
Chapter 8

Area in Neutral, Euclidean and

Hyperbolic Geometry

8.1 Introduction

Up to this time we have not yet defined area. It is a measurement, like distance and angle
measure, so it is a function that assigns a real number to a geometric object. We want to
see what common properties area functions should have and see how much of that we can
study in a neutral setting. We know that we must have some real differences between area
in the Euclidean and hyperbolic settings — as we know that rectangles do not exist in the
hyperbolic plane and thus square units will not be possible.

Euclid uses area from very early in his development of geometry. He states that two
triangles are equal when he means that they have the same area. His development of area is
then not as explicit as we might want for an axiomatic approach. What would an axiomatic
approach to area offer us that we have not already seen?

i) An axiomatic approach shows us that in many ways area, distance, and angle
measure are alike.

ii) An axiomatic approach will allow us to give a more unified treatment of area
that will apply to both Euclidean and hyperbolic geometries.

iii) By using an axiomatic method we can avoid some of the technical difficulties
that arise when we show that the area function is well defined.

iv) An axiomatic approach is consistent with the approach taken in most high school
textbooks.

Now, in Hilbert’s axiom system there was no Ruler Postulate or Protractor Postulate,
but there is a careful development of the necessary results that show that there is a one-to-
one correspondence between the lines in geometry and the real line and between the interval
[0, 180) and the measurements of angles.

In this treatment of geometry we will deal only with polygonal regions. For other regions
we would need to consider a limiting process as in calculus or, as Eudoxus and Archimedes
used, a method of exhaustion.
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88CHAPTER 8. AREA IN NEUTRAL, EUCLIDEAN AND HYPERBOLIC GEOMETRY

8.2 The Neutral Area Postulate

We need to define the region of which we want to find the area.

Definition 8.1 Let △ABC be a triangle. The interior of △ABC, denoted Int(△ABC), is
the intersection of the interiors of the three interior angles ∠ABC, ∠BCA, and ∠CAB.

Now, this gives us the points inside the triangle, but not the points on the triangle itself.

Definition 8.2 Let △ABC be a triangle. The associated triangular region is the subset T
of the plane consisting of all points that lie on the triangle or in its interior

T = △ABC
⋃

Int(△ABC) = NABC.

Note that the triangle and the associated triangular region are not the same thing. A
triangular region is the set of points that includes not only the points on the triangle itself
but also the points that lie inside the triangle. Intuitively a triangular region is a two-
dimensional region with positive area, while the triangle is a one-dimensional object that
has zero area - but does have length.

A polygonal region is a plane figure which can be expressed as the union of a finite
number of triangular regions, in such a way that if two of the triangular regions intersect,
their intersection is an edge or a vertex of each of them.

Note that every triangular region is a polygonal region, but not vice versa.
Let R be a polygonal region. A triangulation of R is a finite collection,

K = {T1, T2, . . . , Tn}

of triangular regions Ti, such that

1. the Ti’s intersect only at edges and vertices, and

2. their union is R.

Note that one polygonal region can have may different triangulations.

Definition 8.3 Two polygonal regions R1 and R2 are nonoverlapping if R1

⋂
R2 consists

only of subsets of edges of each. Specifically, if T1 is one of the triangular regions in R1 and
T2 is one of the triangular regions in R2, then Int(T1)

⋂
T2 = ∅ and T1

⋂
Int(T2) = ∅.

Axiom 7 (The Neutral Area Postulate) Associated with each polygonal region R there
is a positive number α(R), called the area of R, such that the following conditions are
satisfied

i) (Congruence) If two triangles are congruent, then there associated triangular
regions have equal areas.

ii) (Additivity) If R − R1

⋃
R2 is the union of two nonoverlapping polygonal re-

gions, then α(R) = α(R1) + α(R2).

Theorem 8.1 If △ABC is a triangle and E is a point on the interior of AC, then NABC =
NABE ∪ NEBC. Furthermore, NABE and NEBC are nonoverlapping regions.
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8.3. AREA IN EUCLIDEAN GEOMETRY 89

8.3 Area in Euclidean Geometry

What choices do we have for area in Euclidean geometry? We have our usual choice for
the area of a rectangle, but is it uniquely determined? For this section we will assume the
Euclidean Parallel Postulate.

For a rectangle �ABCD we know that �ABCD is convex and so the diagonals AC
and BD intersect in a point E. This then will allow us to associate a particular polygonal
region for each rectangle.

Definition 8.4 Let �ABCD be a rectangle and let E be the point of intersection of the
diagonals. The rectangular region associated with �ABCD is the polygonal region R is

R = NABE ∪ NBCE ∪ NCDE ∪ NADE.

The length of R is AB and the width is BC.

Axiom 8 (Euclidean Area Postulate) If R is a rectangular region, then

α(R) = length(R) × width(R).

Now, it is easy to determine the area of a triangle.

Theorem 8.2 If T is the triangular region corresponding to the right triangle △ABC with
right angle at C, then α(T ) = 1

2
(AC × BC).

Definition 8.5 Let T be a triangular region corresponding to △ABC. The base of T is
AB. Drop a perpendicular from C to geolineAB and call the foot of that perpendicular D.
The height of T is the length of CD.

Theorem 8.3 The area of a triangular region is one-half the length of the base times the
height; that is,

α(T ) =
1

2
base(T ) × height(T ).

Theorem 8.4 If two triangles are similar, then the ratio of their areas is the square of
the ratio of the lengths of any two corresponding sides; i.e., if △ABC ∼ △DEF and
DE = k · AB, then α(△DEF ) = k2 · α(△ABC).

8.4 Finite Decomposition

Let R1 and R2 be polygonal regions. Suppose that they have triangulations

K1 = {T1, T2, . . . , Tn},

K2 = {T ′1, T
′

2, . . . , T
′

n},

such that for each i we have Ti
∼= T ′i . Then we say that R1 and R2 are equivalent by finite

decomposition, and we write R1 ≡ R2.
The process of decomposing a region into triangles and reassembling them to form a

different region is usually called dissection. The main problem is:
Dissection Problem: Given two regions R and R′ with α(R) = α(R′), find triangulations
T and T ′ which show that R ≡ R′.
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90CHAPTER 8. AREA IN NEUTRAL, EUCLIDEAN AND HYPERBOLIC GEOMETRY

Theorem 8.5 (Fundamental Theorem of Decomposition Theory) If R and R′ are
two polygonal regions such that α(R) = α(R′), then R ≡ R′.

This seems to be obvious, but it is not as simple as it seems at first. Max Dehn proved
in 1902 that it is not possible to cut a tetrahedron into a finite number of polyhedral pieces
and reassemble them to form a cube of equal volume. Thus, the analogous statement for
three-dimensions is not true.

Theorem 8.6 Equivalence by finite decomposition is an equivalence relation:

i) (Reflexive) R ≡ R for every polygonal region R.

ii) (Symmetric) If R1 ≡ R2, then R2 ≡ R1.

iii) (Transitive) If R1 ≡ R2 and R2 ≡ R3, then R1 ≡ R3.

Proof: Reflexivity and symmetry are clear from the definition.
Suppose that R1, R2 and R3 are polygonal regions such that R1 ≡ R2 and R2 ≡ R3.

We need to show that R1 ≡ R3. Now the problem is that there may be different decompo-
sitions that give the equivalence of R2 to R1 and R2 to R3. Say that the triangles in the
decomposition for the first equivalence are T1, . . . , Tn and those for the second equivalence
are T1′, . . . , Tm′. In order to get one common subdivision for R2 into regions of the form
T1

⋂
Tj′ where Ti and Tj′ overlap. Each is either a triangle or a quadrilateral region. If it

is the latter, we would decompose it into triangles.

������ ������������ ������
��������

The result is a subdivision of R2 into small triangles such that each small triangle Tk′′
is contained in both a Ti and a Tj ′. Since Tk′′ ⊂ Ti there is a corresponding congruent
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8.5. FINITE DECOMPOSITION IN EUCLIDEAN GEOMETRY 91

triangle in R1. Since Tk′′ ⊂ Tj′ there is a corresponding congruent triangle in R2. In this
way the triangles Tk′′ induce triangulations of R1 and R3 that show R1 ≡ R3.

Given △ABC, with AB considered as the base. Let M and N be the midpoints of AC
and BC, respectively. Let D, E, and F be the feet of the perpendiculars from B, A, and
C, respectively, to ℓ =

←→

DE. As you will prove in the homework, �ABDE is a Saccheri
quadrilateral. It is known as the quadrilateral associated with △ABC. It depends on the
choice of the base, but it should be clear which base we mean.
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Figure 8.1: The Saccheri quadrilateral associated with △ABC

Theorem 8.7 Every triangular region is equivalent by finite decomposition to its associated
Saccheri quadrilateral region.

Proof: We will look at the special case given in Figure 8.1. There are other cases that
should be considered, but we will not undertake it here. Our special case is the situation
where F lies between M and N . The more general case uses an intermediate parallelogram,
but this case will give us a good feeling for why this should be true.

Let R be the quadrilateral region corresponding to �ABNM , let T1 = NCMF , T2 =
NCNF , T1′ = NAME, and T2′ = NBND. Then

△ABC = R
⋃

T1

⋃
T2 and �ABDE = R

⋃
T1′

⋃
T2′.

Since T1
∼= T1′, and T2

∼= T2′, it follows that △ABC ≡ �ABDE.

Theorem 8.8 Let △ABC be a triangle and let �ABDE be its associated Saccheri quadri-
lateral. If H is a point so that AH crosses

←→

DE at the midpoint of AH, then �ABDE is
also the Saccheri quadrilateral associated with △ABH.

8.5 Finite Decomposition in Euclidean Geometry

We will prove the Fundamental Theorem of Decomposition Theory (Theorem 8.5) in Eu-
clidean geometry. We will do this in such a way that we might see a method to construct
a similar proof in hyperbolic geometry. Again, we will assume the Euclidean Parallel Pos-
tulate for this section.

First, let’s restate the theorem.
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92CHAPTER 8. AREA IN NEUTRAL, EUCLIDEAN AND HYPERBOLIC GEOMETRY

Theorem 8.5: [Fundamental Theorem of Decomposition Theory] If R and R′ are
two polygonal regions such that α(R) = α(R′), then R ≡ R′.

We will approach the proof of this in three steps.
Step 1. Show that if △ABC and △DEF are two triangles such that α(△ABC) =
α(△DEF ) and AB ∼= DE, then △ABC ≡ △DEF .

Step 2. Use Step 1 to show that if △ABC and △DEF are any two triangles such that
α(△ABC) = α(△DEF ), then △ABC ≡ △DEF .

Step 3. Use Step 2 and an inductive argument to show that if α(R1) = α(R2), then
R1 ≡ R2.

First we will restate Theorem 8.7 in Euclidean geometry, in which a Saccheri quadrilat-
eral is a rectangle.

Lemma 8.1 If △ABC is a triangle, then there are points A′ and B′ such that �ABB′A′
is a rectangle and △ABC ≡ �ABB′A′.

We should then refer to �ABB′A′ as the associated rectangle.

Lemma 8.2 IF �ABCD and �EFGH are two rectangles such that α(�ABCD) = α(�EFGH)
and AB = EF , then �ABCD ∼= �EFGH.

Proof: We know that the area of the rectangle is the length times the height. Since the
triangles have the same area and the same length, they must have heights of equal length,
so the rectangles are congruent.

Now, we can prove Step 1.

Theorem 8.9 If △ABC and △DEF are two triangles such that α(△ABC) = α(△DEF )
and AB = DE, then △ABC ≡ △DEF .

Proof: Let △ABC and △DEF be two triangles such that α(△ABC) = α(△DEF ) and
AB = DE. Suppose that �ABB′A′ and �DEE′D′ are the associated rectangles to the
two triangles. Since these two rectangles have the same area and congruent bases, by the
above lemma, they are congruent. Thus, △ABC ≡ �ABB′A′ ∼= �DEE′D′ ≡ △DEF ,
and the theorem follows by the transitivity of equivalence.

Now, for Step 2 we have the following theorem.

Theorem 8.10 If △ABC and △DEF are any two triangles such that α(△ABC) = α(△DEF ),
then △ABC ≡ △DEF .

Proof: Let △ABC and △DEF be two triangles such that α(△ABC) = α(△DEF ). We
may assume that if corresponding sides are congruent, then the triangles are congruent and
we are done. Thus, we may assume that DF ≥ AC. Let M bet the midpoint of AC and
let N be the midpoint of BC.

Now AM ≤ 1

2
DF and there are points P ∈

−−→
MN so that MP > 1

2
DF . Now, there is

a point G ∈
−−→
MN such that AG = 1

2
DF . Choose a point H ∈

−→
AG so that GH ∼= AG. By

Theorem 8.8 △ABC and △ABH share the same associated rectangle, so △ABC ≡ △ABH.
Furthermore, AH = DF so that △ABH ≡ △DEF . Therefore, △ABC ≡ △DEF .
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To complete this proof in Step 3 we need one more fact about the areas of Euclidean
triangles.

Lemma 8.3 If △ABC is a triangle and a ∈ R so that 0 < a < α(△ABC), then there
exists a point D ∈ AB so that α(△ADC) = a.

Proof: Use the Ruler Postulate to choose a point D ∈ AB such that

AD =
a

α(△ADC)
AB.

Since △ABC and △ADC share the same height, if follows that α(△ADC) = a.

Finally, we can finish the Fundamental Theorem of Decomposition Theory.

Theorem 8.11 If R and R′ are two polygonal regions such that α(R) = α(R′), then R ≡
R′.

Proof: Let R and R′ be two polygonal regions such that α(R) = α(R′). Choose triangu-
lations T1, . . . , Tn and T1′, . . . , Tm′ of R and R′, respectively.

Consider two triangles T1 and T1′. We may assume that T1 has the smaller area.
If it should happen that α(T1) = α(T1′), then delete T1 from R and T1′ from R′. If
α(T1) 6= α(T1′), then α(T1) < α(T1′). By the above lemma, T1′ can be subdivided into two
triangles T ′′1 and T ′′′1 such that α(T ′′1 ) = α(T1). Delete T1 from R and delete T ′′1 from R′.

The result of this operation is a new pair of polygonal regions R1 and R′1. Now the
deleted triangles have the same area, we know that α(R1) = α(R′1). If we could prove that
R1 ≡ R′1, then it would follow that R ≡ R′ because T1 ≡ T ′′1 .

Now the new regions R1 and R′1 have smaller areas than the originals and the total
number of triangles in the two triangulations has been reduced. The number is reduced
by 2 in the first case and by 1 in the second case. We apply the previous process a finite
number of times and we reduce to regions that are triangular. Then apply Theorem 8.10 to
those triangular regions. Then you can the triangles back in and apply Theorem 8.10 each
time to give the equivalence between the original regions.

8.6 Area in Hyperbolic Geometry

We want to follow the above outline to study the concept of area in hyperbolic geometry.
We need to look for an analogous result to Theorem 8.9. We don’t have that type of
theorem, but what we do have is that from Theorem 7.5 if two Saccheri quadrilaterals have
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94CHAPTER 8. AREA IN NEUTRAL, EUCLIDEAN AND HYPERBOLIC GEOMETRY

the same defect and same summit, then they are congruent. This will lead down a path to
understanding area in the hyperbolic plane. It says that somehow area and defect will be
related.

Let δT = defect (△(T )) for any triangular region T . What will be prove is the following
theorem due to Janos Bolyai.

Theorem 8.12 (Bolyai’s Theorem for the Hyperbolic Plane) If T1 and T2 are tri-
angular regions, and δT1 = δT2, then T1 ≡ T2.

NOTE: Defect applies to triangles and quadrilaterals while area applies to triangular regions
and polygonal regions. We will not make such a strict delineation of the terms and will talk
about the defect of a triangular region, knowing that it means the defect of the associated
triangle.

Lemma 8.4 If K1 and K2 are triangulations of the same polygonal region R, then δK1 =
δK2.

Lemma 8.5 Every triangular region has the same defect as its associated Saccheri quadri-
lateral region.

Lemma 8.6 If △ABC and △DEF have the same defect and a pair of congruent sides,
then the two triangular regions are equivalent by finite decomposition.

Proof: Assume that δ(△ABC) = δ(△DEF ) and that AB ∼= DE. Let �ABB′A′ and
DEE′D′ be the associated Saccheri quadrilaterals corresponding to △ABC and △DEF ,
respectively. By the above lemma δ(�ABB′A′) = δ(�DEE′D′). Since AB is the summit
of ABB′A′ and DE is the summit of DEE′D′ and AB ∼= DE, by Theorem 7.5 we have
that �ABB′A′ ∼= �DEE′D′. By the transitivity of equivalence and our previous result, we
are done.

Proof of Bolyai’s Theorem: This is not that much different from the proof of Theo-
rem 8.10.

Let △ABC and △DEF be two triangles such that δ(△ABC) = δ(△DEF ). We may
assume that if corresponding sides are congruent, then the triangles are congruent and we
are done. Thus, we may assume that DF ≥ AC. Let M bet the midpoint of AC and let N
be the midpoint of BC.

Choose a point G ∈
←→

MN such that AG = 1

2
DF . Choose a point H ∈

−→
AG so that A∗G∗H

and GH ∼= AG. By Theorem 8.8 △ABC and △ABH share the same associated Saccheri
quadrilateral, so △ABC ≡ △ABH. Furthermore, AH = DF so that △ABH ≡ △DEF .
Therefore, △ABC ≡ △DEF .

This leads us to the following result in H
2. It says that in hyperbolic geometry defect

and area are essentially the same. Why should we have expected this? Well, we should not
have expected it at all. Their definitions do not lead us to believe that this might be the
case.

Theorem 8.13 (Area and Defect Theorem) There exists a constant k such that

α(△ABC) = k · δ(△ABC)

for every triangle △ABC in the hyperbolic plane.
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To prove this we need a few preliminary results. First though, a couple of corollaries:

Corollary 1 There is an upper bound on the areas of triangles.

Corollary 2 Let △ABC and △DEF be two triangles. If α(△ABC) = α(△DEF ), then
△ABC ≡ △DEF .

Now, for the preliminaries for the proof of Theorem ??.

Lemma 8.7 For any two triangles △ABC and △DEF ,

α(△ABC)

δ(△ABC)
=

α(△DEF )

δ(△DEF )
.

Proof: First, consider the case when δ(△ABC) = δ(△DEF ). Then, by Bolyai’s Theorem,
△ABC ≡ △DEF , so α(△ABC) = α(△DEF ), and the lemma holds.

Now, consider the case in which δ(△ABC)/δ(△DEF ) is a rational number, so that

δ(△ABC)

δ(△DEF )
=

p

q
,

where both p and q are positive integers and p < q. Since defect is a continuous function,
there are points P0, P1, . . . , Pq on DE so that D = P0, Pi−1 ∗Pi ∗Pi+1 for all i, Pq = E and

δ(△FPiPi+1) =
1

q
δ(△DEF )

for each i.
Note that by the Additivity of the Defect δ(△ABC) = δ(△FP0Pp). By our work at the

beginning of the proof, all of the small triangles △FPiPi+1 have the same area. Therefore,
by the Additivity of the Defect and the Additivity of the Area, we are done.

To show this for any real number, we rely on the properties of the real numbers stated
in the following two theorems, and we are done.

Theorem 8.14 If a and b are real numbers such that a < b, then there exists a rational
number x such that a < x < b and there exists an irrational number y so that a < y < b.

Theorem 8.15 IF x and y are real numbers such that

i) every rational number that is less than x is less than y, and

ii) every rational number that is less than y is also less than x,

then x − y.

Now, we are in a position to prove Theorem ??.

Proof: Fix one triangle △DEF and let

k =
α(△DEF )

δ(△DEF )
.

By the above lemma,
α(△ABC)

δ(△ABC)
= k

for every triangle △ABC and so α(△ABC) = kδ△ABC) for every △ABC.
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Note that we have not yet defined an area function for the hyperbolic plane. The easiest
way to do so would be to take k = 1 thus making α(△ABC) = δ(△ABC). This is not
always what we want to do though. We will see indications of why as we move through the
course.

We can now complete the proof of the Fundamental Theorem of Decomposition Theory
in the hyperbolic plane. The proof is done much as it was in the Euclidean case, so adding
a proof here will not add anything new.

Instead, let us look at one more bit of information about the area. Why did we not
define the area for the hyperbolic plane much as we did for the Euclidean plane? We cannot
define the area in terms of rectangles, but most assuredly we could have defined the area of
a triangle using the same formula as we did in the Euclidean plane. Isn’t true that

Area =
1

2
base × height?

Actually, no! We need to see why.

8.7 The Hyperbolic Area Function

Theorem 8.16 If δ△ABC > δ△DEF , then there is a point P between A and C such that
δ△ABP = δ△DEF .

Now, how do we define the area of a polygonal region in the hyperbolic plane? Should
we define the area in the same way that we do in the Euclidean plane? If so, what are the
minimum requirements for an area function of the Euclidean plane? Minimally it should
satisfy the following: Let R be the set of all polygonal regions in H2. An area function
should be a function

α : R → R

such that

1. αR > 0 for every R;

2. if R1 and R2 intersect only in edges and vertices, then

α(R1 ∪ R2) = αR1 + αR2;

3. if T1 and T2 are triangular regions with the same base and altitude, then αT1 = αT2.

If there is such a function α, then by (2) and (3) it will satisfy

4. if R1 ≡ R2, then αR1 = αR2, because congruent triangles have the same bases and
altitudes.

In Euclidean geometry we can show that this area function is unique and it must satisfy
the formula αT = 1

2
bh for each triangular region, T , where b is the length of the base and

h is the length of the altitude.

Theorem 8.17 There is no such function α : R → R satisfying (1), (2), (3), and, hence,
(4).
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Proof: Consider the right angle ∠AP0P1, with AP0 = P0P1 = 1. For each n, let Pn be
the point of

−−−→
P0P1 such that P0Pn = n. This gives a sequence of triangles

△AP0P1, △AP1P2, . . . ,

and a corresponding sequence of triangular regions

T1, T2, . . . .

By condition (3) all the regions Ti have the same “area” αTi = A.

Now consider the defects of these triangles and let di = δTi. For each n

d1 + d2 + · · · + dn = δ△AP0Pn < 180.

Since the partial sums d1 + d2 + · · · + dn are bounded, we have that the infinite series,

∞∑

n=0

dn

is convergent. Therefore,

lim
n→∞

dn = 0.

Hence dn < d1 for some n.
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By Theorem 7 there is a point, B, between A and P0 such that

δ△BP0P1 = δ△APn−1Pn = dn.
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Therefore by Bolyai’s Theorem the regions T and Tn determined by these triangles are
equivalent by finite decomposition. By condition (4) this means that αT = αTn. But

αTn = αT1 = A.

Therefore,
αT = αT1.

Because α△ABP1 > 0 and
αT1 = αT + α△ABP1.

this must be impossible.

Note that we have proven the following result.

Theorem 8.18 There exist triangles in H
2 that have the same base and height but different

areas.

8.8 The Uniqueness of Hyperbolic Area Theory

Any reasonable area function α should have the following properties:

1. αR > 0 for every R;

2. if R1 and R2 intersect only in edges and vertices, then

α(R1 ∪ R2) = αR1 + αR2;

3. if R1 ≡ R2, then αR1 = αR2.

We normally replace the Area-Defect Theorem result with the following constant:

Theorem 8.19 There is a positive constant k > 0 such that

α(△ABC) =
π

180
k2δ(△ABC)

for every triangle.

This changes our earlier result to

Corollary 3 In H
2 the area of any triangle is at most πk2.

There is no finite triangle whose area equals the maximal value πk2, although you can
approach this area as closely as you wish (and achieve it with a trebly asymptotic triangle).
J. Bolyai proved that you can construct a circle of area πk2 and a regular 4-sided polygon
with a 45◦ angle that also has this area.
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