Chapter 11

Hypercycles and Horocycles

There is a curve peculiar to hyperbolic geometry, called the horocycle.

Let P and @ be points on a line £, and let v be a circle of radius PQ with center at Q.
In the Euclidean case, if we let the point ) move off to infinity along the line £ and keep P
fixed, then the circle converges to a straight line through P which is perpendicular to £.

Figure 11.1: Circles converging to a perpendicular line in the Euclidean plane

If we take a line £ in they hyperbolic plane and look at the circle with radius PQ and
center @, then letting @) move off toward infinity we get that these circles converge to a
curve called a horocycle.

Consider two horoparallel lines, £ and m, with a common direction, say 2. Let P be

129
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Figure 11.2: Hyperbolic circles converging to a horocycle in the Poincaré Half-Plane

a point on one of these lines P € ¢. If there exists a point ) € m such that the singly
asymptotic triangle, APQS, has the property that

/PO = /QPQ

then we say that Q) corresponds to P. If the singly asymptotic triangle A PQSQ has the above
property we shall say that it is equiangular. Note that it is obvious from the definition that
if Q) corresponds to P, then P corresponds to ). The points P and @ are called a pair of
corresponding points.

Theorem 11.1 If points P and @ lie on two limiting parallel lines in the direction of the
ideal point, 1, they are corresponding points on these lines if and only if the perpendicular
bisector of PQ is limiting parallel to the lines in the direction of €.

PROOF: Left as an exercise. |

Theorem 11.2 Given any two horoparallel lines, there exists a line each of whose points
is equidistant from them. The line is limiting parallel to them in their common direction.

PROOF: Let ¢ and m be horoparallel lines with common direction 2. Let A € ¢ and
B € m. The bisector of ZBAS) in the singly asymptotic triangle AABSQ meets side Bf2
in a point X and the bisector of ZABQ meets side AX of the triangle AABX in a point
C. Thus the bisectors of the angles of the singly asymptotic triangle AABSQ) meet in a
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point C. Drop perpendiculars from C to each of ¢ and m, say P and @), respectively. By
Hypothesis-Angle ACAP = ANCAM (M is the midpoint of AB) and ACBQ = ACBM.
Thus, CP = CM = CQ. Thus, by SAS for singly asymptotic triangles, we have that

ACPQ > ACQQ

and thus the angles at C' are congruent. Now, consider the line C2 and let F' be any point
on it other than C. By SAS we have ACPF = ACQF. If S and T are the feet of F in ¢
and m, then we get that APSF = AQTF and F'S = FT. Thus, every point on the line
CQ is equidistant from £ and m. |

This line is called the equidistant line.
The following results are left for the reader to prove.

Lemma 11.1 Given any point on one of two horoparallel lines, there is a unique point on
the other which corresponds to it.

Lemma 11.2 If three points P, Q, and R lie on three parallels in the same direction so
that P and Q are corresponding points on their parallels and QQ and R are corresponding
points on theirs, then P, Q, and R are noncollinear.

Lemma 11.3 If three points P, QQ, and R lie on three parallels in the same direction so
that P and @QQ are corresponding points on their parallels and Q and R are corresponding
points on theirs, then P and R are corresponding points on their parallels.

Consider any line ¢, any point P € ¢, and an ideal point in one direction of ¢, say 2. On
each line parallel to ¢ in the direction €) there is a unique point () that corresponds to P.
The set consisting of P and all such points @ is called a horocycle, or, more precisely, the
horocycle determined by ¢, P, and 2. The lines parallel to ¢ in the direction 2, together
with £, are called the radii of the horocycle. Since £ may be denoted by Pf), we may regard
the horocycle as determined simply by P and 2, and hence call it the horocycle through P
with direction Q, or in symbols, the horocycle (P, Q).

All the points of this horocycle are mutually corresponding points by Lemma 11.3 , so
the horocycle is equally well determined by any one of them and ). In other words if @ is
any point of horocycle (P, ) other than P, then horocycle (Q,2) is the same as horocycle
(P,Q). If, however, P’ is any point of ¢ other than P, then horocycle (P’,) is different
from horocycle (P, (), even though they have the same direction and the same radii. Such
horocycles, having the same direction and the same radii, are called codirectional horocycles.

There are analogies between horocycles and circles. We mention a few below. The
corresponding results for circles is mentioned in parentheses.

Lemma 11.4 There is a unique horocycle with a given direction which passes through a
given point.
(There is a unique circle with a given center which passes through a given point.)

Lemma 11.5 Two codirectional horocycles have no common point.
(Two concentric circles have no common point.)

Lemma 11.6 A unique radius is associated with each point of a horocycle.
(A unique radius is associated with each point of a circle.)
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A tangent to a horocycle at a point on the horocycle is defined to be the line through
the point which is perpendicular to the radius associated with the point.

No line can meet a horocycle in more than two points. This is a consequence of the
fact that no three points of a horocycle are collinear inasmuch as it is a set of mutually
corresponding points, c¢f. Lemma 11.2.

Lemma 11.7 The tangent at any point A of a horocycle meets the horocycle only in A.
Every other line through A except the radius meets the horocycle in one further point B.
If « is the acute angle between this line and the radius, then d(A, B) is twice the segment
which corresponds to « as angle of parallelism.

PROOF: Let t be the tangent to the horocycle at A and let 2 be the direction of the
horocycle. If ¢ met the horocycle in another point B, we would have a singly asymptotic
triangle with two right angles, since A and B are corresponding points. In fact the entire
horocycle, except for A, lies on the same side of ¢, namely, the side containing the ray A€.

Let k£ be any line through A other than the tangent or radius. We need to show that k
meets the horocycle in some other point. Let a be the acute angle between k and the ray
AQ. Let C be the point of k, on the side of ¢ containing the horocycle, such that AC is a
segment corresponding to a as angle of parallelism. (RECALL: e~¢ = tan(a/2)). The line
perpendicular to k at C is then parallel to A2 in the direction €. Let B be the point of
k such that C is the midpoint of AB. The singly asymptotic triangles AACSQ and ABCS2
are congruent. Hence ZC'BS) = «a, B corresponds to A, and B € (A, Q). |

A chord of a horocycle is a segment joining two points of the horocycle.

Lemma 11.8 The line which bisects a chord of a horocycle at right angles is a radius of
the horocycle.

We can visualize a horocycle in the Poincaré disk model as follows. Let ¢ be the
diameter of the unit disk whose interior represents the hyperbolic plane, and let O be the
origin. It is a fact that the hyperbolic circle with hyperbolic center P is represented by a
Euclidean circle whose Euclidean center R lies between P and A.

As P recedes from A towards the ideal point 2, R is pulled up to the Euclidean midpoint
of QA, so that the horocycle (A,2) is a Euclidean circle tangent to the unit disk at € and
tangent to £ at A. It can be shown that all horocycles are represented in the Poincaré model
by Euclidean circles inside the unit disk and tangent to boundary circle. For the Poincaré
upper half plane model, our horocycles will be circles that are tangent to the z-axis.

Another curve found specifically in the hyperbolic plane and nowhere else is the equidis-
tant curve, or hypercycle. Given a line ¢ and a point P not on ¢, consider the set of all
points () on one side of £ so that the perpendicular distance from @ to £ is the same as the
perpendicular distance from P to /.

The line £ is called the axis, or base line, and the common length of the perpendicular
segments is called the distance. The perpendicular segments defining the hypercycle are
called its radii. The following statements about hypercycles are analogous to statements
about regular Euclidean circles.

1. Hypercycles with equal distances are congruent, those with unequal distances are not.
(Circles with equal radii are congruent, those with unequal radii are not.)
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Figure 11.3: Concentric hypercycles in the Poincaré Half Plane model

. A line cannot cut a hypercycle in more than two points.

. If a line cuts a hypercycle in one point, it will cut it in a second unless it is tangent

to the curve or parallel to it base line.

. A tangent line to a hypercycle is defined to be the line perpendicular to the radius at

that point. Since the tangent line and the base line have a common perpendicular, they
must be hyperparallel. This perpendicular segment is the shortest distance between
the two lines. Thus, each point on the tangent line must be at a greater perpendicular
distance from the base line than the corresponding point on the hypercycle. Thus,
the hypercycle can intersect the hypercycle in only one point.

. A line perpendicular to a chord of a hypercycle at its midpoint is a radius and it

bisects the arc subtended by the chord.
Two hypercycles intersect in at most two points.

No three points of a hypercycle are collinear.

In the Poincaré disk model let 2 and A be the ideal end points of £. It can be shown
that the hypercycle to £ through 2 is represented by the arc of the Euclidean circle passing
through A, B, and €). This curve is orthogonal to all Poincaré lines perpendicular to the
line £. In the Poincaré upper half plane model, the hypercycle will be represented by an arc
of a Euclidean circle passing through A, B, and 2.

In the Poincaré disk model, &, a Euclidean circle represents:

(i) a hyperbolic circle if it is entirely inside the unit disk;

(ii) a horocycle if it is inside the unit disk except for one point where it is tangent to the

unit disk;
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(iii) a hypercycle if it cuts the unit disk non-orthogonally in two points;
(iv) a hyperbolic line if it cuts the unit disk orthogonally.

A similar situation is true for the Poincaré upper half plane model, 7.

It follows that in the hyperbolic plane three non-collinear points lie either on a circle,
a horocycle, or a hypercycle accordingly, as the perpendicular bisectors of the triangle are
concurrent in an ordinary point, an ideal point, or an ultra-ideal point.
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