
Chapter 12

Hyperbolic Trigonometry

Trigonometry is the study of the relationships among sides and angles of a triangle. In
Euclidean geometry we use similar triangles to define the trigonometric functions—but the
theory of similar triangles in not valid in hyperbolic geometry. Thus, we must them in
terms of their power series expansion for any real number, as in Equations 10.1.

We define the hyperbolic trigonometric functions

sinhx =
ex − e−x

2

cosh x =
ex + e−x

2

tanhx =
sinhx

cosh x
=

ex − e−x

ex + e−x

Since ex =
∑

∞

n=0
xn

n! converges for all x ∈ R, the power series expansions of the hyperbolic
trigonometric functions are

sinhx =

∞
∑

n=0

x2n+1

(2n + 1)!

cosh x =

∞
∑

n=0

x2n

(2n)!

and converge for all real x. In fact, using complex analysis and letting i =
√
−1, we can

easily see that

sinhx = −i sin(ix) = i sin
(x

i

)

cosh x = cos(ix) = cos
(x

i

)

There are also the usual collections of hyperbolic trigonometry identities:

cosh2 x − sinh2 x = 1

cosh(x + y) = cosh x cosh y + sinhx sinh y

sinh(x + y) = sinhx cosh y + cosh x sinh y
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136 CHAPTER 12. HYPERBOLIC TRIGONOMETRY

A straightforward calculation using double angle formulas for the circular functions gives
the following formulas:

sin Π(x) = sech x (12.1)

cos Π(x) = tanh x (12.2)

tan Π(x) = csch x (12.3)

For example, to derive the first equation:

sin Π(x) = sin(2 arctan e−x)

= 2 sin(arctan e−x) cos(arctan e−x)

= 2

(

e−x

1 + e−2x

)

= 2

(

1

ex + e−x

)

=
1

cosh x
= sech x.

This function Π : (0, π
2 ) → H

2 provides a connection between the hyperbolic and circular
functions.

Given △ABC, let a = dp(B,C), b = dp(A,C), and c = dp(A,B). First, we will derive
some formulæof hyperbolic geometry. Let B ∈ H

2. Let x = dp(O,B) be the Poincaré
distance from O to B and let t = d(O,B) be the Euclidean distance from O to B. From
Lemma 10.11 we have

ex =
1 + t

1 − t
.

We then get that

sinhx =
2t

1 − t2

cosh x =
1 + t2

1 − t2

tanh x =
2t

1 + t2
.

Theorem 12.1 Given any right triangle △ABC with ∠C the right angle (having measure
π/2, then

sin A =
sinh a

sinh c
cos A =

tanh b

tanh c
(12.4)

cosh c = cosh a cosh b = cot A cot B (12.5)

cosh a =
cos A

sin B
(12.6)

�
�

�
�

�
�

�
�

�
�

A C

B

b

ac

π/2

Before we prove these equations, compare them with the formulæ for a right triangle in
Euclidean geometry.
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1. Equation 12.5 is the hyperbolic analogue of the Pythagorean theorem.

cosh c = cosh a cosh b

1 +
c2

2!
+

c4

4!
+ · · · =

(

1 +
a2

2!
+

a4

4!
+ · · ·

)

·
(

1 +
b2

2!
+

b4

4!
+ · · ·

)

= 1 +

(

a2

2!
+

b2

2!

)

+ · · ·

Thus, if △ABC is sufficiently small so that higher powers of a, b, and c are negligible,
then

1 +
c2

2
≈ 1 +

1

2
(a2 + b2)

c2 ≈ a2 + b2

2. Equation 12.4 says that for △ABC sufficiently small sin A ≈ a
c

and cos A ≈ b
c
. How

close are these approximations? Consider right triangles with ∠A fixed and let c
approach 0. Since a < c, a → 0.

1

sinhx
≈ 1

c + c3

3!

=
1

c

1

1 + u
=

1

c
(1 − u + u2 − u3 + . . .)

where lim
c→0

= 0. Thus,

sinh a

sinh c
=

a

c
(1 +

a2

3!
+

a4

5!
+ · · · )(1 − u + u2 − u3 + · · · )

≈ a

c

Thus,

lim
c→0

a

c
= lim

c→0

sinh a

sinh c
= sin A.

3. Equation 12.6 and the second equality in Equation 12.5 have no Euclidean parallels
for there the angles do not determine the lengths of the sides.

First recall that a point P = iep in H is a distance p from i. Also, remember that

φ =

[

1 −i
−i 1

]

sends H to D . In this remember that φ(i) = 0, and note that

φ(iep) =
iep − i

ep + 1
= i tanh(p/2).

Thus, a point that is a hyperbolic distance p away from zero in D is a Euclidean distance
tanh(p/2) away from zero.

Thus, we may choose our right triangle △ABC with right angle C and sides of length
|AC| = b and |BC| = a to be the triangle in the Poincaré disk model D with vertices C = 0,
A = tanh(b/2) and B = i tanh(a/2).
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138 CHAPTER 12. HYPERBOLIC TRIGONOMETRY

C A

B

AC

B

Figure 12.1: Right triangles in D

However, for computation purposes, it turns out that we will be better off by making
A = 0 as in the right hand figure above. To do this we need to find a direct isometry γ
of D which sends A to 0 and the line AC to itself. So, we want γ(A) = 0, γ(1) = 1, and
γ(−1) = −1. Then

(z,A; 1,−1) = (γz, 0; 1,−1)

from which it follows that

γ =

[

−1 A
A −1

]

Now, apply γ to B.

γ(B) =
−B + A

AB − 1
=

−i tanh(a/2) + tanh(b/2)

i tanh(a/2) tanh(b/2) − 1
.

Thus, for our proof we may use the triangle △ABC in D with

A = 0

B =
−i tanh(a/2) + tanh(b/2)

i tanh(a/2) tanh(b/2) − 1

C = − tanh(b/2).

Proof: To prove the Hyperbolic Pythagorean Theorem, we may assume that A = O is the
origin. Since B is a distance tanh(c/2) away from zero, we get

tanh(c/2) =

∣

∣

∣

∣

−B + A

AB − 1

∣

∣

∣

∣

tanh2(c/2) =
tanh2(a/2) + tanh2(b/2)

tanh2(a/2) tanh2(b/2) + 1

MATH 6118-090 Spring 2008



139

From our hyperbolic trigonometry identities, you can easily show that sech2 x = 1 −
tanh2 x, so

sech2(c/2) = 1 − tanh2(c/2)

=
tanh2(a/2) tanh2(b/2) − tanh2(a/2) − tanh2(b/2) + 1

tanh2(a/2) tanh2(b/2) + 1

=
(tanh2(a/2) − 1)(tanh2(b/2) − 1)

tanh2(a/2) tanh2(b/2) + 1

cosh2(c/2) =
(tanh2(a/2) tanh2(b/2) + 1)

sech2(a/2)sech2(b/2)

= (tanh2(a/2) tanh2(b/2) + 1) cosh2(a/2) cosh2(b/2)

= sinh2(a/2) sinh2(b/2) + cosh2(a/2) cosh2(b/2)

= 2 cosh2(a/2) cosh2(b/2) − cosh2(a/2) − cosh2(b/2) + 1.

Again, using the hyperbolic trigonometry identity cosh 2x = 2cosh2 x − 1, we have

cosh c = 2cosh2(c/2) − 1

= 4 cosh2(a/2) cosh2(b/2) − 2 cosh2(a/2) − 2 cosh( b/2) + 1

= (2 cosh2(a/2) − 1)(2 cosh2(b/2) − 1)

= cosh a cosh b

Since A sits at the origin and angles are measured with a Euclidean protractor, we can
find the angle at A using regular trigonometry. We just need to know what the lengths of
the sides are

First, we need to find the coordinates for B. Rationalize the denominator for B.

B =
(tanh2(a/2) + 1) tanh(b/2) + i tanh(a/2)(tanh2(b/2) − 1)

tanh2(a/2) tanh2(b/2) + 1

Note that

tanh2(b/2) − 1 = −sech2(b/2)

tanh2(a/2) + 1 =
sinh2(a/2) + cosh2(a/2)

cosh2(a/2)
=

cosh a

cosh2(a/2)

Thus,

B =
(cosh a tanh(b/2) cosh2(b/2) − i tanh(a/2) cosh2(a/2)

sinh2(a/2) sinh2(b/2) + cosh2(a/2) cosh2(b/2)

=
cosh a sinh b − i sinh a

2(sinh2(a/2) sinh2(b/2) + cosh2(a/2) cosh2(b/2)
.
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140 CHAPTER 12. HYPERBOLIC TRIGONOMETRY

Thus,

cosA =
Bx

|B|

=

cosha sinh b

2(sinh2(a/2) sinh2(b/2) + cosh2(a/2) cosh2(b/2))

tanh2(c/2)

=
cosha sinh b

2(sinh2(a/2) sinh2(b/2) + cosh2(a/2) cosh2(b/2))

√

tanh2(a/2) tanh2(b/2) + 1

tanh2(a/2) + tanh2(b/2)

=
cosha sinh b

2(sinh2(a/2) sinh2(b/2) + cosh2(a/2) cosh2(b/2))

√

sinh2(a/2) cosh2(b/2) + cosh2(a/2) sinh2(b/2)

sinh2(a/2) sinh2(b/2) + cosh2(a/2) cosh2(b/2)

=
cosha sinh b

√

(sinh2(a/2) sinh2(b/2) + cosh2(a/2) cosh2(b/2))(sinh2(a/2) cosh2(b/2) + cosh2(a/2) sinh2(b/2))

=
2 cosha sinh b

√

[(cosha − 1)(cosh b − 1) + (cosh a + 1)(cosh b + 1)][(cosh a − 1)(cosh b + 1) + (cosh b − 1)(cosha + 1)]

=
cosh a sinh b

√

(cosha cosh b + 1)(cosha cosh b − 1)

=
cosha sinh b

√

cosh2 a cosh2 b − 1

Likewise,

sin A =
sinh a

√

cosh2 a cosh2 b − 1

Now,

cosh2 a cosh2 b − 1 = cosh2 c − 1

= sinh2 c

since cosh a cosh b = cosh c by the Hyperbolic Pythagorean Theorem. Thus,

cos A =
cosh a sinh b

sinh c

=

cosh a sinh b

cosh b
sinh c

cosh b

=
tanh b cosh a cosh b

sinh c

=
tanh b cosh c

sinh c

cos A =
tanh b

tanh c

sin A =
sinh a

sinh c
.
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Theorem 12.2 For any triangle △ABC in the hyperbolic plane

cosh c = cosh a cosh b − sinh a sinh b cos C (12.7)

Hyperbolic Law of Cosines

sinh a

sinA
=

sinh b

sin B
=

sinh c

sin C
(12.8)

Hyperbolic Law of Sines

Theorem 12.3 (Hyperbolic Law of Cosines for Angles) Let △ABC be a triangle in
H

2 with sides a, b, and c opposite the angles A, B, and C. Then

cos C = − cos A cos B + sin A sin B cosh c.

Note that this theorem is the tool that allows us to solve for the sides of a triangle given
the three angles (AAA).

Since the area of a triangle is determined by its angles, and since the sides of a triangle
determine the angles, there must be a formula for the area of a triangle in terms of its sides:
a Heron’s Formula for Hyperbolic Geometry.

Theorem 12.4 (Heron’s Formula for Hyperbolic Geometry) Let △ABC be a tri-
angle in H 2 with sides a, b, and c opposite the angles A, B, and C. Let

s =
a + b + c

2

be the semiperimeter. Let K = |△ABC| = area of △ABC. Then

1 − cos(K) =
4 sinh s sinh(s − a) sinh(s − b) sinh(s − c)

(1 + cosh a)(1 + cosh b)(1 + cosh c)
.

Let us take a look at a specific example. Consider equilateral triangles. In Euclidean
geometry all are similar, since they all must have angles measuring 60◦. If this were true in
hyperbolic geometry, they would have to be congruent by AAA. What then are the angles
in an equilateral triangle of differing sides? Look at the following table and see if you can
tell what is happening.

Sides Radians Degrees

10 0.0135 0.77

5 0.1633 9.35

2.5 0.5359 30.71

1.5 0.7930 45.43

1.0 0.9188 52.64

0.5 1.0122 57.99

0.1 1.0458 59.92

Table 12.1: Hyperbolic Equilateral Triangles

Other interesting examples would be how the angles in a right isosceles triangle vary
with the sides and what triangle is analogous to the standard 30-60-90 triangle in Euclidean
geometry.
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142 CHAPTER 12. HYPERBOLIC TRIGONOMETRY

12.1 Circumference and Area of a Circle

Theorem 12.5 The circumference C of a circle of radius r is

C = 2π sinh r.

r

p/2n

a

π
n

Figure 12.2: Hyperbolic Circle

In Euclidean geometry C = lim
n→∞

pn where pn is the perimeter of the regular n-gon

inscribed in the circle.

pn = 2nr sin
π

n
= 2nr

[

π

n
− 1

3!

(π

n

)3
+

1

5!

(π

n

)5
− · · ·

]

= 2πr − 2πr

[

1

3!

(π

n

)2
+

1

5!

(π

n

)4
− · · ·

]

Thus, C = lim
n→∞

pn = 2πr.

In hyperbolic geometry we can still compute the perimeter and compute the limit, but
we will use Theorem 12.1 to compute the perimeter.
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The proof is nothing but the following computation.

sin
π

2n
=

sinh p
2n

sinh r

sinh
p

2n
= sinh r sin

π

n
∞
∑

j=0

(

p
2n

)2j+1

(2j + 1)!
= sinh r





∞
∑

j=0

(−1)j
(

π
n

)2j+1

(2j + 1)!





p

2n





∞
∑

j=0

(

p
2n

)2j

(2j + 1)!



 =
π

n
sinh r





∞
∑

j=0

(−1)j
(

π
n

)2j

(2j + 1)!





p

(

1 +
1

3!

( p

2n

)2
+ · · ·

)

= 2π sinh r

(

1 − 1

3!

(π

n

)2
+ · · ·

)

C = lim
n→∞

p = 2π sinh r.

Let K be the area of △ABC, so K = π − ∠A − ∠B − ∠C. Let △ABC have a right
angle at C, then K = π

2 − A − B.

Theorem 12.6 tan K/2 = tanh a/2 tanh b/2.

Once again the proof is a computation.

tanh2 a

2
tanh2 b

2
=

cosh a − 1

cosh a + 1
· cosh b − 1

cosh b + 1

=
cos A − sin B

cos A + sin B
· cos B − sin A

cos B + sin A

=
1 − sin(A + B) cos(A − B)

1 + sin(A + B) cos(A − B)

=
1 − cos K

1 + cos K
= tan2 K

2
.

Using this and our limiting approach we can now compute the area of a circle.

Theorem 12.7 The area, A, of a circle of radius r is

A = 4π sinh2 r

2
.

Proof: We do this just as before. If Kn is the area of the inscribed regular n-gon, then
A = lim

n→∞

Kn. In the right triangle in Figure 12.2 let K, a, and p denote Kn, an and pn.
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The area of the right triangle is Kn/2n.

tan
K

4n
= tanh

a

2
tanh

p

4n

4n tan
K

4n
= (tanh

a

2
) 4n tanh

p

4n
Now,

4n tan
K

4n
= 4n

[

K

4n
+

1

3

(

K

4n

)3

+
2

15

(

K

4n

)5

+ · · ·
]

= K[1 +
1

3

(

K

4n

)2

+
2

15

(

K

4n

)4

+ · · · ]

and

4n tanh
p

4n
= 4n

[

p

4n
− 1

3

( p

4n

)3
+

2

15

( p

4n

)5
+ · · ·

]

= p[1 +
1

3

( p

4n

)2
− 2

15

( p

4n

)4
+ · · · ]

Thus, we find that

lim
n→∞

4n tan
K

4n
= lim

n→∞

K = A

lim
n→∞

4n tanh
p

4n
= lim

n→∞

p = C

lim
n→∞

a = r

Putting all of this together we have that

A = C tanh
r

2

= 2π sinh r tanh
r

2

= 2π sinh r
cosh r − 1

sinh r
= 2π(cosh r − 1)

= 4π sinh2 r

2
.

Thus, we have computed the area of a circle.
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