
Chapter 9

Poincaré’s Disk Model for

Hyperbolic Geometry

9.1 Saccheri’s Work

Recall that Saccheri introduced a certain family of quadrilaterals. Look again at Section 7.3
to remind yourself of the properties of these quadrilaterals. Saccheri studied the three
different possibilities for the summit angles of these quadrilaterals.

Hypothesis of the Acute Angle (HAA) The summit angles are acute
Hypothesis of the Right Angle (HRA) The summit angles are right angles
Hypothesis of the Obtuse Angle (HOA) The summit angles are obtuse

Saccheri intended to show that the first and last could not happen, hence he would have
found a proof for Euclid’s Fifth Axiom. He was able to show that the Hypothesis of the
Obtuse Angle led to a contradiction. This result is now know as the Saccheri-Legendre
Theorem (Theorem 7.3). He was unable to arrive at a contradiction when he looked at
the Hypothesis of the Acute Angle. He gave up rather than accept that there was another
geometry available to study. It has been said that he wrote that the Hypothesis of the
Acute Angle must be false “because God wants it that way.”

9.2 The Poincaré Disk Model

When we adopt the Hyperbolic Axiomthen there are certain ramifications:

1. The sum of the angles in a triangle is less than two right angles.

2. All similar triangles that are congruent, i.e. AAA is a congruence criterion.

3. There are no lines everywhere equidistant from one another.

4. If three angles of a quadrilateral are right angles, then the fourth angle is less than a
right angle.

5. If a line intersects one of two parallel lines, it may not intersect the other.

6. Lines parallel to the same line need not be parallel to one another.

7. Two lines which intersect one another may both be parallel to the same line.
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100 CHAPTER 9. POINCARÉ’S DISK MODEL FOR HYPERBOLIC GEOMETRY

How can we visualize this? Surely it cannot be by just looking at the Euclidean plane in
a slightly different way. We need a model with which we could study the hyperbolic plane.
If it is to be a Euclidean object that we use to study the hyperbolic plane, H 2, then we
must have to make some major changes in our concept of point, line, and/or distance.

We need a model to see what H 2 looks like. We know that it will not be easy, but we
do not want some extremely difficult model to construct. We will work with a small subset
of the plane, but give it a different way of measuring distance.

There are three traditional models for H 2. They are known as the Klein model, the
Poincaré Disk model, and the Poincaré Half-Plane model. We will start with the Disk model
and move to the Half-Plane model later. There are geometric “isomorphisms” between these
models, it is just that some properties are easier to see in one model than the other. The
two Poincaré models tend to give us the opportunity to do computations more easily than
the Klein model — though the Klein model is somewhat easier to describe.

In order to give a model for H 2, we need to decide on a set of points, then determine
what lines are and how to measure distance. For Poincaré’s Disk Model we take the set of
points that lie inside the unit circle, i.e., the set

H
2 = {(x, y) | x2 + y2 < 1}.

Note that points on the circle itself are not in the hyperbolic plane. However they do play
an important part in determining our model. Euclidean points on the circle itself are called
ideal points, omega points, vanishing points, or points at infinity.

[Note: Poincaré himself thought of this set as the set of all complex numbers with length
less than 1

H
2 = {z ∈ C | ‖z‖ < 1}.

We will see why this is important when we study the Poincaré half plane model.]
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Figure 9.1: Poincaré line

A unit circle is any circle in the Euclidean plane is a
circle with radius one.

Definition 9.1 Given a unit circle Γ in the Euclidean
plane, points of the hyperbolic plane are the points in the
interior of Γ. Points on this unit circle are called omega
points (Ω) of the hyperbolic plane.

If we take Γ to be the unit circle centered at the origin,
then we would think of the hyperbolic plane as H 2 =
{(x, y) | x2 + y2 < 1} and the omega points are the points
Ω = {(x, y) | x2 + y2 = 1}. The points in the Euclidean
plane satisfying {(x, y) | x2 + y2 > 1} are called ultraideal
points.

We now have what our points will be. We see that we
are going to have to modify our concept of line in order to
have the Hyperbolic Axiom to hold.

Definition 9.2 Given a unit circle Γ in the Euclidean plane, lines of the hyperbolic plane
are arcs of circles drawn orthogonal1 to Γ and located in the interior of Γ.

1Circles are orthogonal to one another when their radii at the points of intersection are perpendicular.
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9.2. THE POINCARÉ DISK MODEL 101

9.2.1 Construction of Lines

This sounds nice, but how do you draw them?

1. Start with a circle Γ centered at O and consider the ray
−→
OA, where A lies on the

circle, Γ.

2. Construct the line perpendicular to
−→
OA at A.

3. Choose a point P on this perpendicular line for the center of the second circle and
make PA the radius of a circle centered at P .

4. Let B denote the second point of intersection with circle Γ. Then the arc AB repre-
sents a line in this model.

A

P

Figure 9.2: Poincaré lines through A

Now, how do you construct these lines in more general circumstances? There are three
cases we need to consider.
Case I :A,B ∈ Γ
Case II : A ∈ Γ and B lies inside Γ
Case III : A and B both lie inside Γ.

Case I : Construct rays
−→
PA and

−−→
PB where P is the center of the circle Γ. Construct the lines

perpendicular to
−→
PA and

−−→
PB at A and B respectively. Let Q be the point of intersection of

those two lines. The circle Ω centered at Q with radius QA intersects Γ at A and B. The
line between A and B is the arc of Ω that lies inside Γ.
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102 CHAPTER 9. POINCARÉ’S DISK MODEL FOR HYPERBOLIC GEOMETRY

Note that this arc is clearly orthogonal to Γ by its construction.

Case II : Construct rays
−→
PA and

−−→
PB where P is the center of the circle Γ. Construct the

line perpendicular to
−→
PA at A. Draw segment AB and construct its perpendicular bisector.

Let Q be the point of intersection of this line and the tangent line to Γ at A. The circle Ω
centered at Q with radius QA contains A and B. The line containing A and B is the arc
of Ω that lies inside Γ.

This arc, as constructed is orthogonal to Γ at A. We want to see that it is orthogonal at
the other point of intersection with the circle. Let that point of intersection be X. Then,
X ∈ Γ means that PA ∼= PX. Since X lies on our second circle it follows that QX ∼= QA.
Since PQ ∼= PQ, we have that △PAQ ∼= △PXQ, which means that ∠PXQ is a right
angle, as we wanted to show.

Case III : Construct the ray
−→
PA and then construct the line perpendicular to

−→
PA at A. This

intersects Γ in points X and Y. Construct the tangents to Γ at X and at Y . These tangent
lines intersect at a point C. The circle Ω centered at Q is the circle passing through A, B,
and C. The line containing A and B is the arc of Ω that lies inside Γ.

T

G2
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Q

C
X

P

A

B

Figure 9.3: Poincaré line in Case III

From our construction, we have that
△PXC ∼ △PAX and it follows that
|PA||PC| = |PX|2 = r2. Now, Q lies on
the perpendicular bisectors of AC and AB
as Ω is the circumcircle for △ABC. There
is a point T on the circle Ω so that the tan-
gent line to Ω at T passes through P .

Construct the line through P and Q
which intersects the circle in two points G1

and G2 so that G1 lies between P and Q.
Now,

|PT |2 = |PQ|2 − |QT |2

= (|PQ| − |QT |) (|PQ| + |QT |)

= (|PQ| − |QG1|) (|PQ| + |QG2|)

= |PG1||PG2| which by Theorem 5.3,

= |PA||PC| = r2

Therefore, T lies on the circle Γ and Γ and Ω are orthogonal at that point. A similar
argument shows that they are orthogonal at the other point of intersection.

9.2.2 Distance

Now, this area inside the unit circle must represent the infinite hyperbolic plane. This
means that our standard distance formula will not work. We introduce a distance metric
by

dρ =
2dr

1 − r2

where ρ represents the hyperbolic distance and r is the Euclidean distance from the center
of the circle. Note that dρ → ∞ as r → 1. This means that lines are going to have infinite
extent.
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9.2. THE POINCARÉ DISK MODEL 103

The relationship between the Euclidean distance of a point from the center of the circle
and the hyperbolic distance is:

ρ =

∫ r

0

2du

1 − u2
= log

(

1 + r

1 − r

)

= 2 tanh−1 r,

or r = tanh
ρ

2
.

Now, for those of you who don’t remember ever having seen this function tanh(x), we
give a little review. The hyperbolic trigonometric functions cosh(x) and sinh(x) are defined
by:

sinh(x) =
ex − e−x

2

cosh(x) =
ex + e−x

2

and

tanh(x) =
sinh(x)

cosh(x)
=

ex − e−x

ex + e−x
=

e2x − 1

e2x + 1
.

We will study these in more depth later.

Now, we can use this to define the distance between two points on a Poincaré line. Given
two hyperbolic points A and B, let the Poincaré line intersect the circle in the omega points
P and Q. Define

(AB,PQ) =
AP/AQ

BP/BQ
=

AP · BQ

AQ · BP
,

to be the cross ratio of A and B with respect to P and Q, where AP denotes the the
Euclidean arclength. Define the hyperbolic distance from A to B to be

d(A,B) = log |AB,PQ|.

We will prove the following later.

Theorem 9.1 If a point A in the interior of Γ is located at a Euclidean distance r < 1
from the center O, its hyperbolic distance from the center is given by

d(A,O) = log
1 + r

1 − r
.

Lemma 9.1 The hyperbolic distance from any point in the interior of Γ to the circle itself
is infinite.

9.2.3 Parallel Lines

It is easy to see that the Hyperbolic Axiom works in this model. Given a line
←→

AB and a
point D /∈

←→

AB, then we can draw at least two lines through D that do not intersect
←→

AB.

Call these two lines through D lines ℓ1 and ℓ2. Notice now how two of our previous
results do not hold, as we remarked earlier. We have that

←→

AB and ℓ1 and
←→

AB and ℓ2 are
parallel, but ℓ1 and ℓ2 are not parallel. Note also that ℓ2 intersects one of a pair of parallel
lines (ℓ1), but does not intersect the other parallel line (

←→

AB).
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Figure 9.4: Multiple parallels through A

As we now know, the hyperbolic plane has two types of parallel lines. The definition
that we will give here will depend explicitly on the model that we have chosen. Consider
the hyperbolic line

←→

AB which intersects the circle Σ in the ideal points Λ and Ω. Take a
point D /∈

←→

AB. Construct the line through Λ and D. Since this line does not intersect the
line

←→

AB inside the circle, these two hyperbolic lines are parallel. However, they seem to be
approaching one another as we go ”to infinity”. Since there are two ”ends” of the Poincaré
line

⌢

AB, there are two of these lines. The line
⌢

AB and
⌢

DΛ are horoparallel. The defining
property is as follows.

Definition 9.3 Let P ∈
⌢

AB. Consider the collection of lines
⌢

DP as P goes to Ω or Λ. The
first line through D in this collection that does not intersect

⌢

AB in H 2 is the horoparallel
line to

⌢

AB in that direction.

Drop a perpendicular from D to
⌢

AB and label this point of intersection M . Angles
∠ΛDM and ∠ΩDM are called angles of parallelism.

Theorem 9.2 The angles of parallelism associated with a given line and point are congru-
ent.

Γ

Λ

Ω

Β

D

Α

M

Figure 9.5: Limiting Parallel
Poincaré Lines

Proof: Assume not, i.e., assume ∠ΛDM 6= ∠ΩDM .
Then one angle is greater than the other. Without loss
of generality, we may assume that ∠ΛDM < ∠ΩDM .
Then there is a point E in the interior of ∠ΩDM such
that ∠ΛDM = ∠EDM . The line

⌢

ED must intersect
⌢

AB since
⌢

DΩ is the limiting parallel line to
⌢

AB in that
direction. Let the point of intersection be F . Choose
G on

⌢

AB on the opposite side of
⌢

DM from F so that
FM = GM . Then △GMD ∼= △FMD. This implies
that ∠GDM = ∠FDM = ∠ΛDM . This means that
⌢

DΩ intersects
⌢

AB at G. This contradicts the condition
that

⌢

DΩ is limiting parallel to
⌢

AB. Thus, the angles of
parallelism are congruent.

Theorem 9.3 The angles of parallelism associated
with a given line and point are acute.
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Proof: Assume not, i.e., assume that ∠MDΩ > 90◦. Then there is a point E interior to
∠MDΩ so that ∠MDE = 90◦. Then, since

⌢

DE and
⌢

AB are perpendicular to the same
line, they are parallel. Thus,

⌢

DE does not intersect
⌢

AB which contradicts the condition
that DΩ is the limiting parallel line.

If the angle of parallelism is 90◦ then we can show that we have Euclidean geometry.
Thus, in H 2 the angle of parallelism is acute.

Theorem 9.4 (Lobachevskii’s Theorem) Given a point P at a hyperbolic distance ρ
from a hyperbolic line

⌢

AB (i.e., d(P,M) = ρ), the angle of parallelism, θ, associated with
the line and the point satisfies

e−ρ = tan

(

θ

2

)

.

Note then that

lim
ρ→0

θ =
π

2
and lim

ρ→∞
θ = 0.

Proof: The proof of this is interesting in that we play one geometry against the other in
order to arrive at our conclusion.

Γ

B

A

P

R

Figure 9.6: Lobachevskii’s
Theorem

Γ

A

B

P QR

Figure 9.7: After the first translation

We are given a line
⌢

AB and a point P not on the line. Construct the line through P
which is perpendicular to

⌢

AB. Call the point of intersection R as in Figure 9.6. Then we
have that ρ = d(P,R). We can translate P to the center of the unit circle and translate
our line to a line so that our line perpendicular to AB is a radius of Γ as we have done in
Figure 9.7. Construct the radii from P to the ideal points A and B and construct the lines
tangent to Γ at these points. These tangent lines intersect at a point Q which lies on

−→
PR.

Now, since we have moved our problem to the center of the circle, we can use our previous
result to see that if r is the Euclidean distance from P to R, then we have

ρ = log
1 + r

1 − r
,

or rewriting this we have

eρ =
1 + r

1 − r
or e−ρ =

1 − r

1 + r
.
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Now, we are talking about Euclidean distances (with r) and using our Euclidean right
triangles with radius 1 we have that:

r = QP − QR = QP − QA = sec ∠QPA − tan ∠QPA = sec θ − tan θ =
1 − sin θ

cos θ
.

Now, algebra leads us to:

e−ρ =
1 − r

1 + r

=
cos θ + sin θ − 1

cos θ − sin θ + 1

=
cos θ + sin θ − 1

cos θ − sin θ + 1

cos θ + sin θ + 1

cos θ + sin θ + 1

=
cos2 θ + 2cos θ sin θ + sin2 θ − 1

cos2 θ + 2cos θ − sin2 θ + 1

=
2 sin θ cos θ

2 cos2 θ + 2cos θ
=

sin θ

1 + cos θ

=
2 sin

(

θ
2

)

cos
(

θ
2

)

(

2 cos2
(

θ
2

)

− 1
)

+ 1

= tan

(

θ

2

)

9.2.4 Hyperbolic Circles

Now, if we have a center of a circle that is not at the center P of the unit circle Σ, we know
that the hyperbolic distance in one direction looks skewed with respect to the Euclidean
distance. That would lead us to expect that a circle in this model might take on an elliptic
or oval shape. We will prove later that this is not the case. In fact, hyperbolic circles
embedded in Euclidean space retain their circular appearance — their centers are offset!

Theorem 9.5 Given a hyperbolic circle with radius R, the circumference C of the circle is
given by C = 2π sinh(R).

9.2.5 Common Figures in the Disk Model

What do some of the common figures, with which we have become accustomed, look like in
the Poincaré Disk Model?
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Figure 9.8: Saccheri quadrilateral in the Poincaré Disk
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Figure 9.9: Acute Triangle
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Figure 9.10: Obtuse Triangle
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