
Chapter 13

Sequences and Series of Functions

These notes are based on the notes A Teacher’s Guide to Calculus by Dr. Louis
Talman.

The treatment of power series that we find in most of today’s elementary calculus
texts overemphasizes the notion of pointwise convergence (see Definition 13.4) at
the expense of the much more important notion of uniform convergence on compact
sub-intervals (see Definitions 13.5 and 13.6).

On the other hand, the uses we encounter for power series all depend in fundamen-
tal ways on the facts that we get the right things when we differentiate or integrate
them term-by-term (see Theorem 13.16). That these calculations work depends upon
the fact that a power series always converges uniformly on the compact sub-intervals
of the interior of its interval of convergence (see Theorem 13.11, Theorem 13.12, Def-
inition 13.7, and Theorem 13.13). The presentation here will downplay the role of
pointwise convergence in sequences and series and will discuss uniform convergence
on compact sub-intervals.

13.1 Some Technical Preliminaries

We need to recall the definitions of the limit superior, and the limit inferior of an
arbitrary sequence

Definition 13.1 Let {ak}, k = 0, . . . ,∞ be a sequence of real numbers. If for every
positive number M there is a positive integer n such that M < an, we put the limit
superior of the sequence {ak}, written lim sup ak, equal to ∞. If there is a positive
number M such that ak < M for all non-negative integers k, we define

lim sup ak = lim
n→∞

lub{ak | n ≤ k}. (13.1)

We define the limit inferior of the sequence {ak}, written lim inf ak, by

lim inf ak = − lim sup(−ak). (13.2)
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158 CHAPTER 13. SEQUENCES AND SERIES OF FUNCTIONS

Theorem 13.1 If {ak}, k = 0, . . . ,∞ is any sequence of real numbers, then lim sup ak

exists (but may be ±∞).

Proof: It is clear that the limit superior of {ak} exists if the sequence is not bounded
above, so assume that there is an upper bound M for the sequence.

Note that each of the sets {ak | n ≤ k} that appears in 13.1 is bounded above (by
M), so that all of the least upper bounds in 13.1 exist. For each nonnegative integer
n, let us put `n = lub{ak | n ≤ k}. Note also that, for every non-negative integer n,

`n ≥ `n+1. (13.3)

If the sequence {`n} has a lower bound, then it has a greatest lower bound L, and
the intervals [L, `n] form a nested family whose intersection contains only L itself.
It follows that L must therefore be limn→∞ `n = lim ak. If, on the other hand,
the sequence {`n} has no lower bound, then by 13.3 we must have lim sup ak =
limn→∞ `n = −∞. Thus, the limit superior of any sequence whatsoever existsprovided
that we admit ±∞ as a possibility

Corollary 13.1 If {ak} is any sequence of real numbers, then lim inf ak exists (but
may be ±∞).

We will need some elementary properties of the limit superior.

Theorem 13.2 (Properties of Limit Superior) ) Let {ak} and {bk} be bounded
sequences of real numbers.

i) The real number L = lim sup ak if and only if for every ε > 0, both

1. ak > L + ε for at most finitely many integers k, and

2. ak > L− ε for infinitely many integers k.

ii) If lim sup ak = L > 0 and {bk} is a sequence of positive numbers for
which limk→∞ bk = M > 0, then lim sup(akbk) = LM .

iii) If limk→∞ ak exists, then lim sup ak = limk→∞ ak.

iv)
lim sup(ak + bk) ≤ lim sup ak + lim sup bk. (13.4)

Proof: Let C be a number, let ε > 0 and assume that there are infinitely many
integers k for which ak > C + ε, then lub{ak | k > n} > C + ε for every positive
integer n, therefore C < C + ε ≤ L. On the other hand, if C is a number for which
there is an ε > 0 for which there are only finitely many integers k such that C−ε < ak,
then we can find an integer N so that ak < C − ε for all k ≥ N . But then C − ε
is an upper bound for each of the sets {ak | k > n} for which n > N . It follows
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13.1. SOME TECHNICAL PRELIMINARIES 159

that lub{ak | k > n} ≤ C − ε for all n ≥ N . This means that L ≤ C − ε < C.
Consequently, neither (a) nor (b) can fail for L.

If, now, C is a number which has the property that for every ε > 0 there are at
most finitely many integers k for which C + ε < ak, then for each ε > 0, lub{ak |
k > n} is less than or equal to C + ε when n is sufficiently large. Consequently,
limn→∞ lub{ak | k > n} ≤ C + ε. Because this is so for every positive ε, this means
that L ≤ C. If C also has the property that for every positive ε there are infinitely
many non-negative integers k for which C − ε < ak, then for each ε > 0 and each
n, C − ε < lub{ak | k > n}. From this it follows that C − ε ≤ L for every ε > 0,
and thus that C ≤ L. Thus, if C has both of properties (a) and (b), it follows that
L = C. This establishes part 1 of the Lemma.

Now let {ak} and {bk} be as in part 2. Suppose that ε > 0 is given. Take

η =

√(
L + M

2

)2

+ ε− L + M

2
, (13.5)

and note that η > 0. We can now apply the definition of limit to the sequence {bk}
and part 1 of this theorem to the sequence {ak} to choose an N so large that both

bk < M + η (13.6)

and

(13.7)

ak < L + η (13.8)

whenever k > N . But then for such k we have

akbk < (L + η)(M + η) = LM + (L + M)η + η2. (13.9)

We note now that

(L + M)η + η2 = (L + M)

√(
L + M

2

)2

+ ε− (L + M)2

2

2 +




√(
L + M

2

)2

+ ε− L + M

2




2

(13.10)

= (L + M)

√(
L + M

2

)2

+ ε− 2

(
L + M

2

)2

+

(
L + M

2

)2

+ ε (13.11)

− (L + M)

√(
L + M

2

)2

+ ε +

(
L + M

2

)2

= ε, (13.12)
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160 CHAPTER 13. SEQUENCES AND SERIES OF FUNCTIONS

and thus that
akbk < LM + ε (13.13)

for all k > N . It follows that there are at most finitely many integers k for which
akbk ≥ LM + ε.

On the other hand, we may suppose that

ε < min{L, M}, (13.14)

and put

θ =
L + M

2
−

√(
L + M

2

)2

− ε. (13.15)

Then θ > 0 and we can find a positive integer N such that 0 < M − θ < bk for all
k > N . Moreover, by part 1 of this theorem, there are infinitely many non-negative
integers k, and therefore infinitely many integers k > N , for which 0 < L− θ < bk. A
calculation similar to that above shows that (L− θ)(M − θ) = LM − ε, and it follows
that there are infinitely many nonnegative integers k such that LM − ε < akbk. We
may now conclude that lim sup akbk = LM , and we have established 2.

If limk→∞ ak = L, then for any ε > 0 we can choose a non-negative integer N such
that |ak −L| < ε for all k ≥ N . Equivalently, −ε < ak −L < ε, or L− ε < ak < L + ε
when k ≥ N . But then L + ε < ak for at most those finitely many k < N and
L− ε < ak for the infinitely many k > N . This proves 3.

For each positive integer n, let An = lub{ak | k ≥ n}; Bn = lub{bk | k ≥ n}.
Then, given n, for every k ≥ n we must have ak + bk ≤ An + Bn. Consequently,

lub{ak + bk | k ≤ n} ≤ An + Bn (13.16)

for every n. The latter tends to lim sup ak + lim sup bk as n goes to infinity. This
establishes 4.

The reader should note that the inequality 13.4 cannot be improved to equality.
This can be easily seen to be the case using the example ak = (−1)k and bk = (−1)k+1.

When the limit superior is infinite, statements analogous to those of Theorem 13.2
are true. It is left to the reader to formulate and prove them.

Theorem 13.3 (Properties of Limit Inferior) Let {ak} and {bk} be bounded se-
quences of real numbers.

i) The real number C = lim inf ak if and only if for every ε > 0, both

1. ak < C − ε for at most finitely many integers k, and

2. ak < C + ε for infinitely many integers k.

ii) If lim inf ak = C > 0 and {bk} is a sequence of positive numbers for
which lim infk→∞ bk = D > 0, then lim inf(akbk) = CD.
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13.1. SOME TECHNICAL PRELIMINARIES 161

iii) If limk→∞ak exists, then lim inf ak = limk→∞ ak.

iv)
lim inf(ak + bk) ≥ lim inf ak + lim inf bk. (13.17)

For the sake of consistence and completeness, we will record some definitions here.
They will not play a central role in what is to follow, but we will need to know some
things about them.

Definition 13.2 Let {ak} = 0 be a sequence of real numbers, and consider the aux-
iliary sequence of partial sums

sn =
n∑

k=0

ak (13.18)

If limn→∞ sn exists and equals a number L, we will say that the series
∞∑

k=0

ak converges

to L. Otherwise we will say that the series diverges. If the series
∞∑

k=0

|ak| converges,

we will say that the series
∞∑

k=0

ak converges absolutely. A series which converges, but

does not converge absolutely, is said to converge conditionally.

The alternating harmonic series
∞∑

k=0

(−1)k

k
is a standard example, appearing in almost

all elementary calculus texts, showing that it is possible for a series to converge
conditionally. However, a series that converges absolutely must converge.

Theorem 13.4 If the series
∞∑

k=0

|ak| converges, then so does the series
∞∑

k=0

ak.

Proof: For each non-negative integer n, let sn =
∞∑

k=0

ak and Sn =
∞∑

k=0

|ak|. For each

n we have
0 ≤ an + |an| ≤ 2|an|, (13.19)

so, by the Comparison Test,
∞∑

k=0

(ak + |ak|) is a convergent series. But

∞∑

k=0

(ak + |ak|) = sn + Sn, and (13.20)

∞∑

k=0

|ak| = Sn, (13.21)
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162 CHAPTER 13. SEQUENCES AND SERIES OF FUNCTIONS

so that limn→∞(sn + Sn) and limn→∞ Sn both exist. Consequently,

∞∑
n=0

ak = lim
n→∞

sn (13.22)

= lim
n→∞

(sn + Sn − Sn) (13.23)

= lim
n→∞

(sn + Sn)− lim
n→∞

Sn (13.24)

exists and the series
∞∑

k=0

ak converges.

13.2 What Geometric Series Can Tell Us

The well-known geometric series
∞∑

k=0

xk = 1 + x + x2 + . . . is archetypal for the be-

havior of power series, so we begin with a treatment of that series. You need to
note an important notational convention — we will interpret x0 to mean 1 even when

x = 0. This standard misuse of notation allows us to write, e.g.,
∞∑

k=0

xk instead of the

clumsier 1 +
∞∑

k=1

xk. The convention is widely observed in discussion of power series,

but rarely is it noted explicitly.

Definition 13.3 For each non-negative integer n we let gn be the polynomial function

gn(x) = 1 + x + x2 + · · · + xn =
n∑

k=0

xk. We understand the geometric series,
∞∑

k=0

xk

to mean lim
n→∞

gn(x) for those values of x for which the limit exists.

Theorem 13.5 (Convergence of the Geometric Series) When |x| < 1, we have

∞∑

k=0

xk =
1

1− x
. (13.25)

If |x| ≥ 1, the geometric series has no meaning.

Proof: For each n ∈ N and all x ∈ R, we have

(1− x)gn(x) = (1− x)(1 + x + · · ·+ xn) (13.26)

= 1− xn+1. (13.27)
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13.2. WHAT GEOMETRIC SERIES CAN TELL US 163

Thus, when x 6= 1, we have

gn(x) =
1− xn+1

1− x
. (13.28)

If |x| < 1, then limn→∞ xn+1 = 0, from which we now see that limn→∞ gn(x) =
1

1− x
for such x. If |x| > 1, then limn→∞ xn+1 does not exist, and we can attach no meaning
to limn→∞ gn(x) for such values of x. Now gn(−1) = 0 for n odd, but gn(−1) = 1 for
n even. Consequently, limn→∞ gn(−1) does not exist. Finally, gn(1) = n + 1, and so
limn→∞ gn(1) does not exist.

If this were all there was about geometric series, if would be unremarkable. How-

ever, the polynomials gn(x) converge to
1

1− x
in a more interesting way than we have

shown. This is one of the ways in which the geometric series is archetypal.

Theorem 13.6 (Convergence of the Geometric Series) Let a ∈ (0, 1) be arbi-
trary, and let ε > 0 be given. There exists N ∈ N such that whenever n > N we
have ∣∣∣∣gn(x)− 1

1− x

∣∣∣∣ < ε (13.29)

for all x ∈ [−a, a].

Proof: Let a ∈ (0, 1) and ε > 0 be given. We know that limn→∞ an+1 = 0, so we
can choose N ∈ N so large that an+1 < (1 − a)ε whenever n ≥ N . If −a ≤ x ≤ a,
we know that |1− x| = 1− x ≥ 1− a and that |x|n+1 ≤ an+1. Thus, we have, for all
n ≥ N , and for all x ∈ [−a, a],

∣∣∣∣gn(x)− 1

1− x

∣∣∣∣ =

∣∣∣∣
1− xn+1

1− x
− 1

1− x

∣∣∣∣ (13.30)

=
|x|n+1

|1− x| (13.31)

≤ an+1

1− a
< ε. (13.32)

which is what we needed to prove.

Note that it is possible, with a calculator, to actually compute appropriate values
of N for specific numerical values of a and ε. For example, let us find N so that

n > N implies that

∣∣∣∣gn(x)− 1

1− x

∣∣∣∣ <
1

100
for all x ∈ [− 99

100
, 99

100

]
. Because x ≤ 99

100
,

it follows that 1−x ≥ 1
100

. Thus, regardless of n and x ∈ [− 99
100

, 99
100

]
, we always have

|x|n+1

|1− x| ≤
(

99

100

)n+1

· 100. (13.33)
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164 CHAPTER 13. SEQUENCES AND SERIES OF FUNCTIONS

We can force the left-hand side of this inequality to be less than 1
100

by requiring that

(
99

100

)n+1

· 100 <
1

100
, (13.34)

or, equivalently, by requiring that

(n + 1)(log 99− log 100) < − log 10000. (13.35)

Taking into account the fact that log 99 − log 100 < 0, we find that we must make
sure that

n >
log 100 + log 99

log 100− log 99
≈ 915.4. (13.36)

Thus, we should take N = 915 (or larger). Doing calculations like this one can be
useful first steps for students to take on the long path to understanding what the fuss
is all about.

The importance of Theorem 13.6 is that the polynomials gn(x) can be made to

approximate the limit function
1

1− x
uniformly well over arbitrary closed subinter-

vals of the interval where they converge to that function. This kind of convergence
has much to do with our reasons for studying power series in the first place.

Example 13.1 [Non-preservation of Integrals] For each n ∈ N, let fn(x) be defined
on [0, 1] by

fn(x) =





n2x, if 0 ≤ x ≤ 1
n

2n− n2x, if 1
n

< x ≤ 2
n

0, otherwise.

(13.37)

The graph of fn consists of the union of (a) the line segment connecting the point

(0, 0) to the point

(
1

n
, n

)
, (b) the line segment connecting the point

(
1

n
, n

)
to the

point

(
2

n
, 0

)
, and (c) the line segment connecting the point

(
2

n
, 0

)
to the point

(1, 0).
Thus, each fn is continuous on [0, 1] and for each n ∈ N the integral of fn over

[0, 1] is the area of the isosceles triangle whose base is the interval

(
0,

2

n

)
and whose

vertex lies at

(
1

n
, n

)
. This area is 1 in every case, and so

∫ 1

0

fn(t) dt = 1 for all n.

Consequently,

lim
n→∞

∫ 1

0

fn(t) dt = 1.

But now observe that limn→∞ fn(0) = 0 because fn(0) = 0 for every n ∈ N. On the
other hand, if 0 < a ≤ 1, we can choose N ∈ N so large that whenever n > N we must
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13.2. WHAT GEOMETRIC SERIES CAN TELL US 165

have a >
2

n
. This means that fn(a) = 0 for all sufficiently large n, and we conclude

that limn→∞ fn(a) = 0. Thus, for each x ∈ [0, 1] the sequence {fn(x)} converges to

zero. But then

∫ 1

0

(
lim

n→∞
fn(t)

)
dt =

∫ 1

0

0 dt = 0.

This example thus shows that, in general, we may not interchange computation of
definite integrals with passage to a limit.

That is, we must ordinarily expect that

lim
n→∞

∫ b

a

fn(t) dt 6=
∫ b

a

(
lim

n→∞
fn(t)

)
dt.

Here is a first, and extremely important, consequence of Theorem 13.6: The way

in which the functions gn converge to the function x 7→ 1

1− x
in the interval (−1, 1)

allows the interchange of limit on the one hand with integration on the other hand
for this particular sequence of polynomial functions.

Theorem 13.7 (Integration of the Geometric Series) Let x ∈ (−1, 1). Then

lim
n→∞

∫ x

0

gn(t) dt =

∫ x

0

dt

1− t
. (13.38)

Proof: Let ε > 0 be given. Assume that x > 0. The proof is similar for x < 0.
Because 0 < x < 1, we can find a > 0 so that x < a < 1. By Theorem 13.6, there is
a positive integer N such that

∣∣∣∣gn(t)− 1

1− t

∣∣∣∣ <
ε

a
(13.39)

whenever n > N and −a < t < a. For such n, we then have

∣∣∣∣
∫ x

0

gn(t) dt−
∫ x

0

dt

1− t

∣∣∣∣ =

∣∣∣∣
∫ x

0

(
gn(t)− 1

1− t

)
dt

∣∣∣∣ (13.40)

≤
∫ x

0

∣∣∣∣gn(t)− 1

1− t

∣∣∣∣ dt (13.41)

≤ ε

a

∫ x

0

dt =
ε

a
x < ε, (13.42)

and the conclusion of the theorem follows.
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166 CHAPTER 13. SEQUENCES AND SERIES OF FUNCTIONS

13.3 Convergence of Sequences of Functions

Definition 13.4 Let I be an interval in R, and for each n ∈ N, suppose that we are
given a function fn defined on I. If f is a function defined on I and if for each x ∈ I
it is the case that

lim
n→∞

fn(x) = f(x),

we will say that the sequence {fn}∞n=0 converges to the function f on I in the point-
wise sense, or, more simply, that fn converges pointwise to f on I.

Pointwise convergence is the most natural way to define convergence of a sequence of
functions to another function. There is a price to pay, however. There are unpleasant
deficiencies in this näıve approach to convergence. We saw in the example in the
previous section that pointwise convergence does not preserve integrals.

The following example displays another problem with pointwise convergence.

Example 13.2 Let I be the closed unit interval I = [0, 1], and for each n ∈ N, define
a function fn on I by

fn(x) =





0, if 0 ≤ x ≤ 1
2

(n + 1)
(
x− 1

2

)
, if 1

2
< x < 1

2
+ 1

n+1

1, if 1
2

+ 1
n+1

≤ x ≤ 1

(13.43)

For each n, the function fn has the constant value 0 on the interval [0, 1
2
] and the

constant value 1 on the interval [1
2

+ 1
n+1

, 1]. The graph of the function fn on the

interval [1
2
, 1

2
+ 1

n+1
] is the line segment from the point (1

2
, 0) and (1

2
+ 1

n+1
, 1). Thus,

each of the functions fn is continuous on the interval [0, 1].
Now if 0 ≤ x ≤ 1

2
, then

lim
n→∞

fn(x) = 0.

If x > 1
2
, then because

lim
n→∞

(
1

2
+

1

n + 1

)
=

1

2

we can always choose N ∈ N large enough that 1
2

+ 1
N+1

< x, and if n ≥ N we must
then have fn(x) = 1. Hence

lim
[

n →∞fn(x) = 1

for every x ∈ (
1
2
, 1

]
. The sequence {fn} therefore converges pointwise on I to the

function f whose values are given by

f(x) =

{
0, if 0 ≤ x ≤ 1

2

1, if 1
2

< x ≤ 1.
(13.44)

We thus have a sequence of continuous functions on I which converges pointwise on
I to a discontinuous function.
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Definition 13.5 Let I be an interval in R, and for each n ∈ N, suppose that we are
given a function fn defined on I. If f is a function defined on I and if for every ε > 0
it is possible to find N ∈ N with the property that whenever x ∈ I and n > N we
have |fn(x) − f(x)| < ε, we will say that the sequence {fn} converges uniformly to
the function f on I.

The difference between pointwise convergence and uniform convergence lies in the
order in which certain quantifiers come in the formal expressions of the definitions.
Pointwise convergence of {fn} on an interval I to a function f is expressed by the
condition

(∀x ∈ I)(∀ε > 0)(∃N ∈ N)((n > N) ⇒ (|fn(x)− f(x)| < ε)),

while uniform convergence is expressed by

(∀ε > 0)(∃N ∈ N)(∀x ∈ I)((n > N) ⇒ (|fn(x)− f(x)| < ε)).

Uniform convergence is not a usual topic in elementary calculus. We want to study
it here because it is the key idea that allows us to do calculus with functions that we
represent by power series. We see first that uniform convergence implies pointwise
convergence. We will then show that neither of the pathologies of the previous two
examples can arise when convergence is uniform.

Theorem 13.8 Suppose that the sequence {fn} converges uniformly to a function f
on an interval I. Then {fn} converges pointwise to f on I.

Proof: Fix an arbitrary point x0 ∈ I. We will show that limn→∞ fn(x0) = f(x0).
Let ε > 0 be given. The sequence {fn} converges uniformly to f on I, so there is

an N ∈ N such that for every x ∈ I we have |fn(x) − f(x)| < ε provided only that
n > N . But if the inequality |fn(x)− f(x)| < ε is true for every x ∈ I, then it is true
for x∈I, and we are done.

Theorem 13.9 Let the functions fn be continuous on an interval I, and suppose that
the sequence {fn} converges uniformly to a function f on I. Then f is continuous
on I.

Proof: Let x0 ∈ I be an arbitrary point and let ε > 0 be given. By uniform
convergence, we can find N ∈ N such that |fn(x)− f(x)| < ε/3 whenever n > N and
x ∈ I. Thus |fN+1(x)− f(x)| < ε/3 for all x ∈ I.

By the continuity of fN+1 at x0, we can find δ > 0 so that |fN+1(x)− fN+1(x0)| <
ε/3 provided only that x ∈ I and |x − x0| < δ. Thus, if x ∈ I and |x − x0| < δ, we
have

|f(x)− f(x0)| = |f(x)− fN+1(x) + fN+1(x)− fN+1(x0) + fN+1(x0)− f(x0)|
≤ |f(x)− fN+1(x)|+ |fN+1(x)− fN+1(x0)|+ |fN+1(x0)− f(x0)|
<

ε

3
+

ε

3
+

ε

3
= ε.
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This shows that f is continuous at x0. Because we chose x0 to be an arbitrary point
in I, we have shown that f is continuous on I.

On the basis of Theorem 13.9, we find that the sequence of functions of our last ex-
ample cannot be uniformly convergent. Thus, by Theorem 13.8, uniform convergence
is stronger than and strictly different from pointwise convergence.

We introduce a third notion of convergence for sequences of functions because
it will be convenient in dealing with power series. It lies between the two notions
given above: It is stronger than pointwise convergence but weaker than uniform
convergence.

Definition 13.6 Let I be an interval in R, and for each n ∈ N, suppose that we are
given a function fn defined on I. If f is a function defined on I and if the sequence
{fn} converges uniformly to f on every closed subinterval of I having finite length, we
will say that the sequence {fn} converges uniformly to f on the compact subintervals
of I.

If the interval I is itself closed and bounded, then uniform convergence on the
compact subintervals of I is clearly the same as uniform convergence on I itself.
However, if I is open at either end (or at both) or if I does not have finite length, the
two kinds of convergence are not the same. In order to see that this is so, consider

the sequence of functions defined in Example 13.2, but on the interval J =

(
1

2
, 1

)
. If

[a, b] is a closed subinterval of J , then 1
2

< a, and we have seen that if n is sufficiently
large then the function fn takes on only the value 1 throughout [a, b]. Consequently,
convergence is uniform on [a, b] (because |fn(x) − 1| = 0 < ε for any positive ε
whatsoever and any x ∈ [a, b] when n is large). But convergence is not uniform
on J itself because whenever 0 < ε < 1 no matter what N ∈ N we choose, every
function fn takes on values close to zero for certain values of x near 1

2
. To see this, let

ε ∈ (0, 1) and put xn =
2 + n− ε

2 + 2n
, n ∈ N. It is easily checked that, for each n ∈ N,

fn(xn) = (1− ε)/2. Consequently,

|fn(xn)− 1| =
∣∣∣∣
1− ε

2
− 1

∣∣∣∣ (13.45)

=
1 + ε

2
>

ε + ε

2
= ε. (13.46)

Theorem 13.10 Let the functions fn be continuous on an interval (a, b), and suppose
that the sequence {fn} converges uniformly on compact subintervals of (a, b) to a
function f on (a, b). (We specifically admit either or both of the possibilities a = −∞
and b = ∞ here.) Then f is continuous on (a, b).
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Proof: Let x0 ∈ (a, b) be arbitrary. Choose δ > 0 so small that a < x0 − δ and
x0 + δ < b. Then [x0− δ, x0 + δ] is a closed interval of finite length, contained entirely
in (a, b). By hypothesis, the sequence {fn} converges uniformly to f on [x0−δ, x0+δ].
By Theorem 13.9, f is continuous on [x0− δ, x0 + δ] and therefore continuous at x0.

We turn now to the relation between integrals and convergent sequences. As with
continuity, we have seen that pointwise convergence is not enough. Our next goal is
to show that uniform convergence is enough to rectify this situation.

Theorem 13.11 Let {fn} be a sequence of functions, each continuous on the interval
[a, b], and converging uniformly on [a, b] to a function f . Then

lim
n→∞

∫ b

a

fn(x) dx =

∫ b

a

f(x) dx. (13.47)

Proof: Note first that Theorem 13.9 and one of our previous theorems on integrals
insure the existence of the integral on the right side.

Let ε > 0 be given. All that we need to show is how to find N ∈ N so that∫ b

a

fn(x)dx is within ε of
∫ b

a
f(x)dx whenever n > N . The sequence {fn} converges

uniformly to f on [a, b], so we can find N ∈ N so that n > N implies that

fn(x)− f(x)| < ε

b− a

for every x ∈ [a, b]. Now when n > N we have

∣∣∣∣
∫ b

a

fn(x) dx−
∫ b

a

f(x) dx

∣∣∣∣ =

∣∣∣∣
∫ b

a

(fn(x)− f(x)) dx

∣∣∣∣ (13.48)

≤
∫ b

a

|fn(x)− f(x)| dx (13.49)

<

∫ b

a

(
ε

b− a

)
dt = ε, (13.50)

and the proof is complete.

Example 13.3 For each n ∈ N, define fn on [0, 1] by fn(x) =
sin(2πnx)

n
.

For each n ∈ N and each x ∈ [0, 1], we have

|fn(x)| =
∣∣∣∣
sin(2πnx)

n

∣∣∣∣

≤ 1

n
,
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so the sequence {fn} converges uniformly on [0, 1] to the constant function zero —
whose derivative is the function that is constantly zero. Each of the functions fn is
differentiable on [0, 1], with

f ′n(x) = 2π cos(2πnx).

Thus f ′n(1/2) is sometimes 2π and sometimes −2π, so that the sequence {f ′n} cannot
converge to the zero function in any of the senses we have discussed.

This example shows that, in general, we may not interchange computation of
derivatives with passage to a limit:

lim
n→∞

(
d

dx
fn(x)

)
6= d

dx

(
lim

n→∞
fn(x)

)
,

even when the sequence {fn} converges uniformly. However, uniform convergence is
still the key, as we see in the following theorem.

Theorem 13.12 Let {fn} be a sequence of functions defined and continuously dif-
ferentiable on an interval (a, b). Suppose that the sequence {f ′n} converges, uniformly
on the compact subintervals of (a, b), to a function g. If there is a number x0 ∈ (a, b)
such that limn→∞ fn(x0) exists, then the sequence {fn} converges, uniformly on the
compact subintervals of (a, b), to a function f such that f ′ = g.

Proof: By the Fundamental Theorem of Calculus we may write, for each n ∈ N and
any x ∈ (a, b),

fn(x) = fn(x0) +

∫ x

x0

f ′n(t) dt. (13.51)

The interval whose endpoints are x0 and x is a compact subinterval of (a, b), so, by
hypothesis, the sequence {f ′n} converges uniformly to g on that interval. Applying
Theorem 13.11, we conclude that

lim
n→∞

∫ x

x0

f ′n(t) dt =

∫ x

x0

g(t) dt.

Also by hypothesis, limn→∞ fn(x0) exists. This defines a number f(x0). Applying
13.51, we find that limn→∞ fn(x) always exists. Thus, we define

f(x) = lim
n→∞

fn(x) (13.52)

= lim
n→∞

(
fn(x0) +

∫ x

x0

f ′n(t) dt

)
(13.53)

= f(x0) +

∫ x

x0

g(t) dt. (13.54)
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It follows from the Fundamental Theorem of Calculus that f ′(t) = g(t) for all x in
the open interval determined by x0 and x. Because every point of (a, b) lies in such
a compact subinterval, it follows that f ′ = g throughout (a, b).

We have shown that {fn} converges pointwise on (a, b) to f . It remains to show
that the sequence converges uniformly to f on the compact subintervals of (a, b). Let
a < α < β < b, and consider |fn(x)−f(x)| when α ≤ x ≤ β. Let ε > 0. The sequence
{f ′n} converges uniformly to f ′ on [α, β], so we can find N ∈ N such that

|f ′n(x)− f ′(x)| ≤ ε

2(β − α)

whenever x ∈ [α, β] and n > N . We can choose N large enough that if n > N then
|fn(α) − f(α)| < ε/2 also. The Fundamental Theorem of Calculus now tells us that
for n > N and x ∈ [α, β],

|fn(x)− f(x)| =
∣∣∣∣
(

fn(α) +

∫ x

α

f ′n(u) du

)
−

(
f(α) +

∫ x

α

f(u) du

)∣∣∣∣
(13.55)

=

∣∣∣∣(fn(α)− f(α)) +

∫ t

α

(f ′n(u)− f ′(u)) du

∣∣∣∣
(13.56)

7 ≤ |fn(α)− f(α)|+
∫ t

α

|f ′n(u)− f ′(u)| du (13.57)

≤ |fn(α)− f(α)|+
∫ β

α

|f ′n(u)− f ′(u)| du

(13.58)

<
ε

2
+

ε

2(β − α)
(β − α) = ε. (13.59)

This shows that {fn} converges to f uniformly on the compact subsets of (a, b).

Definition 13.7 For each non-negative integer n, let un be a function whose domain

includes some interval I. We will say that the series
∞∑

k=1

uk(x) converges uniformly

on I (respectively, converges uniformly on the compact subsets of I) if the sequence

of functions given on I by sn(x) =
n∑

k=1

uk(x) converges uniformly on I (respectively,

converges uniformly on the compact subsets of I.)

13.4 Power Series

Power series are to functions what decimal expansions are to real numbers. It is a
representation of a function that may give us some insight into the behavior of a
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function or make it easier to do computations.

Theorem 13.13 Let {ak}∞k=0 be a sequence of real numbers, and let a be any real

number. There is a non-negative number R such that
∞∑

k=0

ak(x− a)k converges ab-

solutely and uniformly on the compact subsets of the interval (−R + a, R + a) and
diverges on the complement of the interval [−R + a,R + a].

Proof: It suffices to prove the theorem for a = 0, the argument for non-zero a being
exactly the same. Another way to think of this is to translat to 0 by replacing x with
t + a.

Observe that the series
∑∞

k=0 akx
k clearly converges for x = 0. If it converges for

no other real values of x, we take R = 0. If it converges for all positive real x, we
take R = ∞. Otherwise, there is x1 6= 0 for which

∑∞
k=0 akx

k
1 converges, and there

is x2 6= 0 for which
∑∞

k=0 akx
k
2 diverges. Note that |x2| < |x1| is impossible. Indeed,

we will show that if −|x1| < x < |x1|, then
∑∞

k=0 |akx
k| (and so also

∑∞
k=0 akx

k —
see Theorem 13.4) converges. To see that this is so, first recall that the convergence
of

∑∞
k=0 akx

k
1 guarantees that limn→∞ anxn

1 = 0. This means there is a constant K
with the property that |anxn

1 | ≤ K for all n. Consequently, whatever the nonnegative
integer n may be, and whatever the real number x may be, we have, from |x| < |x1|,

|anx
n| = |anxn

1 | ·
∣∣∣∣
x

x1

∣∣∣∣
n

(13.60)

≤ K

∣∣∣∣
x

x1

∣∣∣∣
n

. (13.61)

So if |x| < |x1|, the series
∑∞

k=0 akx
k is dominated by the convergent geometric series

∑∞
k=0 K

∣∣∣∣
x

x1

∣∣∣∣
k

, and must, by the Comparison Test, converge absolutely. In particular,

we must conclude that |x1| < |x2|. It follows from what we have just seen that the
set S of all positive real numbers s for which

∑∞
k=0 aks

k converges is a non-empty set
of real numbers which is bounded above (because the series does not converge for all
positive real s). By the Least Upper Bound axiom, S must have a least upper bound.
Let R be this least upper bound. Then

∑∞
k=0 akx

k converges for all x ∈ (−R,R) and

diverges for all x /∈ [−R,R]. We put f(x) =
∞∑

k=0

akx
k for all x ∈ (−R,R). It now

remains to show that convergence is uniform on the compact subsets of (−R, R).

We may assume that R > 0 — the assertion being vacuously true when R = 0.

We will show that if 0 < T < R, then
∞∑

k=0

akx
k converges uniformly on [−T, T ].
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So, let ε > 0 be given, and let x ∈ [−T, T ]. Then |x| ≤ |T |, and if n is a positive
integer, we have

∣∣∣f(x)−
∑

+k = 0nakx
k
∣∣∣ =

∣∣∣∣∣
∞∑

k=n+1

akx
k

∣∣∣∣∣ (13.62)

≤
∞∑

k=n+1

∣∣akx
k
∣∣ (13.63)

≤
∞∑

k=n+1

|ak|T k. (13.64)

But
∑∞

k=0 |ak|T k converges to some number L (because 0 < T < R), so we can find
a positive integer N with the property that

∞∑

k=n+1

|ak|T k =

∣∣∣∣∣
∞∑

k=n+1

|ak|T k

∣∣∣∣∣

=

∣∣∣∣∣L−
n∑

k=0

|ak|T k

∣∣∣∣∣
< ε

whenever n > N , and from this together with the above equation it follows that
∞∑

k=0

akx
k converges uniformly to f(x) on [−T, T ].

It now follows from the results of the previous section that term-by-term dif-
ferentiation and integration of functions given by power series is legitimate — in
regions where the differentiated series and the integrated series converge uniformly
on compact sets. That this works as it does is the remarkable fact that underlies the
usefulness of power series representations. This means then that our new task is to
determine how it works. To accomplish this, given the series

∑∞
k=0 akx

k, we must,
first identify the number R, of Theorem 13.13, and study its properties.

Theorem 13.14 [Extended Root Test] Let
∑∞

k=0 ak be a series, and let

L = lim sup k
√
|ak|.

If L < 1, the series converges. If L > 1, the series diverges. If L = 1 the series may
converge or diverge.

Proof: If L < 1, we can choose ε > 0 so that L + ε < 1. There are, then, only
finitely many non-negative integers k for which L + ε < k

√
ak. Thus, there is a non-

negative integer N such that |ak| < (L + ε)k for all k ≥ N . But
∑∞

k=0(L + ε)k is a
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convergent geometric series, because L + ε < 1. By the Comparison Test,
∑∞

k=0 |ak|
must converge. This guarantees that

∑∞
k=0 ak itself converges.

If L > 1, we choose ε > 0 so that L − ε > 1. There are then infinitely many
non-negative integers k for which L − ε < k

√
|ak|, so we can choose a sequence of

non-negative integers nj, j = 0, 1, . . ., such that nj+1 > nj for every j, and 1 <
(L− ε)nj < |anj

| for every j. It follows that limk→∞ ak = 0 is impossible, whence we
conclude that

∑∞
k=0 ak diverges.

To see that we can say nothing about the convergence of
∑∞

k=0 ak when L = 1,

we note that
∞∑

k=1

1

kp
converges if p > 1 and diverges if p ≤ 1. (This is a standard

example which appears in every freshman calculus text.) However,

lim
k→∞

k

√
1

kp
= lim

k→∞
k
√

k−p

= lim
k→∞

k−p/k

= lim
k→∞

exp

[
−p log k

k

]

= exp

[
−p lim

k→∞
log k

k

]

= exp

[
−p lim

k→∞
(1/k)

1

]
, by l’Hôpital’s Rule,

= 1.

Now we can return to the number R of Theorem 13.13 and it properties.

Theorem 13.15 [Radius of Convergence] Let
∑∞

k=0 ak(x−a)k be a power series, and
put

L = lim sup k
√
|ak|.

If L = 0, put R = 1. If L = 1, put R = 0. Otherwise, put R = 1/L. So defined, R is
the number whose existence and properties are assured by Theorem 13.13.

Proof: We need only show that the series converges when |x− a| < R and diverges
when |x− a| > R. We apply the Extended Root Test:

lim sup k
√
|ak(x− a)k| = lim sup

(
|x− a| k

√
|ak|

)

= |x− a|L.

and this is less than one precisely when |x− a| < R, greater than one precisely when
|x− a| > R.
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Definition 13.8 The number R of Theorem 13.15 is called the radius of convergence
of the series

∑∞
k=0 ak(x− a)k.

We are now ready to describe the behavior of power series that makes them worthy
objects of study.

Theorem 13.16 [Fundamental Theorem of Power Series] Let f be a function given
by a power series

f(x) =
∞∑

k=0

ak(x− a)k

on the interval (a−R, a+R), where the positive number R is the radius of convergence
for the series

∞∑

k=0

ak(x− a)k.

Then the series whose k-th term is kak(x − a)k−1 also has radius of convergence R.
Moreover f is differentiable (and therefore continuous) on (a−R, a + R) with

f ′(x) =
∞∑

k=1

kak(x− a)k−1 (13.65)

whenever a−R < x < a + R.
On that same interval let F be the function defined by

F (x) =

∫ x

a

f(t) dt.

Then F is given by

F (x) =
∞∑

k=0

ak

k + 1
(x− a)k+1, (13.66)

and the latter series also has radius of convergence R, so that the above representation
is also valid on (a−R, a + R).

Proof: Observe first that limk→∞
k
√

k = 1. Consequently, applying Theorem 13.15,
we obtain R as the radius of convergence for the series of Equation 13.65 from the
computation

lim sup k
√

k|ak| =
(

lim
k→∞

k
√

k
)(

lim sup k
√
|ak|

)

= lim sup k
√
|ak|

=
1

R
.
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The series of Equation 13.65 therefore converges uniformly on the compact subsets

of (a−R, a + R). Because each of the sums
n∑

k=1

kak(x− a)k−1 is the derivative of the

corresponding sum
n∑

k=1

ak(x− a)k, an application of Theorem 13.12 assures us that

Equation 13.65 is true for all x ∈ (a−R, a + R).
The statements regarding the function F follow similarly from Theorem 13.11.

Corollary 13.2 Let f be a function given by a power series

f(x) =
∞∑

k=0

ak(x− a)k

on the interval (a−R, a+R), where the positive number R is the radius of convergence
for the series. Then f possesses derivatives of all orders throughout the interval
(a−R, a + R).

Proof: f ′ is a function given by a power series on (a − R, a + R), so, by Theo-
rem 13.16, f ′′ must be as well. Continue inductively.

Corollary 13.3 [Taylor Coefficients] Let f be a function given by a power series

f(x) =
∞∑

k=0

ak(x− a)k

on the interval (a−R, a+R), where the positive number R is the radius of convergence
for the series. Then for every integer j = 0, 1, 2, . . .,

aj =
f (j)(a)

j!
.

Proof: Differentiate the series term-by-term j times and then set x = a.

Corollary 13.4 If

f(x) =
∞∑

k=0

ak(x− a)k

and

f(x) =
∞∑

k=0

bk(x− a)k,

each of the equalities holding on some open interval centered at x = a, then ak = bk

for every k = 0, 1, 2, . . ..
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It is clear from Corollary 13.2 that some functions — for example, those which
do not possess derivatives of all orders — cannot be represented by power series.
However, is it true that possession of derivatives of all orders is a necessary condition
and sufficient for the existence of such a representation? The next example clarifies
this.

Example 13.4 Let f be the function given by

f(x) =

{
e−1/x2

, if x 6= 0

0, if x = 0
(13.67)

Then f cannot be represented by a power series of the form
∞∑

k=0

akx
k on any non-trivial

interval centered at x = 0.
To see this, note first that lim

x→0
f(x) = 0, so that f is continuous at x = 0. It is

also clear that f(x) > 0 when x 6= 0.
Let’s compute f ′(x). Clearly,

f ′(x) =
2e−1/x2

x3
(13.68)

when x 6= 0. We need to compute f ′(0). In order to do this, it suffices to compute
lim

x→0+
f ′(x), for it is clear by symmetry that lim

x→0+
f ′(x) = lim

x→0−
f ′(x). Substituting

t = 1/x and applying l’Hôpital’s Rule twice, we find

lim
x→0+

2e−1/x2

x3
= lim

t→∞
2t3

et2

= lim
t→∞

6t2

2tet2

= lim
t→∞

3t

et2

= lim
t→∞

3

2tet2
= 0.

Therefore f ′(0) = 0.
Now let us show inductively that for x 6= 0 we always have

f (k)(x) =
P (x)

xnk
e−1/x2

,

where nk is a certain positive integer, and P (x) is a polynomial, which also depends
on k, and whose degree is less than nk. We have already seen that f ′(x) has this form
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when x 6= 0, so the statement is true for k = 1. Let us assume that this holds for a
certain integer k and examine the form of f (k+1)(x). We have

f (k+1)(x) =

(
P ′(x)xnk − P (x) · nkx

nk−1

x2nk
+

2P (x)

xnk + 3

)
e−1/x2

=

(
P ′(x)x3 + (2− nkx

2)P (x)

xnk+3

)
e−1/x2

,

and we note that the numerator of the fraction in the latter expression is a polynomial
whose degree is at most two more than the degree of P (x), while the degree of the
denominator is nk + 3. The degree in the numerator having grown by at most two,
while the degree in the denominator has grown by three, we see that f (k+1)(x) is also
of the necessary form. This completes the induction.

Now if P (x) is a polynomial of degree m < n, then

lim
x→0+

P (x)

xn
e−1/x2

= lim
x→0+

(
P (x)

e−1/x2

xn

)

=

(
lim

x→0+
P (x)

)
·
(

lim
x→0+

e−1/x2

xn

)
.

Now the first of the two limits on the right side exists because P (x) is a polynomial,
and the second limit is zero by a l’Hôpital’s Rule argument very similar to the one
above. It therefore follows that

lim
x→0+

P (x)

xn
e−1/x2

= 0.

Similarly, the limit from the left is also zero. Thus we may conclude that f (k)(0) = 0
for every k, and if it were the case that

f(x) =
∞∑

k=0

akx
k

on some non-trivial interval centered at x = 0, then we would have to have ak =
f (k)(0)/k! = 0 for every k = 0, 1, 2, . . .. However, if ak = 0 for every k, then the series
converges to the zero function, which is different from f .

13.5 The Algebra of Power Series

We have then that power series define functions and we have seen how to differentiate
and integrate them. How do we add, subtract, multiply, and divide them?
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Theorem 13.17 Suppose that

f(x) =
∞∑

k=0

ak(x− a)k

and

g(x) =
∞∑

k=0

bk(x− a)k,

the first series having positive radius of convergence Rf and the second having positive
radius of convergence Rg. Then

f(x) + g(x) =
∞∑

k=0

(ak + bk)(x− c)k,

and the radius of convergence of the latter series is

R ≥ min{Rf , Rg}.

Proof: Note that, for each n = 0, 1, . . ., we have

n∑

k=0

(ak + bk)(x− a)k =
n∑

k=0

ak(x− c)k +
n∑

k=0

bk(x− a)k.

If |x− a| < R < min{Rf , Rg}, then both of the limits, as n →∞, on the right exist
and so must the limit on the left.

The statement of Theorem 13.17 cannot be improved. The series

∞∑

k=0

(−1)kx2k

and the series ∞∑

k=0

(−1)kx2k+2

both have radius of convergence 1, but their sum is the series whose first term is 1
and all of whose subsequent terms are zero. Thus it is possible that the radius of
convergence for the sum substantially exceeds the smaller of the two given radii.

The obvious statement for the difference of two series is also true.

Theorem 13.18 Suppose that

f(x) =
∞∑

k=0

ak(x− a)k
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and

g(x) =
∞∑

k=0

bk(x− a)k,

the first series having positive radius of convergence Rf and the second having positive
radius of convergence Rg. Then

f(x)g(x) =
∞∑

k=0

ck(x− a)k,

where the numbers ck are given by

ck =
k∑

j=0

ajbk−j,

and the radius of convergence of the latter series is

R ≥ min{Rf , Rg}.

Proof: It suffices to prove the theorem for a = 0, the proof for the more general
case differing only in complexity of notation. Let R = min{Rf , Rg}, and choose
x ∈ (−R, R). By Theorem 13.13, we may put

A(x) =
∞∑

k=0

|akx
k|.
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Now, let’s examine the partial sums of the series on the right side of the product:

n∑

k=0

ckx
k =

n∑

k=0

((
k∑

j=0

ajbk−j

))

=
n∑

k=0

k∑
j=0

(ajx
j)(bk−jx

k−j)

=
n∑

j=0

n∑

k=j

(ajx
j)(bk−jx

k−j)

=
n∑

j=0

(
ajx

j

n∑

k=j

bk−jx
k−j

)

=
n∑

j=0

(
ajx

j

n−j∑

k=0

bkx
k

)

=
n∑

j=0

(
ajx

j

(
g(x)−

∞∑

k=n−j+1

bkx
k

))

= g(x)

(
n∑

j=0

ajx
j

)
−

n∑
j=0

(
ajx

j

∞∑

k=n−j+1

bkx
k

)
.

Now g(x)
n∑

k=0

akx
k → g(x)f(x) as x → ∞, so we would like to show that the second

of the two terms on the right side of the last equation above goes to zero as n goes
to infinity.

Let ε > 0 be given. We know that

lim
m→∞

∞∑

k=m

bkx
k = 0,

because
∞∑

k=0

bkx
k converges. Consequently, we can find N ∈ N sufficiently large that

∣∣∣∣∣
∞∑

k=m

bkx
k

∣∣∣∣∣ <
ε

2(A(x) + 1)

whenever m > N . Then, for n > N ,
∣∣∣∣∣

n∑
j=0

(
ajx

j

∞∑

k=n−j+1

bkx
k

)∣∣∣∣∣
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≤
∣∣∣∣∣
n−N−1∑

j=0

(
ajx

j

∞∑

k=n−j+1

bkx
k

)∣∣∣∣∣ +

∣∣∣∣∣
n∑

j=n−N

(
ajx

j

∞∑

k=n−j+1

bkx
k

)∣∣∣∣∣

<
A(x)ε

2(A(x) + 1)
+

∣∣∣∣∣
n∑

j=n−N

(
ajx

j

∞∑

k=n−j+1

bkx
k

)∣∣∣∣∣

<
ε

2
+

∣∣∣∣∣
n∑

j=n−N

(
ajx

j

∞∑

k=n−j+1

bkx
k

)∣∣∣∣∣ . (13.69)

Note that the final expression in absolute values on the right side of the last equa-
tion involves just finitely many of the sums

∑∞
k=p bkx

k, namely those for which
p = 1, 2, . . . , N + 1, and that the sums involved are independent of what n may
be. Consequently, there is a positive real number M such that∣∣∣∣∣

∞∑

k=p

bkx
k

∣∣∣∣∣ ≤ M

for each p = 1, 2, . . . , N + 1.
We can also find a positive integer P which has the property that

∞∑

k=q+1

|akx
k| = A(x)−

q∑

k=0

|akx
k|

<
ε

4M(N + 1)

whenever q > P . Consequently, as soon as n > P + N , we must have
n∑

k=n−N

|akx
k| =

∞∑

k=n−N+1

|akx
k| −

∞∑

k=n+1

|akx
k|

<
ε

2M(N + 1)
.

Combining the above inequalities, we find that we have∣∣∣∣∣
n∑

j=n−N

(
ajx

j

∞∑

k=n−j+1

bkx
k

)∣∣∣∣∣ ≤
n∑

j=n−N

(
|ajx

j|
∣∣∣∣∣

∞∑

k=n−j+1

bkx
k

∣∣∣∣∣

)

<

n∑
j=n−N

(
ε

2M(N + 1)

)
M =

ε

2
.

We combine this last inequality with the inequality 13.69, and find that we have
shown that when n is sufficiently large,∣∣∣∣∣

n∑
j=0

(
ajx

j

∞∑

k=n−j+1

bkx
k

)∣∣∣∣∣ < ε,

as desired.
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13.6 Taylor Polynomials

Our example of a power series that only converges when x = 0 raises the issue of just
when the series ∞∑

k=0

f (k)(a)

k!
(x− a)k

converges to f(x) for all those values of x that lie in some non-trivial interval centered
at x = a. In many cases, we can answer this question indirectly through the results
of our previous sections. However, in other cases it is necessary to proceed more
directly. The principal tool for doing so is the Taylor Polynomial with Remainder.
The remainder can be represented in a variety of ways, and the strength of the
hypotheses needed to support the desired conclusion can also vary.

We give look at several versions of the main result.

Theorem 13.19 [Taylor Polynomial with General Remainder] Let h > 0 and let n be
a non-negative integer. Suppose that f is a function defined and possessing derivatives
of order up to and including n + 1 throughout an interval (a − h, a + h). Then for
every x ∈ (a− h, a + h) and every integer m = 1, 2, . . . , n + 1, there is a number ξm,
lying in the interval whose end-points are a and x, such that

f(x) = sumn
k=0

f (k)(a)

k!
(x− a)k +

f (n+1)(ξm)

m(n!)
(x− ξm)n+1−m(x− a)m.

Proof: The conclusion is trivially true if x = a, so we may assume that x 6= a. Put

C =
m!

(x− a)m

(
f(x)−

n∑

k=0

f (k)(a)

k!
(x− a)k

)
,

and define a function F by

F (t) = f(x)−
n∑

k=0

f (k)(t)

k!
(x− t)k − C

(x− t)m

m!
.

The function F is a sum of functions that are continuous on the closed interval whose
endpoints are a and x and that are differentiable on the interior of the same interval.
In fact,

F ′(t) = −
n∑

k=0

(
f (k+1)(t)

k!
(x− t)k − kf (k)(t)

k!
(x− t)k−1

)
+ C

(x− t)m−1

(m− 1)!

= −f (n+1)(t)

n!
(x− t)n + C

(x− t)m−1

(m− 1)!
,

since the sum is a telescoping one.
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Moreover, F (a) = 0 by the way we have chosen C, and F (x) = 0 by direct
calculation. By Rolle’s Theorem there is a number ξm ∈ (a, x) such that F ′(ξm) = 0.
In particular, ξm 6= x, and substituting ξm for t in the last equation above yields

C =
f (n+1)(ξm)

n!
(m− 1)!(x− ξm)n+1−m.

Substitution of the right side of this for C in gives the result, after some slight
rearrangement.

Corollary 13.5 [Taylor Series with Lagrange Remainder] Let h > 0 and suppose
that f is a function defined and possessing derivatives of order up to and including
n + 1 throughout the interval (a− h, a + h). Then for every x ∈ (a− h, a + h) there
is a number ξ, lying in the interval whose end-points are a and x, such that

f(x) =
n∑

k=0

f (k)(a)

k!
(x− a)k +

f (n+1)(ξ)

(n + 1)!
(x− a)n+1.

Proof: Set m = n + 1 in the above theorem.

Corollary 13.6 (Taylor Series with Cauchy Remainder) Let h > 0 and sup-
pose that f is a function defined and possessing derivatives of order up to and includ-
ing n + 1 throughout the interval (a − h, a + h). Then for every x ∈ (a − h, a + h)
there is a number ξ, lying in the interval whose end-points are a and x, such that

f(x) =
n∑

k=0

f (k)(a)

k!
(x− a)k +

f (n+1)(ξ)

n!
(x− ξ)n(x− a).

Proof: Set m = 1 in the above theorem.

In many respects, the most useful form of the Taylor remainder is the integral
form. The usefulness comes at a cost, but not a prohibitive one. (In practical terms,
the cost is negligible.) We must assume that the derivative of order n+1 is continuous.
We needed only the existence of the derivative of order n + 1 in order to derive the
forms above. The reader should note that we can reach the forms given above by way
of the integral form of the remainder. However, we need the stronger hypothesis that
f (n+1) is continuous in order to take this route to the other forms of the remainder.

Corollary 13.7 (Weak Taylor Series with General Remainder) Suppose that
f is a function defined and possessing continuous derivatives of order up to and in-
cluding n + 1 throughout an interval (a− h, a + h), for some positive real number h.
Then for every x ∈ (a − h, a + h) and every integer m = 1, 2, . . . , n + 1, there is a
number ξm, lying in the interval whose end-points are a and x, such that

f(x) =
n∑

k=0

f (k)(a)

k!
(x− a)k +

f (n+1)(ξm)

m(n!)
(x− ξm)n+1 −m(x− a)m.
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Proof: Let us assume, for the moment, that a < x. We have

f(x) =
n∑

k=0

f (k)(a)

k!
(x− a)k +

1

n!

∫ x

a

f (n+1)(t)(x− t)n dt.

We take F (t) = f (n+1)(t)(x− t)n+1−m and ϕ(t) = (x− t)m−1. By hypothesis, F and
ϕ are continuous on the interval [a, x] and ϕ does not change sign in that interval.
By the Mean Value Theorem for Integrals we may write, for a certain ξm ∈ [a, x],

∫ x

a

f (n+1)(t)(x− t)n dt =

∫ x

a

F (t)ϕ(t) dt

= F (ξm)

∫ x

a

ϕ(t) dt

= F (ξm)

∫ x

a

(x− t)m−1 dt

= −F (ξm)

m
(x− t)m

∣∣∣∣
x

a

=
f (n+1)(ξm

m
(x− ξm)n+1−m(x− a)m.

The result follows.
When x < a, we have, by similar reasoning,

∫ x

a

f (n+1)(t)(x− t)n dt = −
∫ x

a

F (t)ϕ(t) dt

= −F (ξm)

∫ a

x

ϕ(t) dt

= −F (ξm)

∫ a

x

(x− t)m−1 dt

=
F (ξm)

m
(x− t)m

∣∣∣∣
a

x

=
f (n+1)(ξm

m
(x− ξm)n+1−m(x− a)m.

Theorem 13.20 (Taylor Series Representation Criterion) Let f be a function
defined and possessing derivatives of all orders in some open interval centered at
x = a. If t is a point of this open interval, then

f(t) =
∞∑

k=0

f (k)(a)

k!
(t− a)k
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if, and only if,
lim

n→∞
Rn(t) = 0,

where Rn(t) denotes any of the remainders of the previous theorem or corollaries.

Proof: The proof is immediate from the observations that

1. f(t) =
∞∑

k=0

f (k)(t)

k!
(t− a)k if and only if

lim
n→∞

(
f(t)−

n∑

k=0

f (k)(t)

k!
(t− a)k

)
= 0,

and

2.

(
f(t)−

n∑

k=0

f (k)(t)

k!
(t− a)k

)
= Rn(t).

13.7 Power Series Representations

We begin with a useful lemma.

Theorem 13.21 For any real number x,

lim
n→∞

xn

n!
= 0.

Proof: For any real number x, we have

lim
n→∞




( |x|n+1

(n + 1)!

)

( |x|n
n!

)


 = lim

n→∞
|x|

n + 1
= 0.

By the Ratio Test, the series
∞∑

k=0

xk

k!
converges for each fixed value of x, and this

implies our result.

Definition 13.9 If R ∈ R and n is a positive integer, we define
(

r

n

)
=

1

n!

n∏

k=1

(r − k + 1).

We also put (
r

0

)
= 1.
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Theorem 13.22 [The Binomial Series] For any real number r, we have

(1 + x)r =
∞∑

k=0

(
r

k

)
xk

for all x ∈ (−1, 1).

Proof: The proof here comes from Stewart’s Calculus: Concepts and Contexts, Sec-
ond Edition.

Put f(x) = (1 + x)r. For any non-negative integer k we see inductively that

f (k)(x) =

(
k∏

j=1

(r − j + 1)

)
(1 + x)r−k,

so that the k-th Maclaurin coefficient for (1 + x)r is given by

f (k)(0)

k!
=

(
m

k

)
.

Thus if f is represented by a Maclaurin series, it must be the one that we have above.
It remains only to show that this series does converge to f(x) in the desired interval.

Let us apply the Ratio Test to this series. We obtain

lim
n→∞

[∣∣( r
n+1

)
xn+1

∣∣
∣∣(r

n

)
xn

∣∣

]
= |x| lim

n→∞

∣∣∣∣
r − n

n

∣∣∣∣ = |x|.

We conclude that the series has radius of convergence R = 1, and that the interior of
its interval of convergence is (−1, 1). Let us put

ψ(x) =
∞∑

k=0

(
r

k

)
xk

throughout that open interval. By Theorem 13.16, we also have for −1 < x < 1,

ψ′(x) =
∞∑

k=1

k

(
r

k

)
xk−1,

so that

(1 + x)ψ′(x) = (1 + x)
∞∑

k=1

k

(
r

k

)
xk−1

=
∞∑

k=1

k

(
r

k

)
xk−1 +

∞∑

k=1

k

(
r

k

)
xk

=
∞∑

k=0

(k + 1)

(
r

k + 1

)
xk +

∞∑

k=0

k

(
r

k

)
xk

=
∞∑

k=0

[
(k + 1)

(
r

k + 1

)
+ k

(
r

k

)]
xk.
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But

(k + 1)

(
r

k + 1

)
+ k

(
r

k

)
=

k + 1

(k + 1)!

k+1∏
j=1

(r − j + 1) +
k

k!

k∏
j=1

(r − j + 1)

=
1

k!

[
(r − k)

k∏
j=1

(r − j + 1) + k

k∏
j=1

(r − j + 1)

]

= r

(
r

k

)
,

and so it follows that

(1 + x)ψ′(x) = r

∞∑

k=0

(
r

k

)
xk = rψ(x).

We now find that

d

dx

[
(1 + x)−rψ(x)

]
= −r(1 + x)−r−1ψ(x) + (1 + x)−rψ′(x)

= −r(1 + x)−r−1ψ(x) + r(1 + x)−r−1ψ(x)

= 0

for all x ∈ (−1, 1). Thus, (1 + x)−rψ(x) is a constant function. Now ψ(0) = 1, and
so (1 + 0)−rψ(0) = 1. Thus ψ(x) = (1 + x)r for all x ∈ (−1, 1), as desired.

Theorem 13.23 We have

sin x =
∞∑

k=0

(−1)k x2k+1

(2k + 1)!

for every x ∈ R.

Proof: Let f(x) = sin x for all real x. By Theorem 13.5, for each integer n ≥ 0 we
have

f(x) =
n∑

k=0

f (k)(0)

k!
xk + Rn(x),

where

Rn(x) =
f (n+1)(ξ)

(n + 1)!
xn+1

for some ξ that lies between 0 and x. But for each non-negative integer q, f (2q)(x) =
(−1)q sin x and f (2q+1)(x) = (−1)q cos x, so that f (2q)(0) = 0 and f (2q+1)(0) = (−1)q.
Moreover, |f (n+1)(ξ)| ≤ 1 for all n and all ξ lying between 0 and x, and from this we
conclude that

|Rn(x)| ≤ |x|n+1

(n + 1)!
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for every non-negative integer n. Thus limn→∞ Rn(x) = 0. Applying Theorem ??, we
obtain

sin x =
∞∑

p=0

f (p)(0)

k!
xp =

∞∑

k=0

(−1)k x2k+1

(2k + 1)!

Observe that we have shown that the radius of convergence of the series on the
right side is infinity.

Theorem 13.24 We have

cos x =
∞∑

k=0

(−1)k x2k

(2k)!

for every x ∈ R.

Proof: Apply the Fundamental Theorem of Power Series to obtain

cos x =
d

dx
sin x =

d

dx

∞∑

k=0

(−1)k x2k+1

(2k + 1)!
=

∞∑

k=0

(−1)k x2k

(2k)!

where the radius of convergence of the latter series must be the same as that of the
undifferentiated series, i.e., infinity.

Theorem 13.25 We have

exp(x) = ex =
∞∑

k=0

xk

k!

for all x ∈ R.

Proof: Let f(x) = ex for all real x. By Theorem 13.5, for each integer n ≥ 0 we
have

f(x) =
n∑

k=0

f (k)(0)

k!
xk + Rn(x),

where

Rn(x) =
f (n+1)(ξn)

(n + 1)!
xn+1

for some ξn between 0 and x. But f (k)(x) = ex for all x and for all non-negative
integers k. Thus f (k)(0) = 1 for all k and f (n+1)(ξn) = eξn for all n. This means that

|Rn(x)| =
∣∣∣∣eξn

xn+1

(n + 1)!

∣∣∣∣ ≤ e|x|
|x|n+1

(n + 1)!

and limn→∞ Rn(x) = 0. Substituting 1 for f (k)(0) throughout and passing to the limit
gives us the desired result.
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Theorem 13.26 We have

sinh x =
∞∑

k=0

x2k+1

(2k + 1)!

for all x ∈ R.

Proof: Because

sinh x =
1

2
(ex − e−x),

we have, by Theorem 13.25 and Theorem 13.17,

sinh x =
1

2

( ∞∑
j=0

xj

j!
−

∞∑
j=0

(−1)j x
j

j!

)

=
1

2

∞∑
j=0

(
xj

j!
− (−1)j xj

j!

)

=
∞∑

k=0

x2k+1

(2k + 1)!

for all x ∈ R.

Theorem 13.27 We have

cosh x =
∞∑

k=0

x2k

(2k)!

for all x ∈ R.

Theorem 13.28 We have

log(1 + x) =
∞∑

k=1

(−1)k−1xk

k

for all x ∈ (−1, 1).

Proof: Making use of the geometric series, we may write

d

dx
log(1 + x) =

1

1 + x
=

1

1− (−x)

=
∞∑

k=0

(−x)k =
∞∑

k=0

(−1)kxk

=
∞∑

k=1

(−1)k−1xk−1,
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the representation being correct when |x| < 1. By the Fundamental Theorem of
Power Series, we have

log(1 + x) =

∫ x

0

dt

1 + t

=

∫ x

0

( ∞∑

k=1

(−1)k−1tk−1

)
dt

=
∞∑

k=1

(−1)k−1 tk

k

∣∣∣∣∣

x

0

=
∞∑

k=1

(−1)k−1xk

k
,

the interior of the interval of convergence of the latter series being (−1, 1).

Theorem 13.29 We have

arctan x =
∞∑

k=0

(−1)k x2k+1

2k + 1

for every x ∈ (−1, 1).

Proof: Again relying on the geometric series, we have

d

dx
arctanx =

1

1 + x2
=

1

1− (−(x2))

=
∞∑

k=0

(−(x2))k =
∞∑

k=0

(−1)kx2k,

and the representation is valid when | − (x2)| < 1, or when |x| < 1. Appealing once
more to the Fundamental Theorem of Power Series, we find that

arctan x =

∫ x

0

dt

1 + t2

=

∫ x

0

( ∞∑

k=0

(−1)kt2k

)
dt

=
∞∑

k=0

(−1)k t2k+1

2k + 1

∣∣∣∣∣

x

0

=
∞∑

k=0

(−1)k x2k+1

2k + 1

the interior of the interval of convergence of the latter series being (−1, 1).
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Theorem 13.30 We have

arcsin x =
∞∑

k=0

1

22k

(
2k

k

)
x2k+1

2k + 1

for every x ∈ (−1, 1).

Proof: We know that for all x ∈ (−1, 1),

d

dx
arcsin x = (1− x2)−1/2

=
∞∑

k=0

(−1)k

(−1/2

k

)
x2k

But
(−1/2

k

)
=

(−1/2)(−3/2) · · · ((1− 2k)/2)

k!

= (−1)k 1 · 3 · · · (2k − 1)

2kk!

= (−1)k 1 · 2 · 3 · 4 · · · (2k − 2)(2k − 1)(2k)

2kk!(2 · 4 · · · 2k)

= (−1)k (2k!)

22k(k!)2

= (−1)k 1

22k

(
2k

k

)
.

Our formula follows if we combine this with the above and integrate the resulting
series, term by term, from 0 to x.

13.8 Other Convergence Tests

Theorem 13.31 [Comparison of Ratios] Let
∑∞

k=0 ak be a series of positive terms.
If

∑∞
k=0 ck is a convergent series of positive terms for which there is a positive integer

N such that
ak+1

ak

≤ ck+1

ck

whenever k ≥ N , then
∑∞

k=0 ak converges. On the other hand, if
∑∞

k=0 dk is a diver-
gent series of positive terms for which there is a positive integer N such that

dk+1

dk

≤ ak+1

ak

whenever k ≥ N , then
∑∞

k=0 ak diverges.
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Proof: Let
∑∞

k=0 ak,
∑∞

k=0 ck, and N be as in the hypotheses. Then

aN+1

aN

≤ cN+1

cN

, so that

aN+1 ≤ aN

cN

cN+1.

Now suppose inductively that there is a positive integer j for which

aN+j ≤ aN

cN

cN+j.

By our hypothesis, we have
aN+j+1

aN+j

≤ cN+j+1

cN+j

,

from which it follows that

aN+j+1 ≤ aN+j
cN+j+1

cN+j

≤
(

aN

cN

cN+j

)
cN+j+1

cN+j

≤ aN

cN

cN+j+1.

We conclude thus that the inequality

ak ≤ aN

cN

ck

for all integers k > N . It now follows from the convergence of
∑∞

k=0 ck and the
Comparison Test that

∑∞
k=0 ak converges.

Now let
∑∞

k=0 ak,
∑∞

k=0 dk, and N be as in the hypotheses. Then

aN+1

aN

≥ dN+1

dN

, so that

aN+1 ≥ aN

dN

dN+1.

Suppose inductively that there is a positive integer j for which

aN+j ≥ aN

dN

dN+j.

By our hypothesis, we have
aN+j+1

aN+j

≥ dN+j+1

dN+j

,

from which it follows that

aN+j+1 ≥ aN+j
dN+j+1

dN+j

≥
(

aN

dN

dN+j

)
dN+j+1

dN+j

≥ aN

dN

dN+j+1.
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We conclude thus that the inequality

ak ≥ aN

dN

dk

is true for all integers k > N . Now because
∑∞

k=0 dk diverges and the Comparison
Test we see that

∑∞
k=0 ak diverges.

Theorem 13.32 [Raabe’s Test] Let
∑∞

k=0 ak be a series of positive terms. If

lim sup k

(
ak

ak+1

− 1

)
< 1,

then the series
∑∞

k=0 ak diverges. If

lim inf k

(
ak

ak+1

− 1

)
> 1,

the series converges.

Proof: Let us begin by supposing that the first inequality holds. Then we can find
an integer N so large that for every k ≥ N we have

k

(
ak

ak+1

− 1

)
< 1, or

ak

ak+1

<
k + 1

k
, or

ak+1

ak

>

(
1

k + 1

)

(
1
k

) .

But
∑∞

k=1 1/k is a divergent series, and it thus follows by the Comparison of Ratios
Test that

∑∞
k=0 ak diverges.

Now let us suppose on the other hand that the second inequality holds, and let L
denote the limit inferior that appears in that inequality. Let us put

K = 1 +
2

3
(L− 1)

=
1 + 2L

3
,

and

H = 1 +
1

3
(L− 1)

=
2 + L

3
.

MATH 6102-090 Spring 2007



13.8. OTHER CONVERGENCE TESTS 195

Then 1 < H < K < L. Thus, there is a positive integer N such that

k

(
ak

ak+1

− 1

)
> K

whenever k ≥ N . The condition k ≥ N therefore implies that

ak

ak+1

− 1 >
K

k
, or

ak

ak+1

> 1 +
K

k
, or

ak+1

ak

<
1

1 + (K/k)
.

Note that
(

1 +
K

k

)(
1− H

k

)
= 1 +

K

k
− H

k
− HK

k2

= 1 +
1

k

[
(K −H)− HK

k

]
.

The number K−H is positive, so when k is sufficiently large, the quantity (K−H)−
(HK/k) must be positive. Thus, when k is large enough we must have

ak+1

ak

<
1

1 + (K/k)

< 1− H

k
.

Now

d

dx
xH = HxH−1,

and because 1 < H,

HxH−1 ≤ HkH−1

for all x ∈ (k − 1, k). Therefore for each positive integer k we have kH − (k − 1)H ≤
HkH−1. Equivalently, when k is a positive integer and H > 1,

kH −HkH−1 ≤ (k − 1)H .

Dividing the latter inequality through by kH , we find that

1− H

k
≤ (k − 1)H

kH
.
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Thus, we find that when k is sufficiently large we may write

ak+1

ak

≤ (k − 1)H

kH
=

( 1
kH )(
1

(k−1)H

) .

But H > 1, and so the series
∑∞

k=2
1

(k−1)H is a convergent series. We complete the

proof by appealing to the Comparison of Ratios Test, which assures us that
∑∞

k=0 ak

is convergent.

Raabe’s Test fails if

lim inf k

(
ak

ak+1

− 1

)
≤ 1 ≤ lim sup k

(
ak

ak+1

− 1

)
.

We can show an example of this even when equality holds in both cases so that the
limit exists and is 1.

Consider the series ∞∑

k=2

1

k(log k)p
,

which the Integral Test shows to be divergent when p = 1 but convergent when p > 1.
However, for this series, we have

lim
k→0

k

(
ak

ak+1

− 1

)
= lim

k→0
k

(
(k + 1)(log(k + 1))p

k(log k)p
− 1

)

= lim
k→∞

(
(k + 1)

(
log(k + 1)

log k

)p

− k

)

= lim
k→∞

(
k

((
log(k + 1)

log k

)p

− 1

)
+

(
log(k + 1)

log k

)p)
.

Now l’Hôpital’s Rule gives

lim
k→∞

log(k + 1)

log k
= lim

k→∞

(
1

k+1

)
(

1
k

)

= lim
k→∞

k

k + 1
= 1,

and from this it is immediate that

lim
k→∞

(
log(k + 1)

log k

)p

= 1.

So, now we only have to evaluate

lim
k→∞

k

((
log(k + 1)

log k

)p

− 1

)
.
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So substitute t = 1/k, p = 1, and we get

lim
k→∞

k

((
log(k + 1)

log k

)p

− 1

)
= lim

t→0+

1

t

(
log(1/t + 1)

log(1/t)
− 1

)

= lim
t→0+

1

t

(
log(1 + t)− log t

− log t
− 1

)

= lim
t→0+

log(1 + t)

−t log t

It is actually more convenient to examine the slightly more general limit

lim
t→0

log(1 + t)

−t log |t| = lim
t→0

(
t− t2

2
+

t3

3
− t4

4
+ . . .

)

−t log |t|

= lim
t→0

(
1− t

2
+

t2

3
− t3

4
+ . . .

)

− log |t|
= 0.

Consequently,

lim
k→∞

k

((
log(k + 1)

log k

)
− 1

)
= 0.

However, if we take

u[t] =

{
log(1+t)−log |t|

− log |t| , if t 6= 0

1, if t = 0,

we may also interpret the above limit as telling us that u′(0) = 0. But then under
our substitution t = 1/k, we have

lim
k→∞

k

((
log(k + 1)

log k

)p

− 1

)
= lim

t→0+

(u(t))p − (u(0))p

t

= p(u(0))p−1u′(0), by the Chain Rule,

= 0.

It now follows that, whatever p ≥ 1 may be, we always have

lim
k→∞

k

(
ak

ak+1

− 1

)
= 1

when ak =
1

k(log k)p
.
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Theorem 13.33 [Generalized Raabe Test] Let
∑∞

k=0 ak be a series of positive terms.
If

lim sup log k

(
k

(
ak

ak+1

− 1

)
− 1

)
< 1,

then
∑∞

k=0 ak diverges, while if

lim inf log k

(
k

(
ak

ak+1

− 1

)
− 1

)
> 1

the series converges.

Proof: Let us begin by supposing that the first inequality is true. Then we can find
an integer N so large that for every k ≥ N we have

log k

(
k

(
ak

ak+1

− 1

)
− 1

)
< 1, or

k

(
ak

ak+1

− 1

)
<

1 + log k

log k
, or

ak

ak+1

<
1 + log k + k log k

k log k
.

If f(x) = x log x, then f ′(x) = 1 + log x, and the latter is a non-negative, increasing
function on [k, k + 1] when k is a positive integer. Thus

1 + log k < (k + 1) log(k + 1)− k log k, or

1 + log k + k log k < (k + 1) log(k + 1)

for each positive integer k. This now implies that,

ak

ak+1

<
(k + 1) log(k + 1)

k log k
,

at least when k ≥ N . This latter is equivalent to

ak+1

ak

>

(
1

(k + 1) log(k + 1)

)

(
1

k log k

) ,

But
∞∑

k=2

1

k log k
is a divergent series, and it thus follows by the Comparison of Ratios

Test that
∑∞

k=0 ak diverges.
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Now let us suppose on the other hand that the second inequality holds, and let L
designate the value of the limit inferior that appears in that inequality. Let us put

K = 1 +
2

3
(L− 1)

=
1 + 2L

3
,

and

H =
1 + K

2

=
2 + L

3
.

Then 1 < H < K < L. Thus, there is a positive integer N such that

log k

(
k

(
ak

ak+1

− 1

)
− 1

)
> K

whenever k ≤ N . The condition k ≥ N therefore implies that

k

(
ak

ak+1

− 1

)
− 1 >

K

log k
, or

ak

ak+1

− 1 >
K

k log k
+

1

k
, or

ak

ak+1

> 1 +
K

k log k
+

1

k
, or

ak+1

ak

<
1

1 + [K/(k log k)] + (1/k)
.

Note now from the definition of H that
(

1 +
1

k
+

K

k log k

) (
1− 1

k
− H

k log k

)
− 1

=
[(K − 1)k − 2 log k − (1 + 3K)] log k −K −K2

2k2(log k)2
. (13.70)

Because K − 1 > 0, the numerator of the above fraction grows without bound as
k →∞. This means that for sufficiently large k we have

(
1 +

1

k
+

K

k log k

)(
1− 1

k
− H

k log k

)
> 1.

From this we get

1

1 + (K/(k log k)) + (1/k)
< 1− 1

k
− H

k log k

< 1− 1

k + 1
− H

(k + 1) log(k + 1)
.
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This all now implies that

ak+1

ak

< 1− 1

k + 1
− H

(k + 1) log(k + 1)

for all sufficiently large integers k.
Now let ϕ(x) = x(log x)H . Then

ϕ′(x) = (log x)H + H(log x)H−1,

and then if k is a positive integer, then

(k + 1)(log(k + 1))H − k(log k)H ≤ (log(k + 1))H + H(log(k + 1))H−1.

This is equivalent to

(k + 1)(log(k + 1))H − (log(k + 1))H −H(log(k + 1))H−1 ≤ k(log k)H ,

which, in its turn, is equivalent to

1− 1

k + 1
− H

(k + 1) log(k + 1)
≤ k(log k)H

(k + 1)(log(k + 1))H
.

This now implies that

ak+1

ak

≤ k(log k)H

(k + 1)(log(k + 1))H
=

(
frac1(k + 1)(log(k + 1))H

)
(

1
k(log k)H

)

for all sufficiently large integers k. Because H > 1, the series
∞∑

k=2

1

k(log k)H
converges,

and the Comparison of Ratios Test now guarantees that
∑∞

k=0 ak converges as well.

Theorem 13.34 [Gauss’ Test] Let
∑∞

k=0 ak be a series of positive terms, and suppose
that there are polynomials

p(x) = xn + b1x
n−1 + · · ·+ bn

q(x) = xn + c1x
n−1 + · · ·+ cn

such that for every positive integer k

ak+1

ak

=
p(k)

q(k)
. (13.71)

Then
∑∞

k=0 ak diverges if c1 − b1 ≤ 1 and
∑∞

k=0 ak converges if c1 − b1 > 1.
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Proof: We will apply Raabe’s Test. We have

k

(
ak

ak+1

− 1

)
= k

(
q(k)

p(k)
− 1

)

= k

(
(kn + c1k

n−1 + · · ·+ cn)− (kn + b1k
n−1 + · · ·+ bn)

kn + b1kn−1 + · · ·+ bn

)

= k

(
(c1 − b1)k

n−1 + (c2 − b2)k
n−2 + · · ·+ (cn − bn)

kn + b1kn−1 + · · ·+ bn

)

=
(c1 − b1)k

n + (c2 − b2)k
n−1 + · · ·+ (cn − bn)k

kn + b1kn−1 + · · ·+ bn

,

As a consequence of this

lim
k→∞

k

(
ak

ak+1

− 1

)
= c1 − b1.

It now follows that
∑∞

k=0 ak diverges if c1 − b1 < 1 and converges if c1 − b1 > 1.
If it should be that c1 − b1 = 1, we apply the Generalized Raabe Test:

lim
k→∞

log k

(
k

(
ak

ak+1

− 1

)
− 1

)
= lim

k→∞
log k

(
kn + (c2 − b2)k

n−1 + · · ·+ (cn − bn)k

kn + b1kn−1 + · · ·+ bn

− 1

)

= lim
k→∞

log k

k

(
(c2 − b2 − b1)k

n + · · ·+ (cn − bn − bn−1)k − bn

kn + b1kn−1 + · · ·+ bn

)

= 0 · (c2 − b2 − b1) = 0 < 1.

Theorem 13.35 [Kummer’s Test] Let
∑∞

k=0 ak be a series of positive terms, and let
{ck} be a sequence of positive numbers. If

lim sup

(
ck

ak

ak+1

− ck+1

)
> 0,

then
∑∞

k=0 ak converges. If
∞∑

k=0

1

ck

diverges and

lim inf

(
ck

ak

ak+1

− ck+1

)
< 0,

then
∑∞

k=0 ak diverges.

Proof: Suppose that the first inequality holds, and let L be the limit superior that
appears on the left side of that inequality. Choose a positive number r < L. We can
then find a positive integer N sufficiently large that

ck
ak

ak+1

− ck+1 > r
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for all k > N . Equivalently, for every positive integer j we must have the sequence
of inequalities:

aNcN − aN+1cN+1 > aN+1r
aN+1cN+1 − aN+2cN+2 > aN+2r
aN+2cN+2 − aN+3cN+3 > aN+3r

...
...

...
...

...
aN+j−1cN+j−1 − aN+jcN+j > aN+jr





Summing this sequence of inequalities, and noting the telescoping effect on the left
side of the sum, we obtain, for every j ≥ 1, the inequality

aNcN − aN+jcN+j > r

j∑
i=1

aN+i.

Thus, putting sn =
n∑

k=1

ak, we have

rsN+j − rsN < ancN − aN+jcN+j.

This can be rewritten to obtain

rsN+j < rsN + aNcN − aN+jcN+j

< rsN + aNcN

for every positive integer j. Consequently, the partial sums sn, n > N , are all
bounded by the fixed number sN + aNcN/r. However, because all of the numbers ak

are positive, the sequence {sn} is monotonically increasing and it now follows that
limn→∞ sn exists — i.e, that

∑∞
k=0 ak converges.

Suppose now that
∑∞

k=0 1/ck diverges, and that the second inequality holds. We
can then find a positive integer N so large that

ck
ak

ak+1

− ck+1 < 0

whenever k ≥ N . Consequently

aNcN < aN+1cN+1 < aN+2cN+2 < · · · < ajcj

for any integer j > N . But this means that whenever j > N we must have

aj >
aNcN

cj

.

The series
∑∞

j=0

aNcN

cj

being a divergent series, it now follows from the Comparison

Test that the series
∑∞

k=0 ak diverges.
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Kummer’s Test is a powerful test, in spite of its seeming simplicity. We could
have based a proof of Raabe’s Test on Kummer’s Test, taking ck = k. We could
also have based a proof of the Generalized Raabe Test on Kummer’s Test, taking
ck = k log k. In the case of Raabe’s Test and its generalization, we find that we must
establish rather non-trivial limits. In circumstances involving specific series, we find
that the difficulty of inventing the sequence {ck} required in its hypotheses extorts
stee[ payment for the use of Kummer’s Test.
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