MATH 6102 — SPRING 2007
ASSIGNMENT

SOLUTIONS
February 12, 2007

1. Let f be integrable on [a,b], and suppose that g is a function on [a,b] so that f(x) = g(x)
except for finitely many = € [a,b]. Show that g is integrable and that fabf = f;g.

Let’s use induction here. Assume that f(x) = g(z) expect at one point u € [a,b]. Let B be a
bound for |f| and |g|, B > 0. If € > 0 there is a partition P such that U(f, P) — L(f,P) <

We may assume that ¢, —tx_1 < 155 for all k. Since u belongs to at most two of the mtervals
[tk—1,tx], we see that

U(g. P) = U(f,P)| < 2[B — (~B)] - max{t — tx—1} < .

Likewise, |L(g, P) — L(f, P)| < §, so U(g,P) — L(g, P) < e. Hence g is integrable. The
integrals agree since

b
[osvp<vup s <ugp s X< [

and similarly fabg > fab f—%

2. Let f be integrable on [a,b] and let ¢ € |a,b]. Prove that fccf =0.

Any partition of [¢, ¢] must have mesh(P) = 0. Since the mesh has length 0 the integral must
also be 0.

Another way to see this is that

fr-[r L[

Then subtracting off the equal parts from both sides leaves fcc f=0.

T

1
3. Calculate lim — et dt.
z—0 & 0

Let’s use I’'Hospital’s Rule here:

“ et dt
lim fo ¢ = lim £
z—0 T z—0 1
=1
4. Let f be defined as follows:
t for t < 0,

f@)=<t?+1 for0<t <2,
4 for t > 2.
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(a) Determine the function F(x) = [ f(t)dt.
Since we know that the function is piecewise continuous, then we can integrate it piece-

wise.
Jo tdt for ¢ <0,
F(z) = ¢ [ft*+ 1dt for 0 <t <2,
Jiadt = [P+ 1dt+ [§4dt fort > 2.
%xz for z < 0,

= %x?’—l—x for 0 <z <2,

4x—% for x > 2.

(b) Sketch F. Where is F' continuous?

16+
14+
12+

10+

4 2 2 4

F' is continuous on R. This we know from the Second Fundamental Theorem of Calculus.

(c) Where is F differentiable? Find F' at all points of differentiability.
F(zx) is differentiable when f(z) is continuous. f(z) is not continuous at z = 0 nor
at x = 2. Thus, F is differentiable at all real numbers except © = 0 and x = 2, and

F(z) = f(x).

5. Let f be a continuous function on R and define

z+1
F(m):/ f@t)dt forxzeR.

-1

Show that F is differentiable on R and compute F’.
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Let Fy(z) = OxH f(t)dt. We know that Fp is the composition of G(x) = [ f(t)dt and
H(z) =z +1, i.e., Fo(x) = G(H(z)). G is differentiable by the Fundamental Theorem of
Calculus and H is clearly differentiable. Thus, Fy is differentiable.

Let Fy(z) = ff_l fit)dt =— Ow_l f(t)dt. Now, just as above Fj is differentiable. It is clear
that F = FO + F1 and

F'(x) = Fy(z) + Fi(2) = f(z +1) = f(z = 1).

. Use the last example in the notes to show that

1/2 3
/0 arcsin:nd:nz%—l—g—l.

According to the last example, if we let g(x) = sinz then g~!(x) = arcsin z and

b (b)
/g<w>dw+/g g~ (w)du=b-g(b) —a- g(a)
a g(a)

/6 1/2
/ sinx dx + / arcsin x dx =
0 0

1/2 /6
/ arcsin x dx = — / sin x dx
0 12 Jo

= % + cosx]g/ﬁ
V3
12 2

. Let g be a strictly increasing continuous function mapping [0,1] to [0,1]. Give a geometric

argument showing
1 1
/ g(x) dx—i—/ g Hu)du = 1.
0 0

If g is a strictly increasing continuous function on [0, 1], then we have that ¢(0) < g(z) < g(1)
for all = € [0,1]. We know that

1 9(1)
/ g(x) dw+/ g tedr=1-g(1) —0-g(0).
0 9(0)

Since g is onto, we must have that g(1) = 1 and

/Olg(:n) dx + /Olg_l(u) du = 1.

Geometrically, the area under the curve g~!(z) is exactly the same as the area between the
curve y = g(z) and the y-axis. One way to see this is that we get g~! by reflecting the graph
of g across the line y = x. Since the graphs are both contained in the unit square, the sum
of the two pieces has to be the area of the unit square, which is 1.
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