
Chapter 7

We Choose Many Parallels!

7.1 Hyperbolic Axiom Results

Hyperbolic geometry is often called Bolyai-Lobachevskiian geometry after two of its discovers
János Bolyai and Nikolai Ivanovich Lobachevskii. Bolyai first announced his discoveries in
a 26 page appendix to a book by his father, the Tentamen, in 1831. Another of the great
mathematicians who seems to have preceded Bolyai in his work is Karl Friedreich Gauss.
He seems to have done some work in the area dating from 1792, but never published it. The
first to publish a complete account of non-Euclidean geometry was Lobachevskii in 1829.
It was first published in Russian and was not widely read. In 1840 he published a treatise
in German.

We shall call our added axiom the Hyperbolic Axiom.
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We shall denote the set of all points in the plane by H
2, and call this the hyperbolic

plane.

Lemma 7.1 There exists a triangle whose angle sum is less than 180◦.
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Proof: Let ℓ be a line and P a point not on ℓ such that two parallels to ℓ pass through P .
We can construct one of these parallels as previously done using perpendiculars. Let Q be
the foot of the perpendicular to ℓ through P . Let m be the perpendicular to the line PQ
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74 CHAPTER 7. WE CHOOSE MANY PARALLELS!

through P . Then m and ℓ are parallel. Let n be another line through P which does not
intersect ℓ. This line exists by the Hyperbolic Axiom. Let PX be a ray of n lying between
PQ and a ray PY of m.

claim: There is a point R ∈ ℓ on the same side of the line PQ as X and Y so that
∠QRP < ∠XPY .

proof of claim. The idea is to construct a sequence of angles

∠QR1P, ∠QR2P, . . . , ∠QRnP, . . .

so that ∠QRj+1P < 1

2
∠QRjP . We will then apply Archimedes Axiom for real numbers to

complete the proof.

There is a point R1 ∈ ℓ so that QR1
∼= PQ. Then △QR1P is isosceles and ∠QR1P

◦ ≤
45◦. Also, there is a point R2 ∈ ℓ so that R1 lies between F and R2 and R1R2

∼= PR1.
Then △PR1R2 is isosceles and ∠R1PR2

∼= ∠QR2P . Since ∠QR1P is exterior to △PR1R2

it follows that

∠R1PR2 + ∠QR2P ≤ ∠QR1P ,

so then ∠QR2P ≤ 221

2

◦

. Continuing with this construction, we find a point Rn ∈ ℓ so that
Rn−1 lies between A and Rn and

∠QRnP ≤

(

45

2n

)

◦

.

Applying the Archimedean axiom we see that for any positive real number, for example
∠XPY , there is a point R ∈ ℓ so that R is on the same side of the line PQ as X and Y
and ∠QRP < ∠XPY . Thus, we have proved our claim.

Now, the ray PR lies in the interior of ∠QPX, for if not then the ray PX is in the
interior of ∠QRP . By the Crossbar Theorem it follows that the ray PX ∩ ℓ 6= ∅ which
implies that n and ℓ are not parallel—a contradiction. Thus, ∠RPQ < ∠XPQ. Then,

∠RPQ + ∠QRP < ∠XPQ + ∠QRP < ∠XPQ + ∠XPY = 90◦.

Therefore, ∠P + ∠Q + ∠R < 180◦ and defect (△PQR) > 0.

The Hyperbolic Axiom only hypothesizes the existence of one line and one point not on
that line for which there are two parallel lines. With the above theorem we can now prove
a much stronger theorem.

Theorem 7.1 (Universal Hyperbolic Theorem) In H
2 for every line ℓ and for every

point P not on ℓ there pass through P at least two distinct lines, neither of which intersect
ℓ.

Proof: Drop a perpendicular PQ to ℓ and construct a line m through P perpendicular to
PQ. Let R be any other point on ℓ, and construct a perpendicular t to ℓ through R. Now,
let S be the foot of the perpendicular to t through P . Now, the line PS does not intersect
ℓ since both are perpendicular to t. At the same time PS 6= m. Assume that S ∈ m, then
2PQRS is a rectangle. By Theorem 6.20, if one rectangle exists all triangles have defect 0.
We have a contradiction to Lemma 7.1. Thus, PS 6= m, and we are done.
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7.2 Angle Sums (again)

We have just proven the following theorem.

Theorem 7.2 In H
2 rectangles do not exist and all triangles have angle sum less than 180◦.

This tells us that in hyperbolic geometry the defect of any triangle is a positive real
number. We shall see that it is a very important quantity in hyperbolic geometry.

Corollary 1 In H
2 all convex quadrilaterals have angle sum less than 360◦.

7.3 Saccheri Quadrilaterals

Girolamo Saccheri was a Jesuit priest who lived from 1667 to 1733. Before he died he
published a book entitled Euclides ab omni nævo vindicatus ( Euclid Freed of Every Flaw).
It sat unnoticed for over a century and a half until rediscovered by the Italian mathematician
Beltrami.

Saccheri wished to prove Euclid’s Fifth Postulate from the other axioms. To do so he
decided to use a reductio ad absurdum argument. He assumed the negation of the Parallel
Postulate and tried to arrive at a contradiction. He studied a family of quadrilaterals that
have come to be called Saccheri quadrilaterals. Let S be a convex quadrilateral in which two
adjacent angles are right angles. The segment joining these two vertices is called the base.
The side opposite the base is the summit and the other two sides are called the sides. If
the sides are congruent to one another then this is called a Saccheri quadrilateral. The
angles containing the summit are called the summit angles.

Theorem 7.3 In a Saccheri quadrilateral

i) the summit angles are congruent,

ii) the line joining the midpoints of the base and the summit—called the altitude—
is perpendicular to both.

iii) the diagonals AC and BD are congruent, and

iv) 2ABCD is a parallelogram.
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76 CHAPTER 7. WE CHOOSE MANY PARALLELS!
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Figure 7.1: Saccheri Quadrilateral

Proof: Let M be the midpoint of AB and let N be the midpoint of CD.

1. We are given that
∠DAB = ∠ABC = 90◦.

Now, AD ∼= BC and AB ∼= AB, so that by SAS △DAB ∼= △CBA, which implies
that BD ∼= AC. Also, since CD ∼= CD then we may apply the SSS criterion to see
that △CDB ∼= △DCA. Then, it is clear that ∠D ∼= ∠C.

2. We need to show that the line MN is perpendicular to both lines AB and CD.
Now DN ∼= CN , AD ∼= BC, and ∠D ∼= ∠C. Thus by SAS △ADN ∼= △BCN .
This means then that AN ∼= BN . Also, AM ∼= BM and MN ∼= MN . By SSS
△ANM ∼= △BNM and it follows that ∠AMN ∼= ∠BMN . They are supplementary
angles, hence they must be right angles. Therefore MN is perpendicular to AB. Using
the analogous proof and triangles △DMN and △CMN , we can show that MN is
perpendicular to CD.

3. We proved that AC ∼= BD in the first part.

4. Since AB and CD have a common perpendicular, they are parallel. Since AD and
BC have a common perpendicular (the base) they are parallel, so 2ABCD is a
parallelogram.

Thus, we are done.

Lemma 7.2 In a Saccheri quadrilateral the summit angles are acute.

Proof: Recall from Corollary 1 to Theorem 7.2 that the angle sum for any convex quadri-
lateral is less that 360◦. Thus, since the Saccheri quadrilateral is convex,

∠A + ∠B + ∠C + ∠D < 360◦

2∠C < 180◦

∠C < 90◦

Thus, ∠C and ∠D are acute.

A convex quadrilateral three of whose angles are right angles is called a Lambert
quadrilateral, cf. Figure 7.2.
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Figure 7.2: Lambert Quadrilateral

Lemma 7.3 The fourth angle of a Lambert quadrilateral is acute.

Proof: If the fourth angle were obtuse, our quadrilateral would have an angle sum greater
than 360◦, which cannot happen. If the angle were a right angle, then a rectangle would
exist and all triangles would have to have defect 0. Since there is a triangle with angle sum
less than 180◦, we have a triangle with positive defect. Thus, the fourth angle cannot be a
right angle either.

Lemma 7.4 The side adjacent to the acute angle of a Lambert quadrilateral is greater than
its opposite side.

Proof: We only need to show that BC 6= AD, since we already know that BC ≤ AD.
Assume that BC ∼= AD. Then 2ABCD is a Saccheri quadrilateral. Then, by Lemma 7.2
we must have that ∠C ∼= ∠D, making 2ABCD a rectangle. This contradicts Theorem 7.2,
so BC 6= AD, making BC < AD.

Lemma 7.5 In a Saccheri quadrilateral the summit is greater than the base and the sides
are greater than the altitude.

Proof: Using Theorem 7.3 if M is the midpoint of AB and N is the midpoint of CD, then
2AMND is a Lambert quadrilateral. Thus, AB > MN and, since BC ∼= AB, both sides
are greater than the altitude.

Also, applying Theorem 7.3 DN > AM . Since CD ∼= 2DN and AB ∼= 2AM it follows
that CD > AB, so that the summit is greater than the base.

7.4 Similar Triangles

In Euclidean geometry we are used to having two triangles similar if their angles are con-
gruent. It is obvious that we can construct two non-congruent, yet similar, triangles. In fact
John Wallis attempted to prove the Parallel Postulate of Euclid by adding another postulate.
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wallis’ postulate: Given any triangle △ABC and given
any segment DE. There exists a triangle △DEF having
DE as one of its sides that is similar to △ABC.

However Wallis’ Postulate is equivalent to Euclid’s Par-
allel Postulate. Thus, we know that the negation of Wallis’
Postulate must hold in hyperbolic geometry. That is, un-
der certain circumstances similar triangles do not exist. We
can prove a much stronger statement.

Theorem 7.4 (AAA Criterion) In H
2 if ∠A ∼= ∠D, ∠B ∼= ∠E, and ∠C ∼= ∠F , then

△ABC ∼= △DEF . That is, if two triangles are similar, then they are congruent.

proof: Since ∠BAC ∼= ∠EDF , there exists an isometry which sends D to A, the ray
DE to the ray AB, and the ray DF to the ray AC. Let the image of E and F under
this isometry be E′ and F ′, respectively. If the two triangles are not congruent, then we
may assume that E′ 6= B and that E′ lies between A and B. Then BC and E′F ′ cannot
intersect by the Alternate Interior Angles Theorem. Then BCE′F ′ forms a quadrilateral.
The quadrilateral has the following angles:

∠E′BC = ∠ABC

∠F ′CB = ∠ACB

∠BE′F ′ = 180◦ − ∠ABC

∠CF ′E′ = 180◦ − ∠ACB

which sum to 360◦. This contradiction leads us to the fact that E′ = B and F ′ = C and
the two triangles are congruent.

As a consequence of Theorem 7.4 we shall see that in hyperbolic geometry a segment
can be determined with the aid of an angle. For example, an angle of an equilateral triangle
determines the length of a side uniquely. Thus in hyperbolic geometry there is an absolute
unit of length.

Theorem 7.5 In H
2 if 2ABCD and 2A′B′C ′D′ are two Saccheri quadrilaterals such that

δ(2ABCD) = δ(2A′B′C ′D′) and CD ∼= C ′D′, then 2ABCD ∼= 2A′B′C ′D′.

Proof: Given Saccheri quadrilaterals 2ABCD and 2A′B′C ′D′ as above. Since δ(2ABCD) =
δ(2A′B′C ′D′) we know that they have the same angle sum. Since the base angles of a Sac-
cheri quadrilateral are right angles and the summit angles are congruent, we must have that
∠ADC ∼= ∠A′D′C ′ ∼= ∠DCB ∼= ∠D′C ′B′. ��� �� � �� 	� 
 �
 �

Choose a point E on
−−→
DA and a point F on

−−→
CB so that DE ∼= D′A′ ∼= CF . We need

to show that 2EFCD ∼= 2A′B′C ′D′ and then show that A = E and B = F . This will
complete the proof.
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By SAS △EDC ∼= △A′D′C ′. Then by subtraction we have that ∠ECF ∼= ∠A′C ′B′.
Therefore, by SAS △ECF ∼= △A′C ′B′. Therefore, ∠EFC is a right angle. Similarly, we
can show that ∠FED is a right angle. Therefore, 2EFCD ∼= A′B′C ′D′.

Now, assume that A 6= E. Then we will have that
←→

AB ‖
←→

EF since they are both
perpendicular to

←→

AD. Thus, B 6= F and 2ABFE is a rectangle. This contradicts the result
that no rectangles exist, therefore A = E and we are done.

7.5 Common Perpendiculars

One of the common notions that we carry with us in our Euclidean outlook is about parallel
lines. We tend to think of parallel lines as being lines that are everywhere equidistant, or
railroad tracks. Is this notion of parallel strictly Euclidean, or can we transfer this concept
to hyperbolic geometry?

Theorem 7.6 If ℓ is a line, P a point not on ℓ, and m a line containing P . There exists
at most one point Q ∈ m, Q 6= P so that d(P, ℓ) = d(Q, ℓ).

The distance d(P, ℓ) is the length of the segment from P to the foot of the perpendicular
in ℓ.

Proof: We are given ℓ and m and a point P ∈ m. Suppose that there are three distinct
points P,Q,R ∈ m so that d(P, ℓ) = d(Q, ℓ) = d(R, ℓ). Let P ′, Q′, and R′ denote the feet
of P , Q, and R, respectively, in ℓ.

Now, none of these points lies on ℓ, since d(P, ℓ) > 0. Therefore at least two of these
points lie on the same side of ℓ. Assume that P and Q are on the same side of ℓ. Then
2PP ′Q′Q is a Saccheri quadrilateral and ℓ ‖ m. Thus, all three of P , Q, and R are on the
same side of ℓ.

Now, we know that one of P , Q, and R lies between the other two, so we may assume
that P ∗ Q ∗ R. Then 2PP ′Q′Q, 2QQ′R′R and 2PP ′R′R are all Saccheri quadrilaterals.
Therefore

∠PQQ′ ∼= ∠QPP ′ ∼= ∠PRR′ ∼= ∠RQQ′.

However, they are also supplements so

m(∠PQQ′) = m(∠QPP ′) = 90◦

and we have a rectangle. Since this is impossible, there could not be as many as three points
that are equidistant from ℓ, and we are done.

Definition 7.1 Lines ℓ and m admit a common perpendicular if there exists a line n such
that n ⊥ m and n ⊥ ℓ. If ℓ and m admit a common perpendicular n, then n∩ ℓ = {P} and
n∩m = {Q} and the segment PQ is called the common perpendicular segment to ℓ and m.

Theorem 7.7 If ℓ and m are parallel lines and there are two points on m that are equidis-
tant from ℓ, then m and ℓ admit a common perpendicular.

Proof: Think Saccheri quadrilateral and that will give you the common perpendicular you
seek.
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Theorem 7.8 If ℓ and m admit a common perpendicular, then that common perpendicular
is unique.

Proof: Again, think what two common perpendiculars would give you to prove this.

Theorem 7.9 Let ℓ and m be parallel lines cut by a transversal t. Alternate interior angles
formed by ℓ and m with t are congruent if and only if ℓ and m admit a common perpendicular
and t passes through the midpoint of the common perpendicular segment.

This theorem tells us that the parallel lines and the transversal have to be extremely
special in order for alternate interior angles to be congruent.

Proof: Let ℓ and m be parallel lines cut by the transversal t and let {R} = t ∩ ℓ and
{Q} = t ∩ m.

First, assume that both pairs of alternate interior angles formed by ℓ and m with t are
congruent. We will have to construct a common perpendicular to ℓ and m and show that t
passes through the midpoint of the common perpendicular segment. If the alternate interior
angles are right angles, then t is the common perpendicular and we are done. Thus, we
may assume that these alternate interior angles are not right angles.

�� �
�

Let M be the midpoint of RS and drop a perpendicular from M to each of ℓ and m.
Call these points P and Q. We do not know, a priori, that the point P , Q, and M are
collinear. We must show this. Now, △RPM ∼= △SQM by AAS, so ∠RMP ∼= ∠SMQ and
therefore

−−→
MP and

−−→
MQ are opposite rays and segment PQ is the common perpendicular

segment for ℓ and m.

The proof of the other direction is left as an exercise.

7.6 Asymptotically Parallel Lines

The previous section tells us that some parallel lines in hyperbolic geometry admit a single,
unique, common perpendicular. Is it true that every pair of parallel lines in H

2 admit a
common perpendicular? It would seem as if this would be a nice characterization for parallel
lines. Not everything is nice — at first.

Let ℓ be a line and P /∈ ℓ. Drop a perpendicular from P to ℓ and call the foot of P in ℓ
the point Q. Let R ∈ ℓ so that R 6= Q. For each r ∈ R with 0 < r ≤ 90 there exists a point
Dr on the same side of

←→

PQ as R, such that m(∠RPDr) = r◦ from the Protractor Axiom.
Let

K = {r |
−−−−−→
PD − r ∩

−−→
QR 6= ∅}.
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Note that K ⊂ R and K 6= ∅ since m(∠RPQ) ∈ K. Note also that K is bounded above
by 90. By the Least Upper Bound Axiom, K has a least upper bound, r0 ≤ 90. It is also
true that 90 /∈ K since

−−−→
PD90 is parallel to ℓ.

We call K the intersecting set for P and
−−→
QR. We also call the number r0 the critical

number for P and
−−→
AB. Visually, think of the rays emanating from P starting with

−−→
PQ and

fanning out toward the ray
−−−→
PD90 that is parallel to ℓ. As the measure of ∠QPD increases

there will be a first ray that does not intersect
−−→
QR and r0 is the measure of the angle that

that ray makes.

Theorem 7.10 If 0 < r < r0 then r ∈ K. If r0 ≤ r ≤ 90 then r /∈ K.

Proof: Let r be given with 0 < r ≤ 90. Let us first assume that r < r0. Now, r0 is the
least upper bound of K and r < r0 so there must be a number s ∈ K so that r < s, else r
would be an upper bound that is smaller than the least upper bound. Since s ∈ K, the ray
−−→
PDs must intersect

−−→
AB. Call this point T =

−−→
AB∩

−−→
PDx. Since r > s, Dr lies in the interior

of ∠APDs. The Crossbar Theorem then tells us that PDr must intersect AT , so r ∈ K.
Now, assume that r ≥ r0. Suppose that r ∈ K. Then

−−→
PDr∩

−−→
AB = {U}. Choose a point

T ∈
←→

AB so that A ∗ U ∗ T and let s = m(∠APT ). Then, by construction,
−−→
PDs ∩

−−→
AB 6= ∅

and s ∈ K. Since s > r from the Protractor Axiom, we have that s > r0. This contradicts
the fact that r0 is an upper bound for K. This contradiction implies that r /∈ K and we
are done.

Definition 7.2 Suppose that P , A, and B are as above and r0 is the critical number for
P and

−−→
AB. Let D be a point on the same side of

←→

PA as B so that m(∠APD) = r0. This
angle, ∠APD is called the angle of parallelism for P and

−−→
AB.

Note that since there are two sides of
←→

AP there are really two angles of parallelism for
P and the line

←→

AB. There is a left-hand angle of parallelism and a right-hand angle of
parallelism.

Are these two angles equal? Should they be?

Theorem 7.11 The critical number depends only on d(P, ℓ).

Proof: Let ℓ be a line and P /∈ ℓ. Let A be the foot of the perpendicular from P to ℓ, and
let B ∈ ℓ, B 6= A. Now, let P ′, ℓ′, A′, and B′ be another such set up so that PA ∼= P ′A′.
Now, we need to show that the critical number for P and

−−→
AB is the same as the critical

number for P ′ and
−−→
A′B′. We can do this by showing that the intersecting sets, K and K ′,

are the same, since if K = K ′ then they must have the same least upper bound.
Suppose that r ∈ K. Then

−−→
PDr intersects

−−→
AB at a point T ∈

−−→
AB. Choose T ′ ∈

−−→
A′B′

so that AT ∼= A′T ′. Then △PAT ∼= △P ′A′T ′ by SAS, therefore r ∈ K ′ and K ⊆ K ′.
Similarly, we can show that if s ∈ K ′ then s ∈ K making K ′ ⊆ K. Therefore, K = K ′.
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Now, we have seen that the critical number depends only on d(P, ℓ), we can think of it
as a function from the reals to the reals.

Definition 7.3 Given x ∈ R, x > 0, locate a point P and line ℓ such that d(P, ℓ) = x.
Then define κ(x) to be the critical number associated with P and ℓ, that is choose a point
B 6= A on ℓ and define κ(x) = m(∠APD), where ∠APD is the angle of parallelism for P
and

−−→
AB. By our above theorem, this is a well-defined function of x and does not depend on

the choice of P , ℓ, or B. The function κ : (0,∞) → (0, 90] is called the critical function.

What happens to the size of the angle of parallelism as the point moves away from the
line?

Theorem 7.12 The function κ : (0,∞) → (0, 90] is a decreasing function.

Proof: Let a and b be positive numbers so that a < b. We need to show that κ(a) ≥ κ(b).
Choose P , A, B, and D so that d(P,A) = a and ∠APD is the angle of parallelism for P
and

−−→
AB. Now, choose a point Q ∈

−→
AP so that d(A,Q) = b. We have to show that the

measure of the angle of parallelism at Q is no greater than the angle of parallelism at P .
Let r = m(APD) and choose a point E on the same side of

←→

AP as B so that m(∠AQE) =
r. Thus, by the Corresponding Angles Theorem

←→

QE ‖
←→

PD. Then since all of the points of
←→

QE are on one side of
←→

PD and all the points of
−−→
AB are on the other, so

−−→
QE ∩

−−→
AB = ∅.

This means that r /∈ K(Q,
−−→
AB, so r cannot be less than the critical number for Q and

−−→
AB.

This means that r, which is the measure of the angle of parallelism at P , must be greater
than or equal to the angle of parallelism at Q.

In hyperbolic geometry, this angle of parallelism is an extremely important concept.
Note that in Euclidean geometry, the angle of parallelism for every situation is 90, so it
would not seem to be an interesting concept. In hyperbolic geometry the angle of parallelism
is an acute angle and every acute angle is the angle of parallelism for some situation.

Theorem 7.13 Every angle of parallelism is acute and every critical number is less than
90.

Proof: Let ℓ be a line and P /∈ ℓ. Drop a perpendicular from P to A ∈ ℓ and call this
line m. We have shown that we can construct a perpendicular line to m at P , call it n,
and n ‖ ℓ. In hyperbolic geometry there must be at least one more line through P , call it t,
t 6= n, that does not intersect ℓ. Since t and n both pass through P , and n ⊥ m, the other

MATH 6118-090 Spring 2008



7.6. ASYMPTOTICALLY PARALLEL LINES 83

�� � ! "
line is not perpendicular to m, so the angle that it makes with

−→
PA on one side of m is less

than 90. Now, the measure of this angle between t and
−→
PA is not in the intersecting set,

since the line is parallel to ℓ. Thus, the critical number cannot be larger than that measure.
Thus, the critical number is less than 90 and the angle of parallelism is acute.

This ray that gives us the angle of parallelism is called the limiting parallel ray for
−−→
AB.

One very nice property of parallel lines from Euclidean geometry is that if ℓ, m, and n are
three distinct lines and ℓ ‖ m and m ‖ n, then ℓ ‖ n. In other words, the property of being
parallel was a transitive property. Clearly, in hyperbolic geometry we have given up that
property as the universal hyperbolic axiom gives us an example that voids this. However,
is some of this idea salvageable? Might it be possible that if we have three limiting parallel
rays that are parallel to each other in the same direction, then some type of transitivity
might be true?

First, we need to see how well-behaved these limiting parallel rays are. If we have that
−−→
PQ is limiting parallel to

−−→
AB, does every ray that is contained in

−−→
PQ have to be limiting

parallel to
−−→
AB? It would seem reasonable, though the concept of limiting parallel seems to

be tied to the foot of a point in the line. Our next theorem tells us that this property is
true.

We state the following theorems without proof.

Theorem 7.14 If
−−→
PQ is limiting parallel to

−−→
AB, then

−−→
AB lies in the interior of the angle

∠APQ.

Theorem 7.15 Let P 6∈ ℓ and let B lie between A and C in ℓ. Then
−−→
PQ is limiting parallel

to
−−→
AB if and only if

−−→
PQ is limiting parallel to

−−→
BC.

Theorem 7.16 Let B lie between A and C on ℓ.
−−→
AB is limiting parallel to

−−→
DE if and

only if
−−→
BC is limiting parallel to

−−→
DE.

Theorem 7.17 If
−−→
PQ is limiting parallel to

−−→
AB, then

−−→
AB is limiting to

−−→
PQ.

What this means is that the rays
−−→
PQ and

−−→
AB can be extended into lines

←→

PQ and
←→

AB
which are parallel.

Theorem 7.18 If
−−→
PQ is limiting parallel to

−−→
AB, then

←→

PQ ‖
←→

AB.
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With this, we can make the following definition.

Definition 7.4 A ray
−−→
PQ is parallel to a line ℓ if

−−→
PQ is a limiting parallel ray to some ray

in ℓ. If this is the case then we say that the line k containing the ray
−−→
PQ is limiting parallel

to the line ℓ in the direction of
−→
PS. These lines are also called asymptotically parallel or

horoparallel.

We have just proven that this parallelism is symmetric and we may denote them by

−−→
PQ ‖ ℓ ℓ ‖

−−→
PQ ℓ ‖ k k ‖ ℓ.

If k =
←→

AB, ℓ =
←→

CD, and
−−→
AB ‖

−−→
CD, then

−−→
AB is said to be parallel to ℓ in the direction

of
−−→
CD on ℓ. Furthermore, k and ℓ are said to be parallel in the direction of

−−→
AB on k and

in the direction of
−−→
CD on ℓ.

Theorem 7.19 IF P 6∈ ℓ then there are exactly two lines through P that are limiting
parallel to ℓ. Each contains an arm of the fan angle ∠(P, ℓ) and they are limiting parallel
to ℓ in opposite directions.

Theorem 7.20 (Weak Transitivity of Parallels) Two lines parallel to a third in the

same direction on the third are parallel to each other.

7.7 Classification of Parallels

As we have mentioned we have seen two different properties of parallel lines. We have seen
that there are limiting parallel lines and we have seen that there are parallel lines that
admit a common perpendicular. Are these the same?

We will state the following results without proof, but the proof can be found in the
references listed at the end.

Theorem 7.21 (Classification of Parallels, I) If ℓ and m are limiting parallel lines,
then ℓ and m do not admit a common perpendicular. If ℓ and m admit a common perpen-
dicular, then they are not limiting parallel.

Okay, then they are different, but how do they differ?

Theorem 7.22 Suppose that ℓ ‖ m. Let P , Q, and R be points on m with P ∗ Q ∗ R and
let A, B, and C, respectively, be the feet of the perpendiculars from P , Q, and R to ℓ.

i) If
←→

PA ⊥ m, then PA < QB < RC.

ii) If
−−→
PQ is limiting parallel to

−−→
AB, then PA > QB > RC.

Thus, as we move in the “direction of parallelism” for limiting parallel lines, they tend
to get closer together, while the other type of parallel lines tend to get further apart.

If ℓ ‖ m and ℓ and m admit a common perpendicular line, then the lines are said to be
hyperparallel. This is denoted by k )( ℓ. They are sometimes called divergently parallel
lines.

This can be formalized in the following result.
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Theorem 7.23 IF ℓ and m are hyperparallel, then for every positive r ∈ R there is a point
P ∈ m so that d(P, ℓ) > r. Furthermore, P may be chosen on either side of the common
perpendicular.

Now that we have two types of parallelism, is that all there is? Might there be another
type of parallelism that we haven’t yet studied? Fortunately, the answer is no.

Theorem 7.24 (Classification of Parallels, II) If ℓ ‖ m then either ℓ and m admit a
common perpendicular or ℓ and m are limiting parallel.

While these are very important results, we will not need them in later sections, so we
won’t include proofs.
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