Chapter 14

Series of Functions of Several Variables

The idea of sequences and series of functions can be extended to functions of several variables. For example,

$$
\sum_{n=1}^{\infty}(x y)^{n}=x y+x^{2} y^{2}+x^{3} y^{3}+\cdots+x^{n} y^{n}+\ldots
$$

is a series of functions of two variables of two variables. All of the other notions, such as uniform convergence, can be extended as well.

Theorem 14.1 (Weierstrauss M-Test) Let $\sum_{n=1}^{\infty} f_{n}(x)$ be a series of functions all defined on a subset of $U \subseteq \mathbb{R}$. If there is a convergent series of constants $\sum_{n=1}^{\infty} M_{n}$ such that

$$
\left|f_{n}(x)\right| \leq M_{n} \text { for all } x \in U,
$$

then the series $\sum_{n=1}^{\infty} f_{n}(x)$ converges absolutely for each $x \in U$ and is uniformly convergent on U.

Now we can define power series in several variables. For two variables x, y such a power series is a series

$$
\sum_{n=0}^{\infty} f_{n}(x, y)=f_{0}(x, y)+f_{1}(x, y)+\ldots
$$

where

$$
f_{n}(x, y)=c_{n, 0} x^{n}+c_{n, 1} x^{n-1} y+c_{n-2,2} x^{n-2} y^{2}+\cdots+c_{n, n-1} x y^{n-1}+c_{n, n} y^{n}
$$

with each $c_{i, j}$ being a constant. What we have done is to collect all the terms of the same degree. Each f_{n} is called a homogeneous polynomial of degree n in x and y. Our first series is an example of this where

$$
\begin{aligned}
f_{2 n}(x, y) & =x^{n} y^{n} \\
f_{2 n+1}(x, y) & =0 .
\end{aligned}
$$

This power series also is an example of how complicated the set on which the series converges might be. Since the series looks like a geometric series, we can, in fact, show that it converges for $|x y|<1$.

If a function $f(x, y)$ can be represented by such a
 power series in a neighborhood of the origin,

$$
f(x, y)=c_{0,0}+\left(c_{1,0} x+c_{1,1} y\right)+\left(c_{2,0} x^{2}+c_{2,1} x y+c_{2,2} y^{2}\right)+\ldots
$$

then when we do a term-by-term differentiation, we find that

$$
\begin{aligned}
c_{0,0} & =f(0,0) & c_{1,0} & =\frac{\partial f}{\partial x}(0,0) \\
c_{1,1} & =\frac{\partial f}{\partial y}(0,0) & c_{2,0} & =\frac{1}{2!} \frac{\partial^{2} f}{\partial x^{2}}(0,0) \\
c_{2,1} & =\frac{2}{2!} \frac{\partial^{2} f}{\partial x \partial y}(0,0) & c_{2,2} & =\frac{1}{2!} \frac{\partial^{2} f}{\partial y^{2}}(0,0)
\end{aligned}
$$

In general we can show that

$$
\begin{aligned}
f_{n}(x, y)=\frac{1}{n!}\left(\binom{n}{0} \frac{\partial^{n} f}{\partial x^{n}} x^{n}\right. & +\binom{n}{1} \frac{\partial^{n} f}{\partial^{n}-1 x \partial y} x^{n-1} y+\frac{1}{2!}\binom{n}{2} \frac{\partial^{n} f}{\partial^{n-2} x \partial^{2} y} x^{n-2} y^{2}+\ldots \\
& \left.+\frac{1}{k!}\binom{n}{k} \frac{\partial^{n} f}{\partial^{n-k} x \partial^{k} y} x^{n-k} y^{k}+\ldots+\cdots+\binom{n}{n} \frac{\partial^{n} f}{\partial y^{n}} y^{n}\right)
\end{aligned}
$$

with all the derivatives being evaluated at $(0,0)$. A series $\sum f_{n}(x, y)$, in which f_{n} are given by above is known as a Taylor series in x and y, about $(0,0)$, and the function $f(x, y)$ that it represents is called analytic in the region where it converges.

The Taylor series expansion about a general point (a, b) is obtained by translating from the origin:

$$
\begin{aligned}
& f(x, y)=f(a, b)=\left[\frac{\partial f}{\partial x}(x-a)+\frac{\partial f}{\partial y}(y-b)\right] \\
& +\frac{1}{2!}\left[\frac{\partial^{2} f}{\partial x^{2}}(x-a)^{2}+2 \frac{\partial^{2} f}{\partial x \partial y}(x-a)(y-b)+\frac{\partial^{2} f}{\partial y^{2}}(y-b)^{2}\right] \\
& +\cdots+\frac{1}{n!}\left[\frac{\partial^{n} f}{\partial x^{n}}(x-a)^{n}+\ldots\right]+\ldots,
\end{aligned}
$$

where all the derivatives are evaluated at (a, b).
There is a notation that is often used, called the nth differential $d^{n} f$ of the function $f(x, y)$:

$$
\begin{aligned}
d^{n} f & =\frac{\partial^{n} f}{\partial x^{n}}(x-a)^{n}+\ldots \\
& =\sum_{k=0}^{n}\binom{n}{k} \frac{\partial^{n} f}{\partial x^{k} \partial y^{n-k}}(a, b)(x-a)^{k}(y-b)^{n-k}
\end{aligned}
$$

To indicate the dependence of $d^{n} f$ on the numbers a and b and the differences $x-a$ and $y-b$, we write

$$
d^{n} f=d^{n} f(a, b ; x-a, y-b)
$$

The series can then be written more concisely:

$$
\begin{aligned}
f(x, y)=f(a, b)+ & d f(a, b ; x-a, y-b) \\
& +\frac{1}{2!} d^{2} f(a, b ; x-a, y-b)+\cdots+\frac{1}{n!} d^{n} f(a, b ; x-a, y-b)+\ldots
\end{aligned}
$$

14.1 Taylor's Formula for Functions of Several Variables

There is a Taylor's formula with remainder for functions of several variables:

$$
\begin{aligned}
& f(x, y)=f(a, b)+d f(a, b ; x-a, y-b)+\cdots+\frac{1}{n!} d^{n} f(a, b ; x-a, y-b) \\
& +\frac{1}{(n+1)!} d^{n+1} f\left(x^{*}, y^{*} ; x-a, y-b\right) ; \\
& \quad x^{*}=a+t^{*}(x-a), \quad y^{*}=b+t^{*}(y-b), \quad 0<t^{*}<1 .
\end{aligned}
$$

The point $\left(x^{*}, y^{*}\right)$ lies on the line segment between (a, b) and (x, y). For $n=1$, the formula becomes

$$
f(x, y)=f(a, b)+(x-a) f_{x}\left(x^{*}, y^{*}\right)+(y-b) f_{y}\left(x^{*}, y^{*}\right) .
$$

This is known as the Mean Value Theorem for a function of two variables.
Example 14.1 Lets find the power series expansion for $e^{x^{2}-y^{2}}$.
There are at least two ways we can do this. The first is the direct method.

$$
f(x, y)=c_{0,0}+\left(c_{1,0} x+c_{1,1} y\right)+\left(c_{2,0} x^{2}+c_{2,1} x y+c_{2,2} y^{2}\right)+\ldots
$$

and we know that

$$
\begin{aligned}
& c_{0,0}=f(0,0)=1 \\
& c_{1,0}=f_{x}(0,0)=\left.2 x e^{x^{2}-y^{2}}\right|_{x=0, y=0}=0 \\
& c_{1,1}=f_{y}(0,0)=-\left.2 y e^{x^{2}-y^{2}}\right|_{x=0, y=0}=0 \\
& c_{2,0}=\frac{1}{2!} f_{x x}(0,0)=\left.\frac{1}{2!}\left(2+4 x^{2}\right) e^{x^{2}-y^{2}}\right|_{x=0, y=0}=1 \\
& c_{2,1}=\frac{2}{2!} f_{x y}(0,0)=\left.\frac{2}{2!}(-4 x y) e^{x^{2}-y^{2}}\right|_{x=0, y=0}=0 \\
& c_{2,2}=\frac{1}{2!} f_{y y}(0,0)=\left.\frac{1}{2!}\left(-2+4 y^{2}\right) e^{x^{2}-y^{2}}\right|_{x=0, y=0}=-1 \\
& c_{3, k}=0 \\
& c_{4,0}=\frac{1}{4!} f_{x x x x}(0,0)=\left.\frac{1}{4!}\left(12+48 x^{2}+16 x^{4}\right) e^{x^{2}-y^{2}}\right|_{x=0, y=0}=\frac{1}{2} \\
& c_{4,1}=\frac{4}{4!} f_{x x x y}(0,0)=\left.\frac{4}{4!}\left(-24 x y-16 x^{3} y\right) e^{x^{2}-y^{2}}\right|_{x=0, y=0}=0 \\
& c_{4,2}=\frac{6}{4!} f_{x x y y}(0,0)=\left.\frac{6}{4!}\left(-4+8 y^{2}-8 x^{2}+16 x^{2} y^{2}\right) e^{x^{2}-y^{2}}\right|_{x=0, y=0}=-1 \\
& c_{4,3}=\frac{4}{4!} f_{x y y y}(0,0)=\left.\frac{4}{4!}\left(24 x y-16 x y^{3}\right) e^{x^{2}-y^{2}}\right|_{x=0, y=0}=0 \\
& c_{4,4}=\frac{1}{4!} f_{y y y y}(0,0)=\left.\frac{1}{4!}\left(12-48 y^{2}+16 y^{4}\right) e^{x^{2}-y^{2}}\right|_{x=0, y=0}=\frac{1}{2}
\end{aligned}
$$

This gives us that

$$
\begin{aligned}
e^{x^{2}-y^{2}} & =1+x^{2}-y^{2}+\frac{1}{2} x^{4}-x^{2} y^{2}+\frac{1}{2} y^{4}+\ldots \\
& =1+\left(x^{2}-y^{2}\right)+\frac{1}{2!}\left(x^{2}-y^{2}\right)^{2}+\ldots
\end{aligned}
$$

It looks as if there is a pattern. Can we see it better?
We know that

$$
e^{x}=1+x+\frac{1}{2!} x^{2}+\cdots+\frac{1}{n!} x^{n}+\ldots
$$

Substituting $x^{2}-y^{2}$ for x gives us:

$$
e^{x^{2}-y^{2}}=1+\left(x^{2}-y^{2}\right)+\frac{1}{2!}\left(x^{2}-y^{2}\right)^{2}+\cdots+\frac{1}{n!}\left(x^{2}-y^{2}\right)^{n}+\ldots
$$

and this converges for all x, y.

14.1. TAYLOR'S FORMULA FOR FUNCTIONS OF SEVERAL VARIABLES 209

What about something like $e^{x} \sin y$? Here, we expect that we can take the series for e^{x} and $\sin y$ and multiply them together.

$$
\begin{aligned}
e^{x} \sin y & =\left(1+x+\frac{1}{2} x^{2}+\frac{1}{6!} x^{3}+\ldots\right)\left(y-\frac{1}{3!} y^{3}+\frac{1}{5!} y^{5}+\ldots\right) \\
& =y+x y+\frac{1}{2} x^{2} y-\frac{1}{3!} y^{3}+\frac{1}{3!} x^{3} y-\frac{1}{3!} x y^{3}+\frac{1}{24} x^{4} y-\frac{1}{12} x^{2} y^{3}+\frac{1}{120} y^{5}+\ldots \\
& =y+\frac{1}{2!}(2 x y)+\frac{1}{3!}\left(3 x^{2} y-y^{3}\right)+\frac{1}{4!}\left(4 x^{3} y-4 x y^{3}\right)+\frac{1}{5!}\left(5 x^{4} y-20 x^{2} y^{3}+y^{5}\right)+\ldots
\end{aligned}
$$

Of course, we can use the previous results and check the coefficients from the derivatives. We will get the same result.

