}(x)=\arcsin x$ and

$$
\begin{aligned}
\int_{a}^{b} g(x) d x+\int_{g(a)}^{g(b)} g^{-1}(u) d u & =b \cdot g(b)-a \cdot g(a) \\
\int_{0}^{\pi / 6} \sin x d x+\int_{0}^{1 / 2} \arcsin x d x & =\frac{\pi}{6} \times \frac{1}{2}-0 \times 0 \\
\int_{0}^{1 / 2} \arcsin x d x & =\frac{\pi}{12}-\int_{0}^{\pi / 6} \sin x d x \\
& =\frac{\pi}{12}+\left.\cos x\right|_{0} ^{\pi / 6} \\
& =\frac{\pi}{12}+\frac{\sqrt{3}}{2}-1
\end{aligned}
$$

7. Let g be a strictly increasing continuous function mapping $[0,1]$ to $[0,1]$. Give a geometric argument showing

$$
\int_{0}^{1} g(x) d x+\int_{0}^{1} g^{-1}(u) d u=1
$$

If g is a strictly increasing continuous function on $[0,1]$, then we have that $g(0)<g(x)<g(1)$ for all $x \in[0,1]$. We know that

$$
\int_{0}^{1} g(x) d x+\int_{g(0)}^{g(1)} g^{-1} x d x=1 \cdot g(1)-0 \cdot g(0) .
$$

Since g is onto, we must have that $g(1)=1$ and

$$
\int_{0}^{1} g(x) d x+\int_{0}^{1} g^{-1}(u) d u=1
$$

Geometrically, the area under the curve $g^{-1}(x)$ is exactly the same as the area between the curve $y=g(x)$ and the y-axis. One way to see this is that we get g^{-1} by reflecting the graph of g across the line $y=x$. Since the graphs are both contained in the unit square, the sum of the two pieces has to be the area of the unit square, which is 1 .

