
Chapter 2

The Rules of the Game

We have mentioned that Euclid gathered all that was known about geometry and gathered
it together in his Elements. We note that from what we have found to date, the Greeks
beginning with Thales of Miletus took a more theoretical view of geometry and worked
to systematize geometric knowledge by showing that certain results follow logically from
others.

2.1 Euclid’s Elements

We believe that the work of the Greek geometers reached a peak with the appearance of
Euclid’s work. It appeared in 13 ‘books’, where each book is more like one of a modern
textbook’s chapters.

Euclidean geometry is studied from three different perspectives that show themselves
in high school geometry. The first and oldest of these is called the traditional perspective,
or sometimes the axiomatic perspective. In this way of studying geometry we start, as
did Euclid, with the axioms and postulates of Euclid. From this core of results, we can
modify certain axioms or postulates and derive finite geometries, non-Euclidean geometries
and other systems whose results can be compared to those that we deduced in Euclidean
geometry.

A second perspective is credited to the German mathematician Felix Klein (1849–1925)
who was looking for a manner in which to unify the study of geometry. He, together
with the Swedish mathematician Sophus Lie (1842–1899), viewed geometry as studying
properties of figures that are invariant under certain transformations. This was not really
new, in some sense, since Euclid used the property of “superposition” in his books. This is
called the transformation perspective of geometry. By modifying the properties selected to
be invariant, we can generate different geometries — such as affine geometries, Euclidean
geometry, non-Euclidean geometries, projective geometries, or even topology.

The third perspective also originates in the 19th century and is based on studying
geometry as a vector space. This is called the vector perspective. It lends itself to a much
more analytic study of geometry.

That being said, any of these perspectives can be approached either synthetically or
analytically. The synthetic approaches tend to use numbers as rarely as possible and are
based on a more axiomatic development of the geometry. The analytic approaches take
advantage of the properties of numbers (and algebra) to deduce geometric properties.
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20 CHAPTER 2. THE RULES OF THE GAME

2.2 Deduction and Proof

The process by which we develop Geometry is tried and true. We may not always start
with exactly the same set of axioms or undefined terms, but we do know the path by which
we will travel. We will generate theorems using the rules of “deductive logic.” What does
this mean?

In logic, especially the type that we will use in Geometry, we accept the following
common notion.
Law of the Excluded Middle A statement is either true or false, that is P or not P.

There is not other possibility. For example, if P is the proposition,
“The grass is green.”

then the Law of Excluded Middle holds that the logical statement
Either Socrates is mortal or Socrates is not mortal.

is true by virtue of its form alone.
Here is n example of an argument that depends on the Law of Excluded Middle.

Lemma 2.1 There exist two irrational numbers a and b such that ab is rational.

Proof: It is known that
√

2 is irrational. Consider the number
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.

Clearly this number is either rational or irrational. If it is rational, we are done. If it is
irrational, then let
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and 2 is certainly rational. This concludes the proof.

In the above argument, the statement “this number is either rational or irrational”
invokes the Law of Excluded Middle.

There are multivalued logics, or fuzzy logics, in which we do not take the stance that
each statement must be true or false.

This stance that you can always determine the truth of a mathematical statement is
true in some sense. If you agree with the assumptions in the statement or in the problem,
and if valid reasoning has been used, the you must agree with the results. This property of
truth based on assumptions and valid reasoning is a result of a basic underlying aspect of
mathematical thinking — the deductive process, or deduction. In mathematics results that
have been deduced from agreed upon statements, such as axioms, definitions or previously
proven statements, using valid arguments of deduction can be thought of as true. We call
these results theorems. The deductive argument itself is called a proof.

Now, before we messed it all up by finding non-Euclidean geometries, theorems proved
using deduction were usually considered to be absolute truths, or independent of the
particular axioms that you chose for the geometry. We sometimes create different axioms
sets because some results may be more accessible using this axiom set rather than another.
We had thought that we always ended in the same place, so there was little concern. Now
we know that the postulates that we chose define the mathematical system, so our results
are relative truths, or true based on the assumptions of that system.
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2.3 The Power of Deduction

It may seem hard to believe that this is such a powerful tool. However, it clearly trumps
observation. In Euclidean geometry we prove that the sum of the angles of a triangle is
180◦. This isn’t just the triangles you can draw on your paper, or the triangles that appear
on the screen in a Dynamic Geometry System (DGS), or triangles that have whole number
angle measures. It is EVERY triangle. You cannot find every triangle and measure it —
and even if you could, you still could not measure it precisely enough. We know that every
triangle in Euclidean geometry has the same angle sum — every one!

There are times when we use deduction to “prove the obvious” such as that the base

angles of an isosceles triangle are congruent. However, we must remember that what may
seem obvious in one case may not be so obvious in the next. Also, sometimes what seems
“obvious” may turn out not to be true. Another strength is that by deduction we can prove
theorems to be true even when they are hard to believe.

Another aspect of deduction is that it not only can show a statement to be true, but also
can indicate why it is true. A fourth aspect of the power of deduction is that it provides a
universally accepted criterion for the establishment of mathematical truth. Although some
philosophers may debate about the foundations of mathematics and some mathematicians
question whether a proof in which computers did much of the work (such as the solution
to the Four Color Theorem) constitutes a proof, or whether a complicated proof has a gap,
there is universal agreement on the principles behind deductive proof. Consequently, when
a new theorem is proved (consider the proof of Fermat’s Last Theorem or, more recently,
the solution of the Poincaré conjecture), no one goes to the lab to check the results. Only
the argument is checked to see that the steps were valid based on the suppositions.

2.4 All Power Corrupts

With power comes responsibility. It must be used carefully. This is not always the case.
Geometry is especially suspect because we so much want to rely on drawings to “see” what
is going on. These can often lead one astray!!

Theorem 2.1 Every triangle is isosceles.

Proof: Given △ABC with AC 6= BC.

1. Construct the bisector of 〈C. Call it ℓ. ℓ is not perpendicular to AB because AC 6=
BC.

2. Construct the perpendicular bisector of segment AB. Call it m and let D = AB ∩m.
Since ℓ and m are not both perpendicular to AB, ℓ and m must intersect in a point,
P .

3. Construct the perpendicular from P to
←→
BC, and let F be the foot of P in

←→
BC.

Likewise, construct the perpendicular from P to
←→
AC and let E be the foot of P in←→

AC.

4. 〈ACP ∼= 〈BCP , since
←→
CP = ℓ is the bisector of 〈C.

5. 〈CEP ∼= 〈CFP , since they are both right angles.
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6. △CEP ∼= △CFP by AAS.

7. EP ∼= FP and CE ∼= CF because ‘CPCTC’1

8. So, AP ∼= BP since a point on the perpendicular bisector of a line segment is equidis-
tant from the endpoints of the line segment.

9. ∠AEP ∼= ∠BFP since they are both right angles.

10. CLAIM : EA ∼= FB.

(a) Suppose that EA > BF , then there is a point A′ on EA, different from A, with
EA′ ∼= BF . Then ∠A′EP is a right angle.

(b) ∠AA′P is obtuse by the Exterior Angle Theorem.

(c) △FPB ∼= △EPA′ by SAS.

(d) PA′ ∼= PB — CPCTC

(e) PA′ ∼= PA

This is impossible, so EA ∼= FB.

11. AC ∼= BC since CE ∼= CF and EA ∪ AC = CE and FB ∪ BC = CF .

Therefore △ABC is isosceles.

Okay, what is wrong? If nothing is wrong, then the result has to be true, yet you can
probably easily think of a triangle that is not isosceles. Did we use an incorrect result? No.
We any steps logically invalid? No. Yet something is wrong.

Here is another conundrum — you need to find the mistake.

Theorem 2.2 A right angle has the same measure as an obtuse angle.
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Proof: Construct a rectangle 2ABCD. Choose a point E not on the rectangle so that
AD ∼= CD. Construct the perpendicular bisector of AE and call it ℓ. Construct the
perpendicular bisector of CD and call it m. Then ℓ∩m 6= ∅. Call the point of intersection
P . Let M be the midpoint of AE and let N be the midpoint of CD. Construct segments
DP , EP , AP , and CP .

1. AP ∼= EP , since P is on the perpendicular bisector of AE.

2. DP = CP since P is on the perpendicular bisector of CD.

3. By construction AD ∼= CE.

4. Thus, △ECP ∼= △ADP by the SSS Congruence criterion.

5. Therefore ∠ECP ∼= ∠ADP by CPCTC.

6. Since DP ∼= CP , △DNP ∼= △CNP , by the SSS Congruence criterion.

7. ∠DCP ∼= ∠CDP by CPCTC.

8. Now, ∠ECP = ∠DCP + ∠ECD and ∠ADP = ∠CDP + ∠ADC.

9. Thus, ∠ECD ∼= ∠ADC.

10. Since E lies outside the rectangle, ∠ECD > ∠BCD so it is obtuse.

11. ∠ACD is an angle of the rectangle, so it is a right angle.

12. We have ∠ECD ∼= ∠ADC so a right angle is congruent to an obtuse angle.

1corresponding parts of congruent triangles are congruent
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This completes the proof.

Theorem 2.3 Two distinct perpendiculars can be drawn to a given line from a given ex-

ternal point.

� �� �� ��� �
Proof: Draw any two circles centered at O and O′, intersecting at points P and N . Draw
diameters PA and PB and then draw AB intersecting the circles at C and D. ∠PDA and
∠PCB are right angles because they are inscribed in semicircles. Thus PC and PD are
both perpendicular to AB.

Theorem 2.4 Every point inside a circle is on the circle.

�
�� �� �

Proof: Consider the circle γ with center O and let P be inside the circle. Choose a point
R on ray

−−→
OP so that (OP )(OR) = r2, where r is the radius of γ. Let the perpendicular

bisector of PR intersect the circle at points S and T and let M be the midpoint of PR.

OP = OM − MP

OR = OM + MR = OM + MP

(OP )(OR) = (OM − MP )(OM + MP )

= (OM)2 − (MP )2
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By the Pythagorean Theorem

(OM)2 + (MS)2 = (OS)2

(OM)2 = (OS)2 − (MS)2

(MP )2 + (MS)2 = (PS)2

(MP )2 = (PS)2 − (MS)2

(OP )(OR) = (OM)2 − (MP )2 = [(OS)2 − (MS)2] − [(PS)2 − (MS)2]

= (OS)2 − (PS)2

But (OS)2 = r2 = (OP )(OR)

(OP )(OR) = (OP )(OR) − (PS)2

Therefore, PS = 0 and P must be on the circle!

The purpose of this section is to show us that while the power of deduction is a very
powerful tool, we can misuse it by relying too much on diagrams. This means that we must
question many of the diagrams in proofs. We should have an axiomatic or logical reason
for a diagram to be represented in a proof. It can be a guideline, but it cannot serve as a
proof itself.
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