
Chapter 6

Neutral Geometry

How much of what we know about geometry depends on the “parallel postulate” regardless
of which formulation we take? How much of what we take for granted really is independent
of Euclid’s Fifth postulate? We will take a look at that in this chapter. We will put off
choosing any particular choice about parallels until we have to make that choice.

6.1 Axiom System

We will follow a system of axioms that is less restrictive than Hilbert’s system. We will
follow very closely to the SMSG axiom system, but we want to remove redundancy and be
as rigorous as we can. We follow the system of axioms found in Foundations of Geometry by
Venema. It is a good middle of the road axiom system that will allow us to study geometry
without bogging us down too much.

6.1.1 Undefined Terms

We will accept five undefined terms for now — point, line, distance, half-plane, and angle
measure. Later we will add the undefined term area to our list. Our axiom system tells us
how these undefined terms relate to one another.

6.1.2 Existence and Incidence

We need to know that points exist. Now, we normally just blithely forge ahead and really
never think about it, but we use this implicitly quite a bit. We need an axiom to insure
that we actually have points when we need them.

Axiom 1 (The Existence Axiom) The collection of all points forms a nonempty set.
There is more than one point in that set.

We call the set of all points the plane and will denote it by P.

Now, how are lines and points related in the plane? We expect lines to have points on
them and we expect for points to determine lines. We need an axiom to deal with this.

Axiom 2 (The Incidence Axiom) Every line is a set of points. For every pair of dis-
tinct points A and B there is exactly one line ℓ such that A ∈ ℓ and B ∈ ℓ.
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56 CHAPTER 6. NEUTRAL GEOMETRY

Now we make a few definitions.

Definition 6.1 A point P is said to lie on line ℓ if P ∈ ℓ. A point Q is said to be external
to ℓ if Q /∈ ℓ. Two lines ℓ and m are said to be parallel if ℓ ∩ m = ∅.

Note that we have excluded a line being parallel to itself!

Theorem 6.1 If ℓ and m are two distinct, nonparallel lines, then there is exactly one point
P so that P lies on both ℓ and m.

6.1.3 Distance

Axiom 3 (The Ruler Axiom) For every pair of points P and Q there exists a real num-
ber d(P,Q), called the distance from P to Q. For each line ℓ there is a one-to-one corre-
spondence from ℓ to R such that if P and Q are points on the line that correspond to the
real numbers x and y, then d(P,Q) = |x − y|.

Definition 6.2 Let A, B, and C be three distinct points. The point C is between A and
B, written A ∗ C ∗ B, if C ∈

←→

AB and d(A,C) + d(C,B) = d(A,B).

Definition 6.3 Define the segment AB by

AB = {A,B} ∪ {P | A ∗ P ∗ B}

and the ray
−−→
AB by

−−→
AB = AB ∪ {P | A ∗ B ∗ P}.

Definition 6.4 The length of segment AB is d(A,B). Two segments AB and CD are
congruent, written AB ∼= CD, if they have the same length.

Theorem 6.2 If P and Q are any points,then

i) d(P,Q) = d(Q,P ).

ii) d(P,Q) ≥ 0.

iii) d(P,Q) = 0 if and only if P = Q.

6.1.4 Plane Separation

This axiom will tell us that the plane is two-dimensional in the sense that a line separates
it into two disjoint sets, and allows us to define angle, interior of an angle and triangle.

Axiom 4 (The Plane Separation Axiom) For every line ℓ the points that do not lie on
ℓ form two disjoint, nonempty sets H1 and H2, called half-planes bounded by ℓ, such that
the following conditions are satisfied:

i) Each of H1 and H2 is convex. 1

1A set is convex if for every pair of points in the set the line segment joining those two points is also in

the set.
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6.1. AXIOM SYSTEM 57

ii) If P ∈ H1 and Q ∈ H2 then PQ ∩ ℓ 6= ∅.

In terms of more familiar notation, that will occur later in the class, let’s sum up what
this axiom tells us about H1 and H2.

i) H1 ∪ H2 = P \ ℓ.

ii) H1 ∩ H2 = ∅.

iii) H1 6= ∅ and H2 6= ∅.

iv) If A,B ∈ H1 then AB ⊂ H1 and AB ∩ ℓ = ∅.

v) If A,B ∈ H2 then AB ⊂ H2 and AB ∩ ℓ = ∅.

vi) If A ∈ H1 and B ∈ H2, then AB ∩ ℓ 6= ∅.

If ℓ is a line and A /∈ ℓ then we will use the notation HA to denote the half-plane
bounded by ℓ containing A.

Definition 6.5 Let ℓ be a line and let A and B be two external points. We say that A and
B are on the same side of ℓ if AB ∩ ℓ = ∅. We say that A and B are on opposite sides of
ℓ if AB ∩ ℓ 6= ∅.

Definition 6.6 Two rays
−−→
AB and

−→
AC having the same endpoints are opposite rays if the

two rays are unequal but
←→

AB =
←→

AC. Otherwise, they are nonopposite.

Note that another way to state this is that
−−→
AB and

−→
AC are opposite rays if B ∗ A ∗ C.

Now we are ready to define angle.

Definition 6.7 An angle is the union of two nonopposite rays
−−→
AB and

−→
AC sharing the

same endpoint. This angle is denoted by either ∠BAC or ∠CAB. The point A is called
the vertex of the angle and the rays are called the sides of the angle.

Note that our definition of angle demands that the sides be “nonopposite” rays, so that
we do not have a “straight angle”. One reason for doing it this way is to allow us to make
the following definition.

Definition 6.8 Let ∠BAC be given. The interior of angle ∠BAC is defined as follows. If
−−→
AB 6=

−→
AC then the interior of the angle is defined to be the intersection of the half plane HB

determined by B and
←→

AC and the half plane HA determined by C and
←→

AB. If
−−→
AB =

−→
AC

then the interior is defined to be the empty set.

Note that the interior of an angle is a convex set since it is the intersection of two convex
sets.

Definition 6.9 Three points A, B, and C are said to be collinear if there exists one line ℓ
so that A,B,C ∈ ℓ. The points are noncollinear otherwise.

Please note that by our first axiom every pair of points is collinear. Therefore, we do not
talk about collinearity except for any number of points greater than two.

Also, note that if A, B, and C are non-collinear, then
−−→
AB and

−→
AC are neither opposite

nor equal.
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58 CHAPTER 6. NEUTRAL GEOMETRY

Definition 6.10 Let A, B, and C be three non-collinear points. The triangle △ABC
consists of the union of the three segments AB, BC, and AC:

△ABC = AB ∪ AC ∪ BC.

The points A, B, and C are called the vertices of the triangle and the segments are called
the sides.

Theorem 6.3 (Pasch’s Theorem) Let △ABC be a triangle and let ℓ be a line such that
none of A, B, and C lies on ℓ. If ℓ intersects AB, then ℓ also intersects either AC or BC.

Proof: Let △ABC be given and let ℓ be a line satisfying the above condition. Let H1 and
H2 be the two half-planes determined by ℓ. The points A and B are on opposite sides of ℓ.
Without loss of generality, we may assume that A ∈ H1 and B ∈ H2. Now C is either in
H1 or in H2. If C ∈ H1 then BC ∩ ℓ 6= ∅ and if C ∈ H2 then AC ∩ ℓ 6= ∅, and we are done.

6.1.5 Angle Measure

Definition 6.11 A ray
−−→
AD is between rays

−−→
AB and

−→
AC if D is in the interior of ∠BAC.

Axiom 5 (The Protractor Axiom) For every angle ∠BAC there is a number m(∠BAC),
called the measure of ∠BAC, such that:

i) ∠0◦ ≤ m(∠BAC) ≤ ∠180◦, for every angle ∠BAC;

ii) m(∠BAC) = 0 if and only if
−−→
AB =

−→
AC;

iii) For each real number r, 0 < r < 180 and for each half-plane H bounded by
←→

AB there is a unique ray
−−→
AD so that D ∈ H and m(∠BAD) = ∠r◦;

iv) If
−−→
AD is between

−−→
AB and

−→
AC then

m(∠BAD) + m(∠DAC) = m(∠BAC).

Definition 6.12 We say that angles ∠BAC and ∠EDF are congruent, ∠BAC ∼= ∠EDF ,
if m(∠BAC) = m(∠EDF ).

Definition 6.13 Angle ∠BAC is a right angle if m(∠BAC) = ∠90◦. ∠BAC is an acute
angle if m(∠BAC) < ∠90◦. ∠BAC is an obtuse angle if m(∠BAC) > ∠90◦.

6.2 Betweenness, the Crossbar Theorem, and Neutral Re-

sults

While we do not want to become bogged down in dealing with the issues in the foundations
of geometry, we do need to insure that what we are doing does have a sound foundation.
We are interested in seeing what the different geometries look like, but we need to know
that what we have based this on is, in fact, reasonable and verifiable.

To this end, we will list a number of theorems and definitions, some with proof and
some without. These will form the base for our investigations, though we will not go over
every proof. The results are here when we need to refer to them later.
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6.2. BETWEENNESS, THE CROSSBAR THEOREM, AND NEUTRAL RESULTS 59

6.2.1 Betweenness

From the Ruler Axiom we can define a function from a geometric line to the real line that will
be quite useful. A one-to-one correspondence f : ℓ → R such that d(P,Q) = |f(P ) − f(Q)|
for every point P,Q ∈ ℓ is called a coordinate function for the line ℓ and the number f(P )
is called the coordinate of the point P.

Theorem 6.4 Let ℓ be a line; let A, B, and C be three distinct points on ℓ; and let
f : ℓ → R be a coordinate function for ℓ. The point C is between A and B if and only
if either f(A) < f(B) < f(C) or f(A) > f(B) > f(C).

Lemma 6.1 If A, B, and C are three distinct collinear points, then exactly one of them
lies between the other two.

Definition 6.14 Let A and B be two distinct points. The point M is a midpoint of AB if
A ∗ M ∗ B and AM ∼= MB.

Theorem 6.5 If A and B are distinct points, then there exists a unique point M such that
M is the midpoint of AB.

Theorem 6.6 Let ℓ be a line, let A ∈ ℓ, and let B be an external point for ℓ. If C is a
point between A and B, then B and C are on the same side of ℓ.

Lemma 6.2 Let ℓ be a line, let A ∈ ℓ, and let B be an external point for ℓ. If C ∈
−−→
AB

and C 6= A, then B and C are on the same side of ℓ.

Lemma 6.3 Betweenness for rays is well-defined. (If D is in the interior of ∠BAC then
every point on the ray

−−→
AD is in the interior of ∠BAC.)

Lemma 6.4 (The Z-Theorem) Let ℓ be a line and let A,D ∈ ℓ be distinct points. If B
and E are on opposite sides of ℓ then

−−→
AB ∩

−−→
DE = ∅.

Theorem 6.7 Let A, B, and C be three noncollinear points and let D be a point on the
line

←→

BC. The point D is between points B and C if and only if the ray
−−→
AD is between

−−→
AB

and
−→
AC.

Theorem 6.8 (Betweenness Theorem for Rays) Let A, B, C, and D be four distinct
points such that C and D lie on the same side of

←→

AB. Then m(∠BAD) < m(∠BAC) if
and only if

−−→
AD is between rays

−−→
AB and

−→
AC.

Theorem 6.9 (Angle Bisectors) Let A, B, and C be three noncollinear points. There
exists a unique ray

−−→
AD in the interior of ∠BAC such that m(∠BAD) = m(∠DAC). The

ray
−−→
AD is called the angle bisector.

This gives us the machinery we need to prove an important theorem that Euclid and
many other early geometers took for granted. It seems obvious, but without some of the
prior work we could not know that a ray emanating from a vertex would actually intersect a
segment running from one side of an angle to the other. The segment is called a “crossbar”.

Theorem 6.10 (Crossbar Theorem) Given △ABC, let D be a point in the interior of
∠BAC. There is a point G so that G lies on both

−−→
AD and BC.
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Figure 6.1: Crossbar Theorem

Proof: We are given a ray
−−→
AD between rays

−−→
AB and

−→
AC. Let us use proof by contradiction

and assume that
−−→
AD ∩ BC = ∅.

Let
−→
AF be the opposite ray to

−−→
AD. If

−→
AF ∩BC = P , then B ∗ P ∗ C and by Theorem

6.6 we have that P lies in the interior of ∠CAB. However, this contradicts Lemma 6.2,
which says that no point on the opposite ray can be interior to the angle. Thus, we have
that

−→
AF ∩ BC = ∅. Now, this means that

←→

AD ∩ BC = ∅ by since neither
−−→
AD nor its

opposite ray intersect BC. It follows that B and C are on the same side of the line
←→

AD.
Let E be a point on the line

←→

AC so that C ∗ A ∗ E. Then, C and E are on opposite
sides of

←→

AD, and by the Z Theorem, B and E are on opposite sides of
←→

AD. Then we know
that B is in the interior of ∠DAE, which means that B and E are on the same side of the
line

←→

AD. We now have a contradiction.
Thus, we have that

−−→
AD ∩ BC 6= ∅.

This can be summed up more succinctly in the following theorem.

Theorem 6.11 A point D is in the interior of angle ∠BAC if and only if the ray
−−→
AD

intersects the interior of segment BC.

Definition 6.15 Two angles ∠BAD and ∠DAC form a linear pair if
−−→
AB and

−→
AC are

opposite rays.

Theorem 6.12 (Linear Pair Theorem) If angles ∠BAD and ∠BAC forma a linear
pair, then m(∠BAD) + m(∠DAC) = ∠180◦.

Definition 6.16 Two angles ∠BAC and ∠EDF are supplementary if m(∠BAC)+m(∠EDF ) =
∠180◦.

Definition 6.17 Two lines ℓ and m are perpendicular if there is a point A ∈ ℓ ∩ m and
points B ∈ ℓ and C ∈ m so that ∠BAC is a right angle. This will be denoted by ℓ ⊥ m.

Definition 6.18 If A and B are distinct points, a perpendicular bisector of AB is a line
ℓ through the midpoint of AB so that

←→

AB ⊥ ℓ.
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6.3. NEUTRAL GEOMETRY 61

6.2.2 How do Angle Measure and Distance Interact?

We have axioms that tell us about congruent angles and congruent segments. Are these
at all connected? In order to see if there is a connection, we need to look at objects that
contain both segments and angles. The simplest of these objects are triangles. We will look
there for any relationships.

Definition 6.19 Two triangles are said to be congruent if there is a one-to-one correspon-
dence of the vertices of the two triangles such that the corresponding angles are congruent
and the corresponding sides are congruent.

You need to note that our definition says that the way to tell if two triangles are
congruent is to find the six congruences that are in the definition: three angle congruences
and three segment congruences.

We are used to having the Side-Angle-Side result to use in our geometries. Euclid proved
it as his fourth proposition (though there are some problems with the proof). We would
like to be able to do the same, but the five axioms that we have so far are not strong enough
to imply the SAS proposition. There are geometries that satisfy our five axioms but not
the SAS proposition. Thus, we must add it as another axiom to our list.

Axiom 6 (Side-Angle-Side Axiom or SAS) If △ABC and △DEF are triangles so
that AB ∼= DE, ∠ABC ∼= ∠DEF and BC ∼= EF , then △ABC ∼= △DEF .

6.3 Neutral Geometry

We have not spent too much time considering the ramifications of the axioms unrelated to
the Parallel Axiom. What can we derive from these alone? Remember, the purpose of a
lot of mathematics in the time between Euclid and Bolyai-Lobachevskii-Gauss was to prove
that the Parallel Postulate did depend on the others.

6.3.1 Angle Side Angle Theorem

While we could use SAS only to show congruence of triangles, it is sometimes easier to work
with other information.

Theorem 6.13 (Angle-Side-Angle, ASA) Given triangles △ABC and △DEF with ∠CAB ∼=
∠FDE, AB ∼= DE, and ∠ABC ∼= ∠DEF , then △ABC ∼= △DEF .

Proof: Let △ABC and △DEF be as given. There exists a point C ′ ∈
−→
AC so that

AC ′ ∼= DF by the Ruler Axiom. Then by SAS △ABC ′ ∼= △DEF and so ∠ABC ′ ∼= ∠DEF
by CPCTC. We were given that ∠ABC ∼= ∠DEF so we must have that ∠ABC ∼= ∠ABC ′.
Then by the Protractor Axiom we must have that

−−→
BC =

−−→
BC ′. However,

−−→
BC can only

intersect
←→

AC in one point, so C = C ′ and we are done.

This leads us to the result

Theorem 6.14 If in △ABC we have ∠ABC ∼= ∠ACB then AB ∼= AC.

This next result will turn out to be one of the most important in terms of how we will
be using it throughout the course.
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Theorem 6.15 (Existence of Perpendiculars) For every line ℓ and for every external
point P , there exists a line m through P so that ℓ ⊥ m.

From this point on we will use the terminology “drop a perpendicular from P to ℓ”
meaning that we are invoking this result without referring to it by name and number.

Proof: Let ℓ be a line and P a point not on ℓ. There are at least two distinct points
A,B ∈ ℓ. By the Protractor Axiom there is a point Q on the opposite side of ℓ from P so
that ∠PAB ∼= ∠QAB. There is a point P ′ ∈

−→
AQ so that AP ′ ∼= AP by the Ruler Axiom.

Let m =
←→

PP ′. Since P and P ′ are on opposite sides of ℓ, PP ′ ∩ ℓ = {F}.
If A = F , then ∠BFP and ∠BFP ′ supplementary and congruent, so they must be right

angles and ℓ ⊥ m.
If A 6= F then △FAP ∼= △FAP ′ by SAS, so ∠AFP ∼= ∠AFP ′ and they are supplements

by construction, so they are right angles and m ⊥ ℓ.

6.3.2 Alternate Interior Angles

Definition 6.20 Let L be a set of lines in the plane. A line ℓ is transversal of L if

1. ℓ 6∈ L , and

2. ℓ ∩ m 6= ∅ for all m ∈ L .

Let ℓ be transversal to m and n at points A and B, respectively. We say that each
of the angles of intersection of ℓ and m and of ℓ and n has a transversal side in ℓ and a
non-transversal side not contained in ℓ.

n

m

l

B

A

Definition 6.21 An angle of intersection of m and ℓ and one of n and ℓ are alternate
interior angles if their transversal sides are opposite directed and intersecting, and if their
non-transversal sides lie on opposite sides of ℓ. Two of these angles are corresponding
angles if their transversal sides have like directions and their non-transversal sides lie on
the same side of ℓ.

Theorem 6.16 (Alternate Interior Angle Theorem) If two lines cut by a transversal
have a pair of congruent alternate interior angles, then the two lines are parallel.
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Figure 6.2: Alternate Interior Angles

Proof: Let m and n be two lines cut by the transversal ℓ. Let the points of intersection
be B and B′, respectively. Choose a point A on m on one side of ℓ, and choose A′ ∈ n on
the same side of ℓ as A. Likewise, choose C ∈ m on the opposite side of ℓ from A. Choose
C ′ ∈ n on the same side of ℓ as C. Then it is on the opposite side of ℓ from A′.

We are given that ∠A′B′B ∼= ∠CBB′. Assume that the lines m and n are not parallel;
i.e., they have a nonempty intersection. Let us denote this point of intersection by D. D is
on one side of ℓ, so by changing the labeling, if necessary, we may assume that D lies on the
same side of ℓ as C and C ′. There is a unique point E on the ray B′A′ so that B′E ∼= BD.
Since, BB′ ∼= BB′, we may apply the SAS Axiom to prove that

△EBB′ ∼= △DBB′.

From the definition of congruent triangles, it follows that ∠DB′B ∼= ∠EBB′. Now, the sup-
plement of ∠DBB′ is congruent to the supplement of ∠EB′B. The supplement of ∠EB′B
is ∠DB′B and ∠DB′B ∼= ∠EBB′. Therefore, ∠EBB′ is congruent to the supplement of
∠DBB′. Since the angles share a side, they are themselves supplementary. Thus, E ∈ n
and we have shown that {D,E} ⊂ n or that m∩n is more that one point. This contradiction
gives us that m and n must be parallel.

Corollary 1 If m and n are distinct lines both perpendicular to the line ℓ, then m and n
are parallel.

Proof: ℓ is the transversal to m and n. The alternate interior angles are right angles. All
right angles are congruent, so the Alternate Interior Angle Theorem applies. m and n are
parallel.

Corollary 2 If P is a point not on ℓ, then the perpendicular dropped from P to ℓ is unique.

Proof: Assume that m is a perpendicular to ℓ through P , intersecting ℓ at Q. If n is
another perpendicular to ℓ through P intersecting ℓ at R, then m and n are two distinct
lines perpendicular to ℓ. By the above corollary, they are parallel, but each contains P .
Thus, the second line cannot be distinct, and the perpendicular is unique.

The point at which this perpendicular intersects the line ℓ, is called the foot of the
perpendicular.
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Figure 6.3: Exterior Angle Theorem

Corollary 3 If ℓ is any line and P is any point not on ℓ, there exists at least one line m
through P which does not intersect ℓ.

Proof: By Corollary 2 there is a unique line, m, through P perpendicular to ℓ. Now there
is a unique line, n, through P perpendicular to m. By Corollary 1 ℓ and n are parallel.

Note that while we have proved that there is a line through P which does not intersect
ℓ, we have not (and cannot) proved that it is unique.

6.3.3 Weak Exterior Angle Theorem

Let △ABC be any triangle in the plane. This triangle gives us not just three segments, but
in fact three lines.

Definition 6.22 An angle supplementary to an angle of a triangle is called an exterior
angle of the triangle. The two angles of the triangle not adjacent to this exterior angle are
called the remote interior angles.

Theorem 6.17 (Exterior Angle Theorem) An exterior angle of a triangle is greater
than either remote interior angle. (See Figure 6.3)

Proof: We shall show that ∠ACD > ∠A. In a like manner, you can show that ∠ACD >
∠B. Then by using the same techniques, you can prove the same for the other two exterior
angles.

Now, either:
∠A < ∠ACD ∠A ∼= ∠ACD or ∠A > ∠ACD.

If ∠A = ∠BAC ∼= ∠ACD, then by the Alternate Interior Angle Theorem, lines AB and
CD are parallel. This is impossible, since they both contain B.

Assume, then, that ∠A > ∠ACD. Then there exists a ray
−→
AE between rays

−−→
AB and

−→
AC so that

∠CAE ∼= ∠ACD.

By the Crossbar Theorem, ray
−→
AE intersects BC in a point G. Again by the Alternate

Interior Angle Theorem lines AE and CD are parallel. This is a contradiction.
Thus, ∠A < ∠ACD.
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Lemma 6.5 (AAS Congruence) In triangles △ABC and △DEF given that AC ∼= DF ,
∠A ∼= ∠D, and ∠B ∼= ∠E, then △ABC ∼= △DEF .

H

F

EDGA B

C

Figure 6.4: SAA Congruence

Proof: If AB ∼= DE, we are done by Angle-Side-Angle. Thus, let us assume that AB 6∼=
DE. Then, by we must have that either AB < DE or AB > DE.

If AB < DE, then there is a point H ∈ DE so that AB ∼= DH. Then by the SAS
Theorem △ABC ∼= △DHF . Thus, ∠B ∼= ∠DHF . But ∠DHF is exterior to △FHE, so
by the Exterior Angle Theorem ∠DHF > ∠E ∼= ∠B. Thus, ∠DHF > ∠B, and we have
a contradiction. Therefore, AB is not less than DE. By a similar argument, we can show
that assuming that AB > DE leads to a similar contradiction.

Thus, our hypothesis that AB 6∼= DE cannot be valid. Thus, AB ∼= DE and △ABC ∼=
△DEF by ASA.

Lemma 6.6 Two right triangles are congruent if the hypotenuse and a leg of one are con-
gruent respectively to the hypotenuse and a leg of the other.

Lemma 6.7 (SSS Congruence) In triangles △ABC and △DEF given that AC ∼= DF ,
AB ∼= DE, and BC ∼= EF , then △ABC ∼= △DEF .

Lemma 6.8 Every segment has a unique midpoint.

Proof: Let AB be any segment in the plane, and let C be any point not on line AB. There
exists a unique ray

−−→
BX on the opposite side of line AB from P such that ∠PAB ∼= ∠XBA.

There is a unique point Q on the ray
−−→
BX so that AP ∼= BQ. Q is on the opposite side of

line AB from P . Since P and Q are on opposite sides of line AB, PQ ∩ AB 6= ∅. Let M
denote this point of intersection. Either M lies between A and B, A lies between M and
B, B lies between A and M , M = A, or M = B.

We want to show that M lies between A and B, so assume not. Since ∠PAB ∼= ∠QBA,
by construction, we have from the Alternate Interior Angle Theorem that lines AP and BQ
are parallel. If M = A then A, P , and M are collinear on the line AP and lines AP = AB
which intersects line BQ. We can dispose of the case M = B similarly.
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Figure 6.5: Uniqueness of the midpoint

Thus, assume that A lies between M and B. This will mean that the line PA will
intersect side MB of △MBQ at a point between M and B. Thus, by Pasch’s Theorem
it must intersect either MQ or BQ. It cannot intersect side BQ as lines AP and BQ are
parallel. If line AP intersects MQ then it must contain MQ for P , Q, and M are collinear.
Thus, M = A which we have already shown is impossible. Thus, we have shown that A
cannot lie between M and B.

In the same manner, we can show that B cannot lie between A and M . Thus, we have
that M must lie between A and B. This means that ∠AMP ∼= ∠BMQ since they are
vertical angles. By Angle-Angle-Side we have that △AMP ∼= △BMQ. Thus, AM ∼= MB
and M is the midpoint of AB.

We state the following results without proof. The proof is left to the reader.

Lemma 6.9 In a triangle △ABC the greater angle lies opposite the greater side and the
greater side lies opposite the greater angle; i.e., AB > BC if and only if ∠C > ∠A.

Lemma 6.10 Given △ABC and △A′B′C ′, if AB ∼= A′B′ and BC ∼= B′C ′, then ∠B <
∠B′ if and only if AC < A′C ′.

6.4 Saccheri-Legendre Theorem

Corollary 1 The sum of the degree measures of any two angles of a triangle is less than
180◦.

This follows from the Exterior Angle Theorem.

Proof: We want to show that ∠A + ∠B < 180◦. From the Exterior Angle Theorem,

∠A < ∠CBD

∠A + ∠B < ∠CBD + ∠B = 180◦,

since they are supplementary angles.
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Figure 6.6: First step in Saccheri-Legendre Theorem

Corollary 2 (Triangle Inequality) If A, B, and C are three noncollinear points, then
|AC| < |AB| + |BC|.

Theorem 6.18 (Saccheri-Legendre Theorem) The sum of the degree measures of the
three angles in any triangle is less than or equal to 180◦;

∠A + ∠B + ∠C ≤ 180◦.

Proof: Let us assume not; i.e., assume that we have a triangle △ABC in which ∠A +
∠B + ∠C > 180◦. So there is an x ∈ R

+ so that

∠A + ∠B + ∠C = 180◦ + x.

Compare Figure 6.6. Let D be the midpoint of BC and let E be the unique point on
the ray AD so that DE ∼= AD. Then by SAS △BAD ∼= △CED. This makes

∠B = ∠DCE ∠E = ∠BAD.

Thus,

∠A + ∠B + ∠C = (∠BAD + ∠EAC) + ∠B + ∠ACB

= ∠E + ∠EAC + (∠DCE + ∠ACD)

= ∠E + ∠A + ∠C

So, △ABC and △ACE have the same angle sum, even though they need not be congruent.
Note that ∠BAE + ∠CAE = ∠BAC, hence

∠CEA + ∠CAE = ∠BAC.

It is impossible for both of the angles ∠CEA and ∠CAE to have angle measure greater than
1/2∠BAC, so at least one of the angles has angle measure less than or equal to 1/2∠BAC.
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Therefore, there is a triangle △ACE so that the angle sum is 180◦+x but in which one
angle has measure less than or equal to 1/2∠A◦. Repeat this construction to get another
triangle with angle sum 180◦ + x but in which one angle has measure less than or equal to
1/4∠A◦. Now there is an n ∈ Z

+ so that

1

2n
∠A ≤ x,

by the Archimedean property of the real numbers. Thus, after a finite number of iterations
of the above construction we obtain a triangle with angle sum 180◦ + x in which one angle
has measure less than or equal to

1

2n
∠A ≤ x.

Then the other two angles must sum to a number greater than 180◦ contradicting Corollary
1.

Corollary 1 In △ABC the sum of the degree measures of two angles is less than or equal
to the degree measure of their remote exterior angle.

6.4.1 The Defect of a Triangle

Since the angle sum of any triangle in neutral geometry is not more than 180◦, we can
compute the difference between the number 180 and the angle sum of a given triangle.

Definition 6.23 The defect of a triangle △ABC is the number

δ(ABC) = defect (△ABC) = 180◦ − (∠A + ∠B + ∠C).

In euclidean geometry we are accustomed to having triangles whose defect is zero. Is
this always the case? The Saccheri-Legrendre Theorem indicates that it may not be so. Is
the defect of triangles preserved? That is, if we have one defective triangle, then are all
of the sub and super-triangles defective? By defective, we mean that the triangles have
positive defect.

Theorem 6.19 (Additivity of Defect) Let △ABC be any triangle and let D be a point
between A and B. Then δ(ABC) = δ(ACD) + δ(BCD).
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Figure 6.7: Additivity of Defect
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Proof: Since the ray CD lies in ∠ACB, we know that

∠ACB = ∠ACD + ∠BCD,

and since ∠ADC and ∠BDC are supplementary angles ∠ADC+∠BDC = 180◦. Therefore,

δ(ABC) = 180◦ − (∠A + ∠B + ∠C)

= 180◦ − (∠A + ∠B + ∠ACD + ∠BCD)

= 180◦ + 180◦ − (∠A + ∠B

+ ∠ACD + ∠BCD + ∠ADC + ∠BDC)

= δ(ACD) + δ(BCD).

Corollary 1 δ(ABC) = 0 if and only if δ(ACD) = δ(BCD) = 0.

A rectangle is a quadrilateral all of whose angles are right angles. We cannot prove the
existence or non-existence of rectangles in Neutral Geometry. Nonetheless, the following
result is extremely useful.

Theorem 6.20 If there exists a triangle of defect 0, then a rectangle exists. If a rectangle
exists, then every triangle has defect 0.

Let us first outline the proof in five steps.

1. Construct a right triangle having defect 0.

2. From a right triangle of defect 0, construct a rectangle.

3. From one rectangle, construct arbitrarily large rectangles.

4. Prove that all right triangles have defect 0.

5. If every right triangle has defect 0, then every triangle has defect 0.

Having outlined the proof, each of the steps is relatively straightforward.

1. Construct a right triangle having defect 0.
Let us assume that we have a triangle △ABC so that δ(ABC) = 0. We may assume
that △ABC is not a right triangle, or we are done. Now, at least two angles are acute
since the angle sum of any two angles is always less than 180◦. Let us assume that
∠A and ∠B are acute. Also, let D be the foot of C on line AB. We need to know
that D lies between A and B.

Assume not; i.e., assume that A lies between D and B. (See Figure ??.) This means
that ∠CAB is exterior to △CAD and, therefore, ∠A > ∠CDA = 90◦. This makes
∠A obtuse, a contradiction. Similarly, if B lies between A and D we can show that
∠B is obtuse. Thus, we must have that D lies between A and B.

This makes △ADC and △BDC right triangles. By Corollary 1 above, since △ABC
has defect 0, each of them has defect 0, and we have two right triangles with defect 0.
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Figure 6.8: Right triangle defect
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Figure 6.9: Existence of Rectangles

2. From a right triangle of defect 0, construct a rectangle.
We now have a right triangle of defect 0. Take △CBD from Step 1, which has a right
angle at D. There is a unique ray CX on the opposite side of BC from D so that

∠DBC ∼= ∠BCX.

Then there is a unique point E on ray CX such that CE ∼= BD.

Thus, △CDB ∼= △BEC by SAS. Then ∠BEC = 90◦ and △BEC must also have
defect 0. Now, clearly, since defect (△CDB) = 0

∠DBC + ∠BCD = 90◦

and, hence,
∠ECB + ∠BCD = ∠ECD = 90◦.

Likewise, ∠EBD = 90◦ and 2CDBE is a rectangle.

3. From one rectangle, construct arbitrarily large rectangles.
Given any right triangle △XY Z, we can construct a rectangle 2PQRS so that PS >
XZ and RS > Y Z. By applying Archimedes Axiom, we can find a number n so that
we copy segment BD in the above rectangle on the ray ZX to reach the point P so
that n · BD ∼= PZ and X lies between P and Z. We make n copies of our rectangle
sitting on PZ = PS. This gives us a rectangle with vertices P , Z = S, Y , and some
other point. Now, using the same technique, we can find a number m and a point R
on the ray ZY so that m·BE ∼= RZ and Y lying between R and Z. Now, constructing
m copies of the long rectangle, gives us the requisite rectangle containing △XY Z.

4. Prove that all right triangles have defect 0.
Let △XY Z be an arbitrary right triangle. By Step 3 we can embed it in a rectangle
2PQRS.

Since △PQR ∼= △PSR, we have that ∠RPS + ∠PRS = 90◦ and then, △PRS has
defect 0. Using Corollary 1 to Theorem 6.19 we find defect (△RXY ) = 0 and thus,
defect (△XY Z) = 0. Therefore, each triangle has defect 0.

MATH 6118-090 Spring 2008



6.4. SACCHERI-LEGENDRE THEOREM 71

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�






































P X S = Y

R

Z

Figure 6.10: Step 1

5. If every right triangle has defect 0, then every triangle has defect 0.
As in the first step, use the foot of a vertex to decompose the triangle into two right
triangles, each of which has defect 0, from Step 4. Thus, the original triangle has
defect 0.

Corollary 1 If there is a triangle with positive defect, then all triangles have positive defect.
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