MATH 6118-090 Non-Euclidean Geometry

Exercise Set #5 Solutions

A *parallelogram* is defined to be a quadrilateral in which the lines containing opposite sides are non-intersecting.

1. Prove that in Euclidean geometry, a quadrilateral is a parallelogram if and only if opposite sides are congruent. Show with a generic example that in hyperbolic geometry, the opposite sides of a parallelogram need not be congruent.

 $\angle ABD \cong \angle CDB$ and $\angle ADB \cong \angle DBD$ by the Converse of the Alternate Interior Angle Theorem. $DB \cong DB$ so, by Angle-Side-Angle $\triangle ABD \cong \triangle CDB$ and it follows immediately that $CD \cong AB$ and $BC \cong AD$.

If opposite sides are congruent, then by SSS $\triangle ABD \cong \triangle CDB$, thus $\angle ABD \cong \angle CDB$ and $\overrightarrow{AB} \parallel \overrightarrow{CD}$ by the Alternate Interior Angles Theorem. A similar proof shows that the other two sides are parallel.

A Saccheri quadrilateral is a parallelogram in \mathbf{H}^2 whose base and summit are not congruent.

NOTE: For the remainder of this problem, the geometry is *hyperbolic*.

2. Given $\Box ABCD$ with opposite sides congruent, prove that opposite angles are congruent and that the lines containing opposite sides are hyperparallel. Such a quadrilateral is called a *symmetric parallelogram*.

Given $AD \cong BC$ and $AB \cong DC$. $AC \cong AC$ so that $\triangle ACD \cong \triangle CAB$ by Side-Side-Side Criterion. Thus, $\angle D \cong \angle B$. Using the diagonal BD we can prove similarly that $\angle A \cong \angle C$.

Let *M* be the midpoint of *AC*. Drop perpendiculars from *M* to \overrightarrow{AB} , calling the foot M_A , and to \overleftarrow{CD} , calling the foot M_c . We know that $MA \cong MC$. Since $\triangle ABC \cong \triangle CDA$, $\angle DCA \cong \angle BAC$. Thus, by Hypotenuse-Angle $\triangle MM_AA \cong \triangle MM_cC$ and $\angle M_cMC \cong \angle M_AMA$. It then follows that M_A , M_c , and *M* are collinear and that \overrightarrow{AB} and \overrightarrow{CD} have a common perpendicular and are thus hyperparallel. A similar analysis shows that \overrightarrow{AD} and \overrightarrow{BC} are hyperparallel.

3. For a symmetric parallelogram $\Box ABCD$ prove that the diagonals have the same midpoint, *M*. Show that *M* is also the midpoint of the common perpendicular of both pairs of hyperparallel opposite sides.

Let *M* be the midpoint of *AC*. Construct *MB* and *MD*. Since $\triangle ABC \cong \triangle CDA$, $\angle CAB \cong \angle ACD$ and, hence, $\triangle MAB \cong \triangle MCD$ by Side-Angle-Side. Thus, $BM \cong DM$ and *M* is the midpoint of *BD*.

From above we know that the common perpendicular to both pair of congruent sides passes through *M*. Also, we showed that $\Delta MM_A A \cong \Delta MM_C C$ which implies that $MM_A \cong MM_C$. A similar argument shows that the same is true for the common perpendicular to \overrightarrow{BC} and \overrightarrow{AD} .

4. Show that the diagonals are perpendicular if and only if all four sides are congruent, and in that case, $\Box ABCD$ has an inscribed circle with center *M*.

(\Leftarrow) Assume that all four sides are congruent. By SSS $\triangle DMC \cong \triangle BMC$ which implies that $\angle DMC \cong \angle BMC$ and since they are supplementary angles, they must be right angles. Thus, $AD \perp BD$.

(⇒) Assume that the diagonals are perpendicular. Then since $MD \cong MB$, $MC \cong MC$, and $\angle DMC \cong \angle BMC$ (right angles), we have that $\triangle DMC \cong \triangle BMC$. It now follows that $DC \cong BC$ and hence $AB \cong BC \cong CD \cong DA$.

5. Show that the diagonals are congruent if and only if all four angles are congruent; however in that case, show that all four sides need not be congruent.

(\Leftarrow) Assume that all four angles are congruent. $\angle A \cong \angle B \cong \angle C \cong \angle D$. Since $AD \cong BC$ and $CD \cong CD$, $\triangle ACD \cong \triangle BCD$ from which we have that $BD \cong AC$.

 (\Rightarrow) $BD \cong AC$, $AD \cong BC$, and $CD \cong CD$ so, by SSS $\triangle ADC \cong \triangle BCD$ and $\angle D \cong \angle C$. The rest follows simply.

Given a Lambert quadrilateral in which the sides adjacent to the acute angle are not congruent — such do exist — we take four copies and glue them together like so to get an equiangular symmetric quadrilateral in which all four sides are not congruent.