
Chapter 5

Collinearity of Triangle Points

In the last section we looked at when lines were concurrent. In this section, we will go the
“opposite way” and look when points are collinear.

5.1 The Euler Line
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Figure 5.1: Euler line

What happens if the circumcenter, O, co-
incides with the centroid, G? That would
mean that the medians of the triangle are
the perpendicular bisectors as well. This
will force the triangle to be an equilateral
triangle. What happens if the triangle is
not equilateral? Is there any relationship
between the circumcenter and the centroid?
They will be distinct.

Theorem 5.1 (The Euler Line) The cir-
cumcenter O, the centroid G, and the ortho-
center H are collinear. Furthermore, G lies
between O and H and

|OG|

|GH|
=

1

2
.

This line is called the Euler line. It was
not discovered in any ancient writings and apparently, Leonhard Euler (1707–1783) was the
first to discover this result.

5.2 Pedal Triangles and the Simson Line

The Euler line is not unique in the study of triangles. There are other interesting points
and lines associated to any triangle.

A cyclic quadrilateral is a quadrilateral that can be inscribed in a circle. The following
is left for homework.
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Figure 5.2: Pedal Triangle
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Figure 5.3: Simson Line

Theorem 5.2 A convex quadrilateral ABCD is a cyclic quadrilateral if and only if ∠ABC+
∠CDA = 180◦.

Let △ABC be an arbitrary triangle and let P be a point either inside or outside the
triangle. Let X be the foot of the perpendicular to the extended side BC and through
P . Define points Y and Z on the extended sides AC and AB respectively, similarly. The
triangle △XY Z is called the pedal triangle with respect to the point P and the triangle
△ABC.(cf. Figure 5.2

Lemma 5.1 Let P be a point inside △ABC, and let △XY Z be the pedal triangle with
respect to P . Then ∠APB = ∠ACB + ∠XZY .

Proof: Let CP intersect AB at C ′. Then write

∠APB = ∠APC ′ + ∠C ′PB.

Since ∠ABC ′ is an exterior angle of △APC, we have that ∠APC ′ = ∠PAC + ∠ACP .
Now, ∠PZA = ∠AY P = 90◦, so they sum to 180◦ and AY PZ is a cyclic quadrilateral.
Thus,

∠PAC = ∠PAY = ∠PZY,

which implies ∠APC ′ = ∠PZY + ∠ACP . Similarly, ∠C ′PB = ∠XZP + ∠PCB. Thus,

∠APB = ∠APC ′ + ∠C ′PB

= (∠PZY + ∠XZP ) + (∠ACP + ∠PCB)

= ∠XZY + ∠ACB,

as desired.

Theorem 5.3 (The Simson Line) Let Γ be the circumcircle for △ABC. Let P be a
point on Γ, and let △XY Z be the pedal triangle with respect to P . Then △XY Z is a
degenerate triangle, i.e. the points X, Y , Z are collinear. This line is called the Simson
line.

MATH 6118-090 Spring 2008



5.3. TRIANGLE CENTERS AND RELATIVE LINES 49

Proof: Without loss of generality, we may assume P lies on the arc AC. Then ∠APB =
∠ACB, since they subtend the same arc. Hence, by Lemma 5.1 ∠XZY = 0. That is
△XY Z is degenerate. Thus, X,Y , and Z are collinear.

5.3 Triangle Centers and Relative Lines

Recall that an excircle of a triangle △ABC is a circle outside the triangle that is tangent
to all three of the lines that extend the sides of the triangle. We have three such circles,
each tangent to a side and the extensions of the other two sides.

Lemma 5.2 The lines connecting the point of tangency of each excircle of △ABC to the
opposite vertex will intersect in a point, called the Nagel point, N . (cf. Figure 5.4)
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Figure 5.4: Nagel Point

One more point of interest is the center of the incircle for
△ABC’s medial triangle. This circle is called the Spieker
circle and its center is called the Spieker point, S.

Lemma 5.3 The Nagel segment is a line segment from
the incenter, I, to the Nagel point, N , which contains the
Spieker point, S, and the centroid, G.(cf. Figure 5.5)

We display the following results about the Nagel seg-
ment and the Spieker circle without proof.

Lemma 5.4 For △ABC,

1. The Spieker circle is the incircle of △ABC’s medial
triangle.

2. The Spieker circle has radius one-half of △ABC’s in-
circle.

3. The Spieker circle is the incircle of the triangle whose
vertices are the midpoints of the segments that join
△ABC’s vertices with its Nagel point.

4. The Spieker circle is tangent to the sides of △ABC’s
medial triangle where that triangle’s sides are cut by
the lines that join △ABC’s vertices with its Nagel
point.

Note the similarity to the nine-point circle. In addition, we have the following.

Lemma 5.5 The Spieker point is the midpoint of the Nagel segment. The centroid is one-
third of the way from the incenter to the Nagel point.
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Figure 5.5: Nagel Segment

These theorems of concurrence we have considered to now
are related to the concurrence of three lines. Lines are not the
only items of interest in geometry. Miquel’s Theorem consid-
ers the concurrence of sets of three circles associated with a
triangle.

Theorem 5.4 (Miquel’s Theorem) If three points are
chosen, one on each side of a triangle, then the three cir-
cles determined by a vertex and the two points on the adjacent

sides meet at a point called the Miquel point.

D

G

A

C

B
E

F

Figure 5.6: Miquel Point

Proof: Let △ABC be our triangle and let D,E, and F be
arbitrary points on the sides of the triangle. Construct the
circles determined by pairs of these points and a vertex. Con-
sider two of the circles, C1 and C2, with centers I and J . They
must intersect at D, so they must intersect at a second point,
call it G. In circle C2, we have that the angles ∠EGD and
∠ECD are supplementary. In circle C1 ∠FGD and ∠ABD

are supplementary.
Then,

∠EGD◦ + ∠DGF ◦ + ∠EGF ◦ = 360◦

(180◦ − ∠C◦) + (180◦ − ∠B◦) + ∠EGF ◦ = 360◦

∠EGF ◦ = ∠C◦ + ∠B◦

= 180◦ − ∠A◦

so that ∠EGF and ∠EAF are supplementary, and hence E, A, F , and G form a cyclic
quadrilateral. Thus, all three circles are concurrent. Note that you must modify this proof,
slightly, if the Miquel point is outside of the triangle.

5.4 Morley’s Theorem

Theorem 5.5 (Morley’s Theorem) The adjacent trisectors of the angles of a triangle
are concurrent by pairs at the vertices of an equilateral triangle.

The following proof is due to John Conway.

Proof: Let the angles A,B,and C measure 3α, 3β, and 3γ respectively. Let x+ mean
x + 60◦. Now, we have that α + β + γ = 60◦, since 3α + 3β + 3γ = 180◦. Then there
certainly exist seven abstract triangles having the angles:

1 2 3 4 5 6 7

α++, β, γ α, β++, γ α, β, γ++ α, β+, γ+ α+, β, γ+ α+, β+, γ 0+, 0+, 0+

since in every case the triple of angles adds to 180 degrees. Now these triangles are only
determined up to scale, i.e., up to similarity. Determine the scale by saying that certain
lines are all to have the same length.

Triangle number 7, with angles 0+, 0+, 0+, is clearly equilateral, so we can take all its
edges to have some fixed length L. Then arrange the edges joining B+ to C+ in triangle 4,
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Figure 5.7: Morley’s Theorem

C+ to A+ in triangle 5, and A+ to B+ in triangle 6 also to have length L. We will scale the
other triangles appropriately.

Then it’s easy to see that these all fit together to make up a triangle whose angles are
3A, 3B, 3C, and which is therefore similar to the original one, so proving Morley’s theorem.
To see this, you just have to check that any two sides that come together have the same
length, and that the angles around any internal vertex add to 360 degrees. The latter is
easy, and the former is proved using congruences such as that that takes the vertices A,
C+, B+ of triangle number 4 to the points A, B++, Y of triangle number 2.

5.5 General Collinearity and Duality

We used Ceva’s Theorem to tell us when three lines are concurrent. It would be useful
to have a similar theorem to tell us when three points lie on a single line, or a theorem
about collinearity. In some sense this belongs to the principle of duality that runs through
mathematics. In geometry given a statement concerning points and lines in a plane, when
the word point is replaced by the word line and the word line is replaced by the word point,
then the resulting statement is called the dual of the original statement. Dual statements
are interesting when they are true. Thus, the principle of duality makes collinearity the
dual concept to concurrency.

Look at a couple of examples.

Statement Dual Statement
1. Two distinct points determine a unique
line.

1. Two distinct lines determine a unique
point.

2. Any point is coincident with an infinite
number of lines.

2. Any line is coincident with an infinity
number of points.

3. Only one triangle is determined by
three noncollinear points.

3. Only one trilateral is determined by
three nonconcurrent lines.

5.5.1 Menelaus’ Theorem

Much of Greek geometry was lost prior to the Renaissance and many of the theorems
discovered by the early Italian mathematicians were already known to the Greeks. In fact,
it was the rediscovery of the theorem of Menelaus of Alexandria that led Ceva to his theorem.
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Theorem 5.6 (Menelaus’ Theorem) The three points P , Q, and R one the sides
←→

AC,
←→

AB, and
←→

BC, respectively, of △ABC are collinear if and only if

AQ

QB
·
BR

RC
·
CP

PA
= −1.
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Figure 5.8: Menelaus’ Theorem

Proof: Again, as in Ceva’s Theorem, we have a biconditional statement so we have to
prove this theorem both ways.

Assume that P , Q, and R are collinear on line ℓ. Construct a line through C parallel
to AB that intersects ℓ at the point D. Then clearly △DCR ∼ △QBR which says that

DC

QB
=

RC

BR
or DC =

(QB)(RC)

BR
.

Likewise, △PDC ∼ △PQA so

DC

AQ
=

CP

PA
or DC =

(AQ)(CP )

PA
.

Thus,
(QB)(RC)

BR
=

(AQ)(CP )

PA
or (QB)(RC)(PA) = (AQ)(CP )(BR).

Therefore, dividing we get
AQ

QB
·
BR

RC
·
CP

PA
= 1.

Now, taking direction into account we see that
BR

RC
is a negative ratio, whereas

AQ

QB

and
CP

PA
are positive ratios. Therefore,

AQ

QB
·
BR

RC
·
CP

PA
= −1.

Now, assume that P , Q, and R lie on
←→

AC,
←→

AB, and
←→

BC, respectively, and that

AQ

QB
·
BR

RC
·
CP

PA
= −1.
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Let the line containing P and Q intersect BC at R′. Then we have just shown that

AQ

QB
·
BR′

R′C
·
CP

PA
= −1.

Since we are given that
AQ

QB
·
BR

RC
·
CP

PA
= −1

we must have that
BR

RC
=

BR′

R′C
, which indicates that R and R′ coincide, proving collinearity.
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