
Chapter 14

Series of Functions of Several
Variables

The idea of sequences and series of functions can be extended to functions of several
variables. For example,

∞
∑

n=1

(xy)n = xy + x2y2 + x3y3 + · · · + xnyn + . . .

is a series of functions of two variables of two variables. All of the other notions, such
as uniform convergence, can be extended as well.

Theorem 14.1 (Weierstrauss M-Test) Let

∞
∑

n=1

fn(x) be a series of functions all

defined on a subset of U ⊆ R. If there is a convergent series of constants

∞
∑

n=1

Mn such

that

|fn(x)| ≤ Mn for all x ∈ U,

then the series

∞
∑

n=1

fn(x) converges absolutely for each x ∈ U and is uniformly con-

vergent on U .

Now we can define power series in several variables. For two variables x, y such a
power series is a series

∞
∑

n=0

fn(x, y) = f0(x, y) + f1(x, y) + . . .

where

fn(x, y) = cn,0x
n + cn,1x

n−1y + cn−2,2x
n−2y2 + · · ·+ cn,n−1xyn−1 + cn,ny

n,
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206 CHAPTER 14. SERIES OF FUNCTIONS OF SEVERAL VARIABLES

with each ci,j being a constant. What we have done is to collect all the terms of the
same degree. Each fn is called a homogeneous polynomial of degree n in x and y. Our
first series is an example of this where

f2n(x, y) = xnyn

f2n+1(x, y) = 0.

This power series also is an example of how complicated the set on which the series
converges might be. Since the series looks like a geometric series, we can, in fact,
show that it converges for |xy| < 1.

diverge

diverge

diverge

converge

diverge

If a function f(x, y) can be represented by such a
power series in a neighborhood of the origin,

f(x, y) = c0,0+(c1,0x+c1,1y)+(c2,0x
2+c2,1xy+c2,2y

2)+. . .

then when we do a term-by-term differentiation, we
find that

c0,0 = f(0, 0) c1,0 =
∂f

∂x
(0, 0)

c1,1 =
∂f

∂y
(0, 0) c2,0 =

1

2!

∂2f

∂x2
(0, 0)

c2,1 =
2

2!

∂2f

∂x∂y
(0, 0) c2,2 =

1

2!

∂2f

∂y2
(0, 0)

In general we can show that

fn(x, y) =
1

n!

((

n

0

)

∂nf

∂xn
xn +

(

n

1

)

∂nf

∂n − 1x∂y
xn−1y +

1

2!

(

n

2

)

∂nf

∂n−2x∂2y
xn−2y2 + . . .

+
1

k!

(

n

k

)

∂nf

∂n−kx∂ky
xn−kyk + . . . + · · ·+

(

n

n

)

∂nf

∂yn
yn

)

,

with all the derivatives being evaluated at (0, 0). A series
∑

fn(x, y), in which fn are
given by above is known as a Taylor series in x and y, about (0, 0), and the function
f(x, y) that it represents is called analytic in the region where it converges.

The Taylor series expansion about a general point (a, b) is obtained by translating
from the origin:

f(x, y) = f(a, b) =

[

∂f

∂x
(x − a) +

∂f

∂y
(y − b)

]

+
1

2!

[

∂2f

∂x2
(x − a)2 + 2

∂2f

∂x∂y
(x − a)(y − b) +

∂2f

∂y2
(y − b)2

]

+ · · · +
1

n!

[

∂nf

∂xn
(x − a)n + . . .

]

+ . . . ,
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14.1. TAYLOR’S FORMULA FOR FUNCTIONS OF SEVERAL VARIABLES 207

where all the derivatives are evaluated at (a, b).

There is a notation that is often used, called the nth differential dnf of the function
f(x, y):

dnf =
∂nf

∂xn
(x − a)n + . . .

=

n
∑

k=0

(

n

k

)

∂nf

∂xk∂yn−k
(a, b)(x − a)k(y − b)n−k.

To indicate the dependence of dnf on the numbers a and b and the differences x − a

and y − b, we write

dnf = dnf(a, b; x − a, y − b).

The series can then be written more concisely:

f(x, y) = f(a, b) + df(a, b; x − a, y − b)

+
1

2!
d2f(a, b; x − a, y − b) + · · ·+

1

n!
dnf(a, b; x − a, y − b) + . . .

14.1 Taylor’s Formula for Functions of Several Vari-

ables

There is a Taylor’s formula with remainder for functions of several variables:

f(x, y) = f(a, b) + df(a, b; x − a, y − b) + · · ·+
1

n!
dnf(a, b; x − a, y − b)

+
1

(n + 1)!
dn+1f(x∗, y∗; x − a, y − b);

x∗ = a + t∗(x − a), y∗ = b + t∗(y − b), 0 < t∗ < 1.

The point (x∗, y∗) lies on the line segment between (a, b) and (x, y). For n = 1,
the formula becomes

f(x, y) = f(a, b) + (x − a)fx(x
∗, y∗) + (y − b)fy(x

∗, y∗).

This is known as the Mean Value Theorem for a function of two variables.

Example 14.1 Lets find the power series expansion for ex2
−y2

.

There are at least two ways we can do this. The first is the direct method.

f(x, y) = c0,0 + (c1,0x + c1,1y) + (c2,0x
2 + c2,1xy + c2,2y

2) + . . .
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and we know that

c0,0 = f(0, 0) = 1

c1,0 = fx(0, 0) = 2xex2
−y2

∣

∣

∣

x=0,y=0

= 0

c1,1 = fy(0, 0) = −2yex2
−y2

∣

∣

∣

x=0,y=0

= 0

c2,0 =
1

2!
fxx(0, 0) =

1

2!
(2 + 4x2)ex2

−y2

∣

∣

∣

x=0,y=0

= 1

c2,1 =
2

2!
fxy(0, 0) =

2

2!
(−4xy)ex2

−y2

∣

∣

∣

x=0,y=0

= 0

c2,2 =
1

2!
fyy(0, 0) =

1

2!
(−2 + 4y2)ex2

−y2

∣

∣

∣

x=0,y=0

= −1

c3,k = 0

c4,0 =
1

4!
fxxxx(0, 0) =

1

4!
(12 + 48x2 + 16x4)ex2

−y2

∣

∣

∣

x=0,y=0

=
1

2

c4,1 =
4

4!
fxxxy(0, 0) =

4

4!
(−24xy − 16x3y)ex2

−y2

∣

∣

∣

x=0,y=0

= 0

c4,2 =
6

4!
fxxyy(0, 0) =

6

4!
(−4 + 8y2 − 8x2 + 16x2y2)ex2

−y2

∣

∣

∣

x=0,y=0

= −1

c4,3 =
4

4!
fxyyy(0, 0) =

4

4!
(24xy − 16xy3)ex2

−y2

∣

∣

∣

x=0,y=0

= 0

c4,4 =
1

4!
fyyyy(0, 0) =

1

4!
(12 − 48y2 + 16y4)ex2

−y2

∣

∣

∣

x=0,y=0

=
1

2

This gives us that

ex2
−y2

= 1 + x2 − y2 +
1

2
x4 − x2y2 +

1

2
y4 + . . .

= 1 + (x2 − y2) +
1

2!
(x2 − y2)2 + . . .

It looks as if there is a pattern. Can we see it better?

We know that

ex = 1 + x +
1

2!
x2 + · · · +

1

n!
xn + . . .

Substituting x2 − y2 for x gives us:

ex2
−y2

= 1 + (x2 − y2) +
1

2!
(x2 − y2)2 + · · ·+

1

n!
(x2 − y2)n + . . .

and this converges for all x, y.
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What about something like ex sin y? Here, we expect that we can take the series
for ex and sin y and multiply them together.

ex sin y =

(

1 + x +
1

2
x2 +

1

6!
x3 + . . .

) (

y −
1

3!
y3 +

1

5!
y5 + . . .

)

= y + xy +
1

2
x2y −

1

3!
y3 +

1

3!
x3y −

1

3!
xy3 +

1

24
x4y −

1

12
x2y3 +

1

120
y5 + . . .

= y +
1

2!
(2xy) +

1

3!
(3x2y − y3) +

1

4!
(4x3y − 4xy3) +

1

5!
(5x4y − 20x2y3 + y5) + . . .

Of course, we can use the previous results and check the coefficients from the
derivatives. We will get the same result.
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