
Chapter 1

Functions and Continuity

1.1 Introduction

How do we think of functions? Newton and Leibniz used “functions” but not in the
sense that we now use them. Cauchy, in 1821, gave a definition of function that
made the dependence between variables central to the function concept. Despite
the generality of Cauchy’s definition, he was still thinking of a function in terms
of a formula. The problem here is that the function is tied up with its particular
representation. What this means is that there is still the question of whether there
is a difference in the function, say ex, and its Taylor series representation. Do these
both represent the same function? Cauchy gave an early example when he noted that

f(x) =

{
e−1/x2

forx 6= 0,

0 x = 0,

is a continuous function which has all its derivatives at 0 equal to 0. It therefore has
a Taylor series which converges everywhere but only equals the function at 0. It was
not until 1923 when Goursat gave the definition which appears in most textbooks
today: One says that y is a function of x if to a value of x corresponds a value of y.
One indicates this correspondence by the equation y = f(x).

1.2 Modern Definitions

As you can see, the concept of function has been a long time in the making. The
definition of functions that we give in our high school classrooms have been through
many, many changes. We are offering the students the final product of centuries
of thought. We offer a mathematically exact, precise definition. The use of other
representations can (and will) be used to try to understand what the definitions
mean and why we have chosen these definitions.
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2 CHAPTER 1. BACKGROUND MATERIAL

From what we have discussed above, the idea of a function is to express a rela-
tionship between the elements of two sets. If A and B are sets, then a function from
A to B is often described as a rule or process that associates each element of A with
one and only one element of B.

Definition 1.1 A function is a rule that assigns to each element of a set A a unique
element of a set B, where B may or may not equal A.

The set A is called the domain of the function f , the set B the codomain, and
the subset of B consisting of those elements that are images under the function f of
some element of its domain is called the range of the function f . If f associates a in
A to b in B, then the element b is called the image of a under f or the value of
f at a, and a is called the preimage of b under f .

There are a number of notations for functions in use in mathematics. The common
notations are when f associates a with b, then the functional notation or f(x)
notation is written f(a)=b. The arrow or mapping notation is written f : a → b.

One positive aspect of the arrow notation is that it conveys the idea that there
is an action that associates the elements from A to the corresponding elements of
B. This can be written as f : A → B only to indicate the domain and codomain, in
which case the notation for elements is f : a 7→ b. When the arrow notation is used,
we will say that the function f maps the element a to b and we call f a mapping
or map from A to B. We say that f maps A onto B if every element of B is in the
range; i.e., f(A) = B.

The value in the domain of a function is called an argument of f . Then, the
variable that we use to stand for the argument is called the independent variable.
The variable that stands for the value of the function f is called the dependent
variable. These are also referred to as input and output variables.

Example 1.1 The rule that assigns to each number the square of that number. Here
we can express the function as a formula, either y = x2 or f(x) = x2.

For the function f : x → y many authors consistently use the single letter f to
name the function and distinguish this from the symbol f(x) used to identify the
values of the function. But more broadly in mathematics this distinction is not made
and f(x) my stand for a function and also its values. Using the symbol f(x) to stand
for a function allows the independent variable to be explicitly identified.

There might be a “rule” to describe a function, but that might not be easily
discovered or written. In the case of a correspondence where the idea of a function
as a rule we need a better definition. This is done in the language of sets.

Definition 1.2 For any sets A and B a function f from A to B, f : A → B is a
subset f of the Cartesian product A×B such that every a ∈ A appears once and only
once as the first element of an ordered pair (a, b) ∈ f .
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1.3. PROPERTIES OF FUNCTIONS 3

This characterization of function now allows us to associate a graph with a func-
tion. Notice also that this is a very precise definition, but it is removed from the
concept of a function “doing something”. This is a more static definition and does
not give us the feeling that the function is moving or mapping. Notice, though, that
this definition is independent of any a priori knowledge of the sets A and B. This is
the most general definition of function, and so is easily generalized to other settings.

1.3 Properties of Functions

Definition 1.3 A function, f : A → B is a one-to-one function if and only if every
element b ∈ B is the image of at most one element a ∈ A. Symbolically, this can be
expressed as f is one-to-one if and only if for all x1, x2 ∈ A, f(x1) = f(x2) implies
x1 = x2.

Definition 1.4 If f = {(x, y) | y = f(x)} and f is one-to-one, then the function
{(y, x) | (x, y) ∈ f} is called the inverse of f and denoted by f−1.

Lemma 1.1 If f : A → B is a one-to-one function with range f(A), then

f−1 = {(y, x) ∈ f(A)× A | (x, y) ∈ f}

is a one-to-one function with domain f(A) and range A.

Definition 1.5 If f : A → B and g : B → C are functions, then the composite
function (g ◦ f) : A → C is the subset g ◦ f ⊂ A× C defined as follows:

g ◦ f = {(a, g(f(a))) ∈ A× C | a ∈ A}.

If f : X → Y and U ⊂ X is a subset of X, then the set

fU = {(x, y) | x ∈ U}

is a function from U to Y called the restriction of f to U . The restriction fU : U → Y
has the equation

fU(x) = f(x) for all x ∈ U.

For any set C the symbol IC denotes the identity function on C given by

IC = {(x, x) | x ∈ C}.

Lemma 1.2 Suppose f : A → B is a given function. Then there is a function g : B →
A such that

g ◦ f = IA and f ◦ g = IB

if and only if f is a one-to-one function and g = f−1.
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1.3.1 Graph of a Function

Let f : X → Y be a function. Define the graph of f to be the set

gr(f) = {(x, y) ∈ X × Y | y = f(x)} = {(x, f(x) | x ∈ X}.

We normally identify the graph of a function with its graphical representation.
One of the exercises we should always do is to study how any new idea or concept

interacts with what we already know. So, one thing that we should do is to undertake
to study how the graph of a function relates to our usual operations on real numbers.

Let’s say that you know what the graph of y = f(x) looks like in the usual xy-
plane. Then for a real number a > 0, what do the graphs of the following look
like?

1. f(x) + a f(x)− a;

2. f(x + a) f(x− a);

3. f(ax) af(x);

4. f(x/a) f(x)/a

1.4 Topology or Analysis Situ

[Topology] We like to look at properties in a particular situation and see which of
those are generalizable. Such is the case of functions from R → R. What are the
properties of the functions that we should study and try to generalize? Are there
certain properties of the reals that we should try to generalize and study? In the
latter case, we know that when we look at the plane or 3-space, one of the properties
that seems to be indispensable is the concept of a distance between to points. This
is a very important property that we will discuss shortly. At this point, however,
the author should point out that it is NOT indispensable and we topologists can do
without a distance function quite well.

Let X be a set and suppose that d is a real-valued function defined for all pairs
(x, y) of elements of X, i.e. d : X ×X → R, satisfying:

1. d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y;

2. d(x, y) = d(y, x) for all x, y ∈ X;

3. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Such a function d on X is called a metric on X, and (X, d) is called a metric space.
The reals are a metric space where d(x, y) = |x − y| and the plane with its usual
distance function is a metric space. In fact the space of all k-tuples

x = (x1, x2, . . . , xk) where xi ∈ R
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together with the metric

d(x,y) =

[
k∑

i=1

(xi − yi)
2

]1/2

is the usual k-dimensional Euclidean space and is denoted by Rk.
Using the concept of a metric, we can now generalize what it means for a sequence

to converge.

Definition 1.6 A sequence {xn} in a metric space (X, d) converges to x ∈ X if

lim
n→∞

d(xn, x) = 0.

In other words, given any ε > 0 there is an N ∈ Z+ so that d(xn, x) < ε whenever
n > N .

A sequence is a Cauchy sequence is for each ε > 0 there is an n ∈ Z+ so that
if m,n > N then d(xm, xn) < ε. The metric space is said to be complete if every
Cauchy sequence in X converges to some x ∈ X.

The Least Upper Bound Axiom guarantees that the reals with the usual metric
is complete. Later, we may show that Rn is complete for each n ∈ Z+.

Let (X, d) be a metric space, a ∈ X, and r ∈ R+. The set Br(a) = {x ∈ X |
d(a, x) < r} is called the (open) ball of radius r centered at a.

Let (X, d) be a metric space and let U ⊂ X. An element x0 ∈ U is interior to U
if for some r > 0 we have that Br(x0) ⊂ U . We write U◦ for the set of points in U
that are in the interior of U and call it the interior of U . A set A ⊂ X is open in
(X, d) if every point of A is interior to A, i.e., A = A◦.

Theorem 1.1 The following conditions are met.

1. X is open in (X, d).

2. ∅ is open in (X, d).

3. The union of any collection of open sets is open.

4. The intersection of any finite collection of open sets is open.

Note: We can state the definition of limit anew. The sequence {xn} converges to
x ∈ X if for any open set, U , containing x there is an N ∈ Z+ so that for n > N we
have xn ∈ U .

Definition 1.7 Let (X, d) be a metric space. A subset F ⊂ X is closed if its com-
plement X \ F is open in (X, d).

From the above theorem and de Morgan’s Laws we have that any intersection of
closed sets is closed and any finite union of closed sets is closed.
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Example 1.2 Let An = [ 1
n
, 1). Note that ∪∞n=2An = (0, 1) which is open, so the

infinite union of closed sets does not have to be closed.

Since the intersection of any number of closed sets is closed, for any set U ⊂ X,
we can define the closure of U , denoted U−, to be the intersection of all closed sets
containing U .1

The boundary of U , denoted ∂U , is defined to be ∂U = U− \U◦ and the points of
this set are call boundary points of U .

Theorem 1.2 Let U be a subset of a metric space (X, d).

i) The set U is closed if and only if U = U−.

ii) The set U is closed if and only if it contains the limit of every convergent
sequence of points in U .

iii) An element is in U− if and only if it is the limit of some sequence of
points in U .

iv) A point is in the boundary of U if and only if it belongs to the closure
of both U and its complement.

A set U ⊂ X is said to be dense in X if U− = X. We have seen that the rationals
are dense in the reals from last semester.

Theorem 1.3 Let {Fn} be a decreasing sequence of closed, bounded, nonempty sets
in Rn. Then F =

⋂∞
n=1 Fn is also closed, bounded and nonempty.

Proof: F is closed since it is an intersection of closed sets. It is bounded since it must
be contained in F1 which was bounded. We need to show that it is nonempty. Let
xn ∈ Fn for each n. Since this sequence is bounded, it has a convergent subsequence by
the Bolzano-Weierstrauss Theorem. Call this subsequence {xnm} and let it converge
to x0 ∈ Rn. We need to show that x0 ∈ F . If m ≥ k, then nm ≥ k so xnm ∈ Fnm ⊂ Fk.
Thus, the subsequence {xnm}∞m=k consists of points in Fk and converges to x0. By
Part 2 of the above theorem, this puts x0 ∈ Fk for each k and hence it is in F .

Example 1.3 [Cantor Set] Let I = [0, 1] = T0. Define T1 to be T0 \ (1/3, 2/3). We
can see that T1 = [0, 1/3] ∪ [2/3, 1]. Now, take the middle third away from each of
these pieces, i.e.,

T2 = T1 \ (1/9, 2/9) ∪ (7/9, 8/9) = [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1]

To get T3 we will remove the middle third of each of these four intervals. Continue
in this process and take T∞ =

⋂∞
n=0 Tn. The set T = T∞ is called the Cantor set or

Cantor’s Dust.
1The interior of U can be defined to be the union of all open sets contained in U .
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It looks like we shouldn’t be left with much. We first removed an interval of length
1/3 and then two intervals of length 1/9 and then four intervals of length 1/27, and
so on. Thus, we removed a set that has total length

1

3
+

2

9
+

4

27
+

8

81
+ · · · =

∞∑
n=0

2n

3n+1
=

1

3

∞∑
n=0

(
2

3

)n

=
1

3

(
1

1− 2/3

)
= 1.

Thus, what is left must have length 0.
A closer look at generating this set shows that there must be something left, since

removing the “middle third” of each interval involved removing only open intervals
that do not include their endpoints. So removing the line segment (1/3, 2/3) from the
original interval [0, 1] leaves behind the points 1/3 and 2/3. Our subsequent steps do
not remove these, or any other endpoints. So the Cantor set is not empty.

It can be shown that the points remaining in the Cantor set are exactly those that
can be represented as

∞∑

k=0

ak

3k

where ak = 0 or 2. It can then be shown that the Cantor set is uncountable.
The Cantor set is the prototype of a fractal. It is self-similar, because it is equal

to two copies of itself, if each copy is shrunk by a factor of 3 and translated. Its
Hausdorff dimension is equal to ln(2)/ ln(3).

Since the Cantor set is the complement of a union of open sets, it itself is a closed
subset of the reals. The interior of T is the empty set so T = ∂T . Every point in the
Cantor set is a limit point, but none is an interior point. A closed set in which every
point is an limit point is also called a perfect set in topology, while a closed subset of
the interval with no interior points is nowhere dense in the interval.

Definition 1.8 Let (X, d) be a metric space. A family U of open sets is called an
open cover for X if each point of X belongs to at least one set in U , i.e.,

X =
⋃

U

U.

A subcover of U is any subfamily of U that also covers X. A cover or subcover is
finite if it contains only finitely many sets.

A set K is compact if every open cover of K has a finite subcover.

While this is a very general definition, in Rn we have the following result.

Theorem 1.4 (Heine-Borel) A subset K of Rn is compact if and only if it is closed
and bounded.

Other results about compact sets in Rn follow without proof.
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Theorem 1.5 i) Let U be a subset of Rn. U is compact if and only if
every sequence in U has a subsequence that converges to a point in U .

ii) If U is a closed subset of a compact set V , then U is also compact.

iii) The finite union of compact sets is compact.

iv) If U is nonempty and compact in Rn, then lub U and glb U belong to
U .

1.5 Continuity

For functions f : R→ R we finally were able to show that starting from a “sequence”
definition of continuity —
f is continuous at a ∈ R if for every sequence {xn} that converges to a, the sequence
{f(xn)} converges to f(a) —
we eventually got to the usual definition of continuity.

Definition 1.9 Let f : R → R be defined at a ∈ R. We say that f is continuous
at a if given any ε > 0 there exists a δ > 0 so that whenever |x − a| < δ then
|f(x)− f(a)| < ε.

We carried this further to get a stronger condition that is satisfied by most of
the functions that we will want to study, that of uniform continuity. A function
f : R→ R is uniformly continuous on the set A ⊂ R if for any ε > 0 there is a δ > 0
so that if x, y ∈ A and |x− y| < δ then |f(x)− f(y)| < ε.

In these definitions, we see that one of the important components is the distance
function. Thus, we should be able to easily generalize these concepts to metric spaces.

Let (X, dx) and (Y, dy) be metric spaces and let f : X → Y . We say that f is
continuous at a ∈ X if for each ε > 0 there is a δ > 0 so that if dx(x, a) < δ then
dy(f(x), f(a)) < ε. The function is uniformly continuous on a subset U ⊂ X if if for
any ε > 0 there is a δ > 0 so that if x, y ∈ U and dx(x, y) < δ then dy(f(x), f(y)) < ε.

One particulary useful application of this consists of functions with domain R
having values in R2 or R3, or generally Rn. For ease let’s just consider the case
of R2. Then we have X = R, dx(x, y) = |x − y|, Y = R2 and dy((x), (y)) =√

(x1 − y1)2 + (y1 − y2)2. The images of these functions are usually called curves or
paths. We want to distinguish the function from its image, though. Let γ : R → Rn

be continuous. We will call γ a path; its image γ(R) in Rn will be called a curve.
As an example consider the function γ1(t) = (cos t, sin t). This function maps R

onto the circle of radius 1 centered at the origin. Note that γ2(t) = (− cos t,− sin t)
has the same image yet γ1(t) 6= γ2(t) for all real numbers. The first function starts
at (1, 0) and wraps the real line around the circle in a “counterclockwise” direction
while γ2 starts at (−1, 0) and wraps around the circle in a “clockwise” direction.
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Theorem 1.6 If f1, f2, . . . , fn are continuous, real-valued functions on R, then

γ(t) = (f1(t), f2(t), . . . , fn(t))

defines a path in Rn.

The following result really pushes the concept of continuity in its strongest direc-
tion, removing it from any reliance on a distance function.

Theorem 1.7 Let (X, dx) and (Y, dy) be metric spaces and let f : X → Y . The
function f is continuous on X if and only if f−1(U) is an open subset of X for every
open set U in Y .

Recall that f−1(U) = {x ∈ X | f(x) ∈ U}.

Proof: Suppose f is continuous on X. Let U ⊂ Y be open and let x0 ∈ f−1(U).
We need to show that x0 is in the interior of U .

Now, since f(x0) ∈ U and U is open, we know that for some ε > 0 we have that
Bε(x0) ⊂ U . Since f is continuous at x0, there exists a δ > 0 so that if dx(x, x0) < δ
then dy(f(x), f(x0)) < ε. Thus, f(x) ∈ U and hence x ∈ f−1(U). Thus, Bδ(x0) =
{x ∈ X | dx(x0, x) < δ} ⊂ f−1(U). Thus, x0 is in the interior of f−1(U).

Now suppose that f−1(U) is an open set in X for every open set U ⊂ Y . Let
x0 ∈ X and let ε > 0. Then U = Bε(f(x0)) is open in Y , so f−1(U) is open in X.
Therefore, since x0 ∈ f−1(U) there is some δ >) so that Bδ(x0) ⊂ f−1(U), from which
it follows that if dx(x, x0) < δ then dy(f(x), f(x0)) < ε. Thus, f is continuous at x0.

The following are offered without proof (at the present).

Theorem 1.8 Let (X, dx) and (Y, dy) be metric spaces and let f : X → Y be contin-
uous. Let K be a compact subset of X. Then

i) f(K) is a compact subset of Y , and

ii) f is uniformly continuous on K.

Corollary 1.1 Let f be a continuous, real-valued function on a metric space (X, d).
If K is a compact subset of X, then

i) f is bounded on K,

ii) f assumes its maximum and its minimum on K.

We will find most of this more useful when we begin the study of multivariable
calculus.
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1.5.1 Connectedness

Let U be a subset of a metric space (X, d). The set C is disconnected if there are
disjoint open subsets U1 and U2 in X so that C ⊂ U1∪U2, C∩U1 6= ∅, and C∩U2 6= ∅.
A set is connected if it is not disconnected.

In the reals the intervals are connected sets and any set that is not an interval is
disconnected.

Theorem 1.9 Let (X, dx) and (Y, dy) be metric spaces and let f : X → Y be contin-
uous. If E is a connected set of X, then f(E) is a connected subset of Y .

Proof: Assume that f(E) is not connected in Y . Then there exist disjoint, nonempty,
open sets U1 and U2 in Y such that f(E) ⊂ U1 ∪ U2.

Let Vi = f−1(Ui) for i = 1, 2. Then V1 and V2 are disjoint, nonempty, open sets
in X with E ⊂ V1 ∪ V2, and E ∩ V1 6= ∅, and E ∩ V2 6= ∅. This contradicts the fact
that E is connected.

Corollary 1.2 Let f be a continuous, real-valued function on a metric space (X, d).
If E is a connected subset of X, then f(E) is an interval in R. In particular, f has
the intermediate value property.

Note then that curves in Rn are connected.

Definition 1.10 A subset E of a metric space (X, d) is path connected if for each
pair of point x, y ∈ E, there is a continuous function γ : [a, b] → E such that γ(a) = x
and γ(b) = y. We call γ a path.

Theorem 1.10 If E in (X, d) is path-connected, then E is connected.
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