Exercise Set #7

1. What is the distance between the points $4 + i/2$ and $4 + 5i$ in the Poincaré upper half plane, H?

2. What is the distance between the points $-2 + 2i$ and $-2 + 7i$ in the Poincaré upper half plane, H?

3. Prove that the dilation $\delta_\lambda(x, y) = (\lambda x, \lambda y)$ preserves the Poincaré arclength element.

4. Let $P = 4 + 4i$ and $Q = 5 + 3i$. Find M and N, the endpoints of the Poincaré line through P and Q.

5. Let $P = 12i$ and $Q = 7 + 5i$. Find M and N, the endpoints of the Poincaré line through P and Q.

6. In the upper half plane model, H, carefully draw the asymptotic triangle with vertices $i, 1 + i,$ and 1. Is the map

$$\gamma = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}$$

an isometry of H? In the same diagram, carefully draw the image of the asymptotic triangle under the action of γ.

7. In the upper half plane model, H, carefully draw the asymptotic triangle with vertices i, $-1 + i,$ and $1 + i$. In the same diagram, carefully draw the image of this triangle under the isometry

$$\gamma = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}.$$

8. Let $P = \frac{8 + i}{13}, Q = \frac{13 + i}{20}$, and $\gamma = \begin{bmatrix} 2 & -1 \\ -3 & 2 \end{bmatrix}$. What are γP and γQ? Sketch P, Q and their images. Is γ an isometry? Why? Use all of this information to find the distance between P and Q in H.

9. Let $P = 2 + 4i$ and $Q = \frac{6 + 4i}{3}$ be two points in the upper half plane, H. Let

$$\gamma = \begin{bmatrix} 1 & 2 \\ -1 & 2 \end{bmatrix}.$$

What are γP and γQ? What is the Poincaré distance from P to Q in H.

10. Suppose that T is a fractional linear transformation such that $T(1) = 1$, $T(0) = 0$, and $T(\infty) = \infty$. Prove that T is the identity map. That is, show that $T(z) = z$ for all z.