CHAPTER

Introduction

L

X\\\\\\\\\///ffffff?c
S d A A ] \ / AR CCRRE S
DA AN S \ / NN e
X\X\\\\\\\///fffffffs
e E VPl a R ENN SRR
A A A S \ / NN e
B e O Y VY, \ / NN R St
e E VYV a R ENN SRR
A2 A A S \ / AN SN RN
A A AR ] \ / NN S e
P S o rr \ / AN SRR
R e YV, \ / NN e
A A AN S \ / NN SR e
P S o rr \ / AN SRR
S d A A ] \ / AR S CRR S
A A AN \ / NN e
A a2 AF) ) \ / AN S XN S
e E VPV a R ENN SRR
DA A AP S \ / NN e

B Ry ad m e e e

o o - <)

y < 3/2, the slopes are positive, hence the solutions are increasing. The equilibrium

For y > 3/2, the slopes are negative, therefore the solutions are decreasing. For
solution appears to be y(t)

3/2, to which all other solutions converge.
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For y <

For y > —3/2, the slopes are positive, therefore the solutions increase.

All solutions

—3/2, the slopes are negative, and hence the solutions decrease.

appear to diverge away from the equilibrium solution y(t)
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For y > —1/2, the slopes are positive, and hence the solutions increase. For y <

—1/2, the slopes are negative, and hence the solutions decrease.

diverge away from the equilibrium solution y/(t)

All solutions

~1/2.
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For y > —2, the slopes are positive, and hence the solutions increase. For y < —2,

All solutions diverge

the slopes are negative, and hence the solutions decrease.

away from the equilibrium solution y(t)

—2.



8. For all solutions to approach the equilibrium solution y(¢) = 2/3, we must have
y' < 0fory>2/3 and y’ > 0 for y < 2/3. The required rates are satisfied by the
differential equation y’ = 2 — 3y.

10. For solutions other than y(t) = 1/3 to diverge from y = 1/3, we must have
y' <0 for y < 1/3,and y’ > 0 for y > 1/3. The required rates are satisfied by the
differential equation y’ = 3y — 1.
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Note that y’ =0 for y =0 and y = 5. The two equilibrium solutions are y(t) = 0
and y(t) = 5. Based on the direction field, y’ > 0 for y > 5; thus solutions with
initial values greater than 5 diverge from the solution y(t) = 5. For 0 < y < 5, the
slopes are negative, and hence solutions with initial values between 0 and 5 all
decrease toward the solution y(¢) = 0. For y < 0, the slopes are all positive; thus
solutions with initial values less than 0 approach the solution y(t) = 0.
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serve tha = 0 for y = 0 and y = 2. The two equilibrium solutions are =
Ob that y’ = 0 f 0 and 2. Thet lib lut t) =20

and y(t) = 2. Based on the direction field, y’ > 0 for y > 2; thus solutions with
initial values greater than 2 diverge from y(t) = 2. For 0 < y < 2, the slopes are
also positive, and hence solutions with initial values between 0 and 2 all increase
toward the solution y(t) = 2. For y < 0, the slopes are all negative; thus solutions
with initial values less than 0 diverge from the solution y(¢) = 0.
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15. -(j) y'=2-y.

18. -(b) y'=2+y.
20. -(e) y'=yy—3).

23. The difference between the temperature of the object and the ambient tem-
perature is u — 70 (u in °F). Since the object is cooling when u > 70, and the rate
constant is k& = 0.05 min~—', the governing differential equation for the temperature
of the object is du/dt = —.05 (u — 70).

24.(a) Let M(t) be the total amount of the drug (in milligrams) in the patient’s
body at any given time ¢ (hr). The drug is administered into the body at a constant
rate of 500 mg/hr. The rate at which the drug leaves the bloodstream is given by
0.4M(t). Hence the accumulation rate of the drug is described by the differential
equation dM/dt = 500 — 0.4 M (mg/hr).

(b)
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Based on the direction field, the amount of drug in the bloodstream approaches the
equilibrium level of 1250 mg (within a few hours).

26.
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All solutions appear to approach a linear asymptote (with slope equal to 1). It is



=t — 3 is a solution.

easy to verify that y(t)
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All solutions appear to approach y = 0.
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—5/2) appear to diverge from the sinusoid y(t) =

—~5/2.

—3sin(t + m/4)/v/2 — 1, which is also a solution corresponding to the initial value

y(0)

All solutions (except y(0)
32.
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0. Solutions above the line y =

(but below the t-axis) have positive slope and increase rapidly to meet the ¢ axis.

All solutions appear to converge to y(t)
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Solutions that begin below the line y = —2¢ eventually cross it and have positive
slope.
33.
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The direction field is rather complicated. Nevertheless, the collection of points at
which the slope field is zero, is given by the implicit equation 3 — 6y = 2t2. The
graph of these points is shown below:

The y-intercepts of these curves are at y =0, £v/6. It follows that for solutions
with initial values y > V6 , all solutions increase without bound. For solutions with
initial values in the range y < —v6 or 0 < y < v/6, the slopes remain negative, and
hence these solutions decrease without bound. Solutions with initial conditions in
the range —v/6 < y < 0 initially increase. Once the solutions reach the critical
value, given by the equation y> — 6y = 2t2, the slopes become negative and remain
negative. These solutions eventually decrease without bound.

p—t

4.(a) The equilibrium solution satisfies the differential equation dy./dt = 0. Setting
aye —b =0, we obtain y.(t) = b/a.

(b) Since dY/dt = dy/dt, it follows that dY/dt = a(Y +y.) —b=aY.
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6.(a) Consider the simpler equation dy; /dt = —ay;. As in the previous solutions,
rewrite the equation as (1/y1)dy; = —adt. Integrating both sides results in y; (t) =
ce ™,

(b) Now set y(t) = y1(t) + k, and substitute into the original differential equation.
We find that —ay; + 0 = —a(y; + k) + b. That is, —ak + b = 0, and hence k = b/a.

(c) The general solution of the differential equation is y(t) = ce™* +b/a. This
is exactly the form given by Eq.(17) in the text. Invoking an initial condition
y(0) = yo, the solution may also be expressed as y(t) = b/a + (yo — b/a)e™ .

8.(a) The general solution is p(t) = ppe™. Based on the discussion in the text,
time ¢ is measured in months. Assuming 1 month= 30 days, the hypothesis can be
expressed as pge”! = 2pg. Solving for the rate constant, r = In(2), with units of
per month.

(b) N days= N/30 months. The hypothesis is stated mathematically as poe”V/30 =
2po. It follows that rN/30 = In(2), and hence the rate constant is given by r =
30 In(2)/N. The units are understood to be per month.

10.(a) Assuming no air resistance, with the positive direction taken as downward,
Newton’s Second Law can be expressed as mdv/dt = mg, in which g is the grav-
itational constant measured in appropriate units. The equation can be written
as dv/dt = g, with solution v(t) = gt + vo. The object is released with an initial
velocity vg.

(b) Suppose that the object is released from a height of h units above the ground.
Using the fact that v = dz/dt, in which = is the downward displacement of the
object, we obtain the differential equation for the displacement as dx/dt = gt + vg.
With the origin placed at the point of release, direct integration results in x(t) =
gt?/2 + v t. Based on the chosen coordinate system, the object reaches the ground
when z(t) = h. Let ¢ = T be the time that it takes the object to reach the ground.
Then gT?/2 + voT = h. Using the quadratic formula to solve for T, we obtain
T = (—vo £ vvo + 2gh)/g. The positive answer corresponds to the time it takes
for the object to fall to the ground. The negative answer represents a previous
instant at which the object could have been launched upward (with the same impact
speed), only to ultimately fall downward with speed wvg, from a height of h units
above the ground. The numerical value is T'= /2 - 9.8 - 300/9.8 ~ 7.82 s.

(c¢) The impact speed is calculated by substituting t = 7" into v(¢) in part (a). That

is, v(T') = v/vg + 2gh. The numerical value is v = v/2- 9.8 - 300 = 76.68 m/s.

13. The general solution of the differential equation dQ/dt = —r@Q is Q(t) =
Qoe~ ", in which Qo = Q(0) is the initial amount of the substance. Let T be
the time that it takes the substance to decay to one-half of its original amount,
Q. Setting ¢ = 7 in the solution, we have 0.5 Qg = Qe "". Taking the natural
logarithm of both sides, it follows that —r7 = In(0.5) or r7 = In 2.
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14. The differential equation governing the amount of radium-226 is dQ/dt = —r Q,
with solution Q(t) = Q(0)e~"*. Using the result in Problem 13, and the fact that
the half-life 7 = 1620 years, the decay rate is given by r = In(2) /1620 per year. The
amount of radium-226, after ¢ years, is therefore Q(t) = Q(0)e=0-00042786t - [ ot T
be the time that it takes the isotope to decay to 3/4 of its original amount. Then
setting t =T, and Q(T) = (3/4)Q(0), we obtain (3/4)Q(0) = Q(0)e~0-00042786T"
Solving for the decay time, it follows that —0.00042786 T = In(3/4) or T = 672.36
years.

16. Based on Problem 15, the governing differential equation for the temperature in
the room is du/dt = —0.15 (u — 10). Setting ¢ = 0 at the instant that the heating
system fail, the initial condition is «(0) = 70 °F. Using separation of variables,
the general solution of the differential equation is u(t) = 10 + C e~%15t. Invoking
the given initial condition, the temperature in the room is given by w(t) = 10 +
600151 Setting u(t) = 32, we obtain ¢ = 6.69 hr.

18.(a) The accumulation rate of the chemical is (0.01)(300) grams per hour. At
any given time ¢, the concentration of the chemical in the pond is Q(t)/10° grams
per gallon. Consequently, the chemical leaves the pond at a rate of (3 x 10=4)Q(t)
grams per hour. Hence, the rate of change of the chemical is given by

dq

— =3 0.0003 Q(t) g/hr.

Since the pond is initially free of the chemical, Q(0) = 0.

(b) The differential equation can be rewritten as d@ /(10000 — Q) = 0.0003 dt. In-
tegrating both sides of the equation results in —In 10000 — Q| = 0.0003t 4+ C. Tak-
ing the exponential of both sides gives 10000 — Q = ce~:0993¢ Since Q(0) = 0, the
value of the constant is ¢ = 10000. Hence the amount of chemical in the pond at
any time is Q(t) = 10000(1 — e~9-9903%) grams. Note that 1 year= 8760 hours. Set-
ting ¢ = 8760, the amount of chemical present after one year is Q(8760) ~ 9277.77
grams, that is, 9.27777 kilograms.

(c) With the accumulation rate now equal to zero, the governing equation becomes
dQ/dt = —0.0003 Q(t) g/hr. Resetting the time variable, we now assign the new
initial value as Q(0) = 9277.77 grams.

(d) The solution of the differential equation in part (c) is Q(t) = 9277.77 ¢~0-0003¢,
Hence, one year after the source is removed, the amount of chemical in the pond is
Q(8760) ~ 670.1 grams.

(e) Letting ¢ be the amount of time after the source is removed, we obtain the equa-
tion 10 = 9277.77 e ~9-0903t | Taking the natural logarithm of both sides, —0.0003 t =
In(10/9277.77) or t =~ 22,776 hours~ 2.6 years.
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19.(a) It is assumed that dye is no longer entering the pool. In fact, the rate at
which the dye leaves the pool is 200 - [¢(¢)/60000] g/min. Hence the equation that
governs the amount of dye in the pool is dg/dt = —q¢/300 (g/min). The initial
amount of dye in the pool is ¢(0) = 5000 grams.

(b) The solution of the governing differential equation, with the specified initial
value, is ¢(t) = 5000 e~t/300,

(¢) The amount of dye in the pool after four hours is obtained by setting ¢ = 240.
That is, ¢(4) = 500098 = 2246.64 grams. Since the size of the pool is 60,000
gallons, the concentration of the dye is 0.0374 grams/gallon, and the answer is no.

(d) Let T be the time that it takes to reduce the concentration level of the dye to
0.02 grams/gallon. At that time, the amount of dye in the pool is 1,200 grams.
Using the answer in part (b), we have 5000 e~T/300 = 1200. Taking the natural
logarithm of both sides of the equation results in the required time T' ~ 7.14 hours.

(e) Consider the differential equation dg/dt = —(r/60,000) q. Here the parameter
r corresponds to the flow rate, measured in gallons per minute. Using the same
initial value, the solution is given by ¢(t) = 5000 e~"%/60:090 In order to determine
the appropriate flow rate, set ¢t = 240 and ¢ = 1200. (Recall that 1200 grams of dye
has a concentration of 0.02 g/gal). We obtain the equation 1200 = 5000e~" /250
Taking the natural logarithm of both sides of the equation results in the required
flow rate r =~ 357 gallons per minute.

1. The differential equation is second order, since the highest derivative in the
equation is of order two. The equation is linear, since the left hand side is a linear
function of y and its derivatives.

3. The differential equation is fourth order, since the highest derivative of the
function y is of order four. The equation is also linear, since the terms containing
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the dependent variable is linear in y and its derivatives.

4. The differential equation is first order, since the only derivative is of order one.
The dependent variable is squared, hence the equation is nonlinear.

5. The differential equation is second order. Furthermore, the equation is nonlinear,
since the dependent variable y is an argument of the sine function, which is not a
linear function.

7. yi(t) = €', so y{(t) =y{'(t) = e'. Hence y{’ —y; = 0. Also, ya(t) = cosh ¢, so
y{(t) = sinh t and y4'(t) = cosh t. Thus y4' —y, = 0.

9. y(t) = 3t +t2, so y'(t) = 3 + 2t. Substituting into the differential equation, we
have t(3 + 2t) — (3t + t?) = 3t + 2t — 3t — t? = t>. Hence the given function is a
solution.

10. y1(t) =t/3, so y{(t) =1/3 and y{'(t) = y{"(t) = y{"(t) = 0. Clearly, y1(t)
is a solution. Likewise, y2(t) = e ' +t/3, so y5(t) = —e ' +1/3, ys'(t) =€t ,
ya!' () = —e™t, ya"'(t) = e~t. Substituting into the left hand side of the equation,
we find that e ™" + 4(—e~ ")+ 3(e " +t/3) = e ' —4e™ " + 3e~ " + ¢ = t. Hence both
functions are solutions of the differential equation.

12. y1(t) =t72, soy{(t) = —2t73 and y{'(t) = 6t~ . Substituting into the left hand
side of the differential equation, we have t2(6t=%) + 5t(—2t73) + 4t 2 =62 —
10t72 4+ 4t"2 = 0. Likewise, y2(t) =t 2In t,soys(t) =t 2 — 2t 2 In t and ys'(t) =
—5t=* + 6t *In t. Substituting into the left hand side of the equation, we have

t2(=5t™* + 6t Int) + 5t -2t Int) +4(t *Int) =

=5t 2+6t 2 Int+5t2 10t 2Int+4t *Int=0.
Hence both functions are solutions of the differential equation.

13. y(t) = (cos t)In cos t + ¢ sin ¢, soy’(t) = —(sin ¢)In cos t +¢ cos tand y " (t) =
—(cos t)In cos t — ¢ sin t 4 sec t. Substituting into the left hand side of the dif-
ferential equation, we have (—(cos t)In cos t —t sin t + sec t) + (cos ¢)In cos t +
tsint = —(cos t)In cos t — ¢ sin ¢ + sec ¢ + (cos t)In cos ¢t + ¢ sin t = sec ¢t. Hence
the function y(t) is a solution of the differential equation.

15. Let y(t) = e"*. Then y’(¢) = re", and substitution into the differential equation
results in re” + 2e™ = 0. Since " # 0, we obtain the algebraic equation r + 2 = 0.
The root of this equation is r = —2.

17. y(t) = e, soy'(t) = re™ and y”(t) = r?e"t. Substituting into the differential
equation, we have r?e" 4 re™ — 6e™ = 0. Since e™ # 0, we obtain the algebraic
equation 2 +r — 6 = 0, that is, (r — 2)(r + 3) = 0. The roots are r; = 2 and ry =
—3.



1.3

11

18. Let y(t) = e™. Then y'(t) = re™, y”(t) = r?e" and y"’(t) = r3e™. Substitut-
ing the derivatives into the differential equation, we have r3e™ — 3r2e™ + 2re™ = 0.
Since €™ # 0, we obtain the algebraic equation 73 — 3r? 4+ 2r = 0 . By inspection,
it follows that r(r — 1)(r — 2) = 0. Clearly, the roots are r; =0, ro = 1 and r3 = 2.

20. y(t)=t",s0y'(t)=rt""tand y”(t) = r(r — 1)t"~2. Substituting the deriva-
tives into the differential equation, we have ¢ [r(r — 1)¢" 2] — 4t(r¢"=') + 4¢" = 0.
After some algebra, it follows that r(r — 1)t" — 4rt” + 4¢" = 0. For t # 0, we ob-
tain the algebraic equation 72 — 5r +4 = 0 . The roots of this equation are r; = 1
and ro = 4.

21. The order of the partial differential equation is two, since the highest derivative,
in fact each one of the derivatives, is of second order. The equation is linear, since
the left hand side is a linear function of the partial derivatives.

23. The partial differential equation is fourth order, since the highest derivative,
and in fact each of the derivatives, is of order four. The equation is linear, since
the left hand side is a linear function of the partial derivatives.

24. The partial differential equation is second order, since the highest derivative of
the function u(z,y) is of order two. The equation is nonlinear, due to the product
u - uz on the left hand side of the equation.

25. 1If uy(w,y) = cos x cosh y, then 8%u;/dx? = —cos x cosh y and 0%uy/dy? =
cos = cosh y. It is evident that 0%u;/0z% + 0%u; /0y? = 0. Also, when us(z,y) =
In(2? + y?), the second derivatives are

0us 2 472 0%us 2 492

072 22 +y2 (a2 +y2)2 and o 2+y2 (2122
Adding the partial derivatives,
uy  HPuy 2 422 2 492
02 + dy2 - 2y (22 + 12)2 + 22+ (22 + 12)2 -
4 4(z% + y?)

- 22 + 2 - (22 + y2)2

Hence us(z,y) is also a solution of the differential equation.
27. Let ui(x,t) = sin (Az) sin (Aat). Then the second derivatives are

0%u 0%u
! — _\2gin Az sin A\at  and !

Ox? ot?

It is easy to see that a20%u /02% = 9%uy /0t?. Likewise, given us(z,t) = sin(x — at),
we have

= —X\2a?sin Az sin \at.

9? 9?
8;:22 8;;2 = —a’sin(z — at).

Clearly, us(z,t) is also a solution of the partial differential equation.

= —sin(z —at) and
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28. Given the function u(z,t) = \/7/t e=*"/4°t the partial derivatives are

T/t 67m2/4a2t T/t $2€7m2/4a2t
VAT L VT

u.’l).’E -

202t 4aAt?
2 2 2 2
/7t e /4t P /4t
Ut = — + \/>
2¢2 40262/t
It follows that o
5 VT (202t — x2)em® /Aatt

Q7 Ugpy = Ut = —

40212/t

Hence u(x,t) is a solution of the partial differential equation.

30.(a) The kinetic energy of a particle of mass m is given by T' = mv?/2, in which
v is its speed. A particle in motion on a circle of radius L has speed L (df/dt),
where 6 is its angular position and df/dt is its angular speed.

(b) Gravitational potential energy is given by V = mgh, where h is the height
above a certain datum. Choosing the lowest point of the swing as the datum, it
follows from trigonometry that h = L(1 — cos 0).

(c) From parts (a) and (b),

1 ,do,
E= imL (E) +mgL(1 —cos 0).

Applying the chain rule for differentiation,

dE do d*0 do

el 5 Rl Lsin0> .

T T TR T

Setting dE/dt = 0 and dividing both sides of the equation by df/dt results in
2

d=6
mLQﬁ—i—mgL sin 6 = 0,

which leads to Equation (12).

31.(a) The angular momentum is the moment of the linear momentum about a given
point. The linear momentum is given by mv = mLdf/dt. Taking the moment about
the point of support, the angular momentum is

M = mvlL = mLQ% .
dt

(b) The moment of the gravitational force is —mgLsinf. The negative sign is
included since positive moments are counterclockwise. Setting dM/dt equal to the
moment of the gravitational force gives

aM LQ@

o e = —mgLsin 6,

which leads to Equation (12).
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(b) If y(0) > —3, solutions eventually have positive slopes, and hence increase with-
out bound. If y(0) < —3, solutions have negative slopes and decrease without
bound.

(¢) The integrating factor is p(t) = e~/ 24 = ¢=2t The differential equation can
be written as e~ 2fy’ — 2e7 %'y = 3e~*, that is, (e 2'y)’ = 3e~!. Integration of both
sides of the equation results in the general solution y(t) = —3e! + ce?'. It follows
that all solutions will increase exponentially if ¢ > 0 and will decrease exponentially

13
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if ¢ < 0. Letting ¢ = 0 and then ¢t = 0, we see that the boundary of these behaviors
is at y(0) = —3.

9.(a)
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(b) All solutions eventually have positive slopes, and hence increase without bound.

(¢) The integrating factor is u(t) = e/ (/2 dt = ¢t/2 The differential equation can
be written as e*/2y’ + et/2y/2 = 3tet/? /2 that is, (e/?y/2)" = 3te?/? /2. Integra-
tion of both sides of the equation results in the general solution y(t) =3t —6 +
ce™/2. All solutions approach the specific solution yo(t) = 3t — 6.

10.(a)

e alalPala l
D il e
PPl s e at ot

R A B B B B

4 N

(b) For y > 0, the slopes are all positive, and hence the corresponding solutions
increase without bound. For y < 0, almost all solutions have negative slopes, and
hence solutions tend to decrease without bound.

(c) First divide both sides of the equation by ¢ (¢ > 0). From the resulting standard
form, the integrating factor is u(t) = e~/ (/0 4t — 1/t = The differential equation
can be written as y’/t —y/t? =te~!, that is, (y/t)’ = te~!. Integration leads to
the general solution y(t) = —te™t 4+ ct. For ¢ # 0, solutions diverge, as implied by
the direction field. For the case ¢ = 0, the specific solution is y(t) = —te™*, which
evidently approaches zero as t — 0.
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12.(a)
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(b) All solutions eventually have positive slopes, and hence increase without bound.

(¢) The integrating factor is p(t) = et/2. The differential equation can be written
as et/2y’ +et/?y/2 = 3t2 /2 that is, (e!/2y/2)" = 3t%/2. Integration of both sides
of the equation results in the general solution y(t) = 3t> — 12t + 24 4 ce~t/2. It
follows that all solutions converge to the specific solution 3t — 12t + 24.

14. The integrating factor is ju(t) = e?'. After multiplying both sides by u(t),
the equation can be written as (e?! y)’ = t. Integrating both sides of the equation
results in the general solution y(t) = t?e~%!/2 + ce™2!. Invoking the specified con-
dition, we require that e 2/2+ce 2 =0. Hence ¢ = —1/2, and the solution to
the initial value problem is y(t) = (t? — 1)e=2!/2.

16. The integrating factor is u(t) = e/ 2/ 4t = 42 Multiplying both sides by u(t),
the equation can be written as (t? y)’ = cost. Integrating both sides of the equation
results in the general solution y(t) = sint/t? 4+ ct~2. Substituting ¢ = 7 and setting
the value equal to zero gives ¢ = 0. Hence the specific solution is y(t) = sint/t2.
17. The integrating factor is u(t) = e=2, and the differential equation can be
written as (e~2!y)’ = 1. Integrating, we obtain e~ 2! y(t) =t + c. Invoking the
specified initial condition results in the solution y(t) = (t + 2)e?.

19. After writing the equation in standard form, we find that the integrating
factor is u(t) = e @/0)dt — ¢4 Multiplying both sides by u(t), the equation can be
written as (t'y)’ = te~t. Integrating both sides results in t1y(t) = —(t + 1)e~t +
c. Letting ¢t = —1 and setting the value equal to zero gives ¢=0. Hence the
specific solution of the initial value problem is y(t) = —(¢=2 +t~*)e~t.
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22.(a)
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The solutions eventually increase or decrease, depending on the initial value a.
The critical value seems to be ag = —2.

(b) The integrating factor is u(t) = e~*/2, and the general solution of the differential
equation is y(t) = —3e'/? + cet/?2. Invoking the initial condition y(0) =a, the

solution may also be expressed as y(t) = —3¢t/3 + (a + 3) e?/2. The critical value
is ag = —3.

(¢) For ag = —3, the solution is y(t) = —3e'/3, which diverges to —oo as t — oo.
23.(a)
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Solutions appear to grow infinitely large in absolute value, with signs depending on
the initial value y(0) = ag. The direction field appears horizontal for ag = —1/8.

(b) Dividing both sides of the given equation by 3, the integrating factor is p(t) =
e~2t/3  Multiplying both sides of the original differential equation by wu(t) and inte-
grating results in y(t) = (2€2/3 —2e7/2 4 a(4 + 37) €*/3) /(4 + 37). The quali-
tative behavior of the solution is determined by the terms containing et/ : 2 e2t/3 +
a(4 + 31) e?*/3. The nature of the solutions will change when 2 + a(4 + 37) =0.
Thus the critical initial value is ag = —2/(4 + 37) .

(¢) In addition to the behavior described in part (a), when y(0) = —2/(4 + 3m),
the solution is y(t) = (—=2e~7™/2)/(4 + 37), and that specific solution will converge
toy=0.
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As t — 0, solutions increase without boun , and solutions de-

crease without bound if y(1) =a < 0.4.

(b) The integrating factor is pu(t) = e/ (t+1)/tdt — et The general solution of the
differential equation is y(t) =te '+ ce '/t. Since y(1) = a, we have that 1+
¢ =ae. That is, ¢ =ae — 1. Hence the solution can also be expressed as y(t) =
te '+ (ae —1)e~t/t. For small values of ¢, the second term is dominant. Setting
ae —1 =0, the critical value of the parameter is ag = 1/e.

(c) When a = 1/e, the solution is y(t) = te~!, which approaches 0as t — 0.

27. The integrating factor is u(t) = el (1/2)dt — ¢t/2 Therefore the general solution
is y(t) = (4cost + 8sint)/5 + cet/2. Invoking the initial condition, the specific so-
lution is y(t) = (4cost 4 8sint — 9e~/2)/5. Differentiating, it follows that 3’ (t) =
(—4sint + 8cost +4.5e t/2) /5 and y” (t) = (—4cost — 8sint — 2.25e~/2) /5. Set-
ting y'(t) = 0, the first solution is ¢; = 1.3643, which gives the location of the first
stationary point. Since y”(¢1) < 0, the first stationary point in a local maximum.
The coordinates of the point are (1.3643,0.82008).

28. The integrating factor is pu(t) = e/ (2/3)dt — ¢2t/3 and the differential equa-
tion can be written as (e2!/3 )" = /3 — te?!/3 /2. The general solution is y(t) =
(21 — 6t)/8 4+ ce~2!/3. Tmposing the initial condition, we have y(t) = (21 — 6t)/8 +
(yo — 21/8)e~2!/3. Since the solution is smooth, the desired intersection will be
a point of tangency. Taking the derivative, y’(t) = —3/4 — (2yo — 21/4)e=2¢/3 3.
Setting y'(t) = 0, the solution is t; = (3/2) In[(21 — 8yp)/9]. Substituting into the
solution, the respective value at the stationary point is y(t1) = 3/2+ (9/4)In 3 —
(9/8)In(21 — 8yp). Setting this result equal to zero, we obtain the required initial
value yo = (21 — 9e%/?)/8 ~ —1.643.

29.(a) The integrating factor is u(t) = e'/*, and the differential equation can be
written as (e//*y) = 3et/* + 2e'/* cos 2. After integration, we get that the general
solution is y(t) = 12 + (8 cos 2t + 64 sin 2t) /65 + ce~t/*. Invoking the initial condi-
tion, y(0) = 0, the specific solution is y(t) = 12 + (8 cos 2t + 64 sin 2t — 788 e~*/4) /65.
As t — oo, the exponential term will decay, and the solution will oscillate about
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an average value of 12, with an amplitude of 8/v/65 .

(b) Solving y(t) = 12, we obtain the desired value ¢ ~ 10.0658.
31. The integrating factor is u(t) = e~5t/2 and the differential equation can be
written as (e 3%/2 y)' = 3te 3/2 4-2¢7%/2. The general solution is y(t) = —2t —
4/3 — 4et + ce®/?. Tmposing the initial condition, y(t) = —2t —4/3 —4e + (yo +
16/3) €%/2. Now as t — oo, the term containing /2 will dominate the solution.
Its sign will determine the divergence properties. Hence the critical value of the
initial condition is yo = —16/3. The corresponding solution, y(t) = —2t —4/3 —
4 et will also decrease without bound.

Note on Problems 34-37:

Let g(t) be given, and consider the function y(t) = y1(¢) + ¢(t), in which y;(¢t) — 0
as t — oo. Differentiating, y’(t) = y{(t) + g’(t) . Letting a be a constant, it follows
that y'(t) + ay(t) = y{(t) + ay1(t) + g'(t) + ag(t). Note that the hypothesis on the
function y; (t) will be satisfied, if y{(t) + ay1(t) = 0. That is, y1(t) = ce~*. Hence
y(t) = ce " + g(t), which is a solution of the equation y’ + ay = g’ (t) + ag(t). For
convenience, choose a = 1.

34. Here g(t) = 3, and we consider the linear equation y’ + y = 3. The integrating
factor is u(t) = e, and the differential equation can be written as (e’ y)’ = 3e’. The
general solution is y(t) =3 +ce "

36. Here g(t) =2t — 5. Consider the linear equation y’' +y =2+ 2t —5. The
integrating factor is u(t) = €', and the differential equation can be written as
(ely) = (2t — 3)et. The general solution is y(t) =2t — 5+ ce™".

37. g(t) = 4 — t2. Consider the linear equation 3’ + y = 4 — 2t — t? The integrating
factor is u(t) = e*, and the equation can be written as (e y)’ = (4 — 2t — t?)e’. The

general solution is y(t) =4 — %> + ce™".

38.(a) Differentiating y and using the fundamental theorem of calculus we obtain
that ¢/ = Ae=J P14 . (_p(t)), and then 3’ + p(t)y = 0.

(b) Differentiating y we obtain that
y' = AlR)e T PO 4 A(t)e TPON (—p(1).
If this satisfies the differential equation then
Y +p(t)y = A'(t)e TPO% = (1)
and the required condition follows.

(c) Let us denote u(t) = e/ P Then clearly A(t) = [ u(t)g(t)dt, and after sub-
stitution y = [ u(t)g(t)dt - (1/p(t)), which is just Eq. (33).
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40. We assume a solution of the form y = A(t)e=/1/Ddt = A(t)e= ™t = A(t)t~,
where A(t) satisfies A’(t) = 3t cos2¢. This implies that

_ 3cos 2t n 3t sin 2t
4 2

A(t)

and the solution is
3cos2t 3sin2t ¢
Y= +

4t 2 t

41. First rewrite the differential equation as

), 2 _sint
YTivT
Assume a solution of the form y = A(t)e=J2/Ddt = A(t)t2, where A(t) satisfies

the ODE A’(t) =t sin t. It follows that A(t) =sint —t cost 4+ ¢ and thus y =
(sint —tcost +c)/t?.

Problems 1 through 20 follow the pattern of the examples worked in this section.
The first eight problems, however, do not have an initial condition, so the integra-
tion constant ¢ cannot be found.

2. For x # —1, the differential equation may be written as y dy = [:1:2/(1 + x3)] dx.
Integrating both sides, with respect to the appropriate variables, we obtain the
relation y?/2 = (1/3)In |1+ 23| 4+ c¢. That is, y(z) = £/(2/3)In[1 + 23] + ¢ .

3. The differential equation may be written as y 2dy = —sin xdx. Integrating
both sides of the equation, with respect to the appropriate variables, we obtain the
relation —y~! = cos x + ¢. That is, (¢ — cos ¥)y = 1, in which ¢ is an arbitrary
constant. Solving for the dependent variable, explicitly, y(z) = 1/(c — cos ) .

5. Write the differential equation as cos™2 2y dy = cos? x dx, which also can be writ-
ten as sec? 2y dy = cos® z dx. Integrating both sides of the equation, with respect
to the appropriate variables, we obtain the relation tan 2y =sin x cos ¢ +x + c.

7. The differential equation may be written as (y + e¥)dy = (z — e *)dz . Inte-
grating both sides of the equation, with respect to the appropriate variables, we
obtain the relation y2 +2e¥ = 22 +2e % +c.

8. Write the differential equation as (1 + 3?)dy = 22 dx . Integrating both sides of
the equation, we obtain the relation y +y%/3 = 23/3 +c.

9.(a) The differential equation is separable, with y~2dy = (1 — 2x)dx. Integration
yields —y~! = — 2% + ¢. Substituting x =0 and y = —1/6, we find that c = 6.
Hence the specific solution is y = 1/(2% — x — 6).
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(c) Note that 22 — 2 — 6 = (z + 2)(z — 3) . Hence the solution becomes singular at
z = -2 and z = 3, so the interval of existence is (—2,3).

11.(a) Rewrite the differential equation as x e*dx = —ydy . Integrating both sides
of the equation results in xe* — e® = —42/2 + c. Invoking the initial condition, we
obtain ¢ = —1/2. Hence y? = 2¢® — 2z ¢ — 1. The explicit form of the solution is

y(x) = /2e® — 2z e* — 1 . The positive sign is chosen, since y(0) = 1.
(b)

(c) The function under the radical becomes negative near z ~ —1.7 and = ~ 0.77.

12.(a) Write the differential equation as 7~ 2dr = §~! df . Integrating both sides of
the equation results in the relation —r~! = In 6 + ¢. Imposing the condition r(1) =
2, we obtain ¢ = —1/2. The explicit form of the solution is r = 2/(1 — 2 In 6).
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(c) Clearly, the solution makes sense only if # > 0. Furthermore, the solution
becomes singular when In 6§ = 1/2, that is, 6 = \/e .

14.(a) Write the differential equation as y 3dy = z(1 + 22)~'/2dx. Integrating
both sides of the equation, with respect to the appropriate variables, we obtain
the relation —y~2/2 =+/1+22 +c. Imposing the initial condition, we obtain
¢ = —3/2. Hence the specific solution can be expressed as y=2 =3 — 2/1+ 22 .
The explicit form of the solution is y(z) = 1/v/3 — 2/1 + a2. The positive sign is

chosen to satisfy the initial condition.

(b)

(¢) The solution becomes singular when 2v/1+ 22 = 3. That is, at z = £/5 /2.

16.(a) Rewrite the differential equation as 4y3dy = x(2? + 1)dz. Integrating both
sides of the equation results in y* = (22 + 1)2/4 + c. Imposing the initial condition,
we obtain ¢ = 0. Hence the solution may be expressed as (2% + 1)? — 4y* = 0. The
explicit form of the solution is y(z) = —/(2? 4+ 1)/2. The sign is chosen based on

y(0) = —1/V2.
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(c) The solution is valid for all x € R.

18.(a) Write the differential equation as (34 4y)dy = (™% — e®)dz. Integrating
both sides of the equation, with respect to the appropriate variables, we obtain the
relation 3y + 2y? = —(e® + e~%) + ¢. Imposing the initial condition, y(0) = 1, we
obtain ¢ = 7. Thus, the solution can be expressed as 3y + 2y% = —(e% + e~ %) + 7.
Now by completing the square on the left hand side, 2(y + 3/4)? = —(e® + e %) +
65/8. Hence the explicit form of the solution is y(z) = —3/4 4+ /65/16 — cosh z.

(b)

(c) Note the 65 — 16coshz > 0 as long as |z| > 2.1 (approximately). Hence the
solution is valid on the interval —2.1 < z < 2.1.

20.(a) Rewrite the differential equation as y2dy = arcsin 2/v/1 — 22 dz. Integrat-
ing both sides of the equation results in y*/3 = (arcsin 2)?/2 + c¢. Imposing the
condition y(0) = 1, we obtain ¢ = 1/3. The explicit form of the solution is y(z) =
(3(arcsinz)?/2 + 1)1/3.
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(¢) Since arcsin z is defined for —1 < z < 1, this is the interval of existence.

22. The differential equation can be written as (3y? — 4)dy = 3z?dz. Integrating
both sides, we obtain y® — 4y = 23 + ¢. Imposing the initial condition, the specific
solution is y® — 4y = 22 — 1. Referring back to the differential equation, we find
that y’ — co as y — +2/+/3. The respective values of the abscissas are z ~ —1.276,
1.598 . Hence the solution is valid for —1.276 < z < 1.598.

24. Write the differential equation as (3 + 2y)dy = (2 — €*)dx. Integrating both
sides, we obtain 3y + 32 = 22 — e® + c. Based on the specified initial condition, the
solution can be written as 3y + y? = 22 — e + 1. Completing the square, it follows
that y(x) = —3/2 + /2x — e® + 13/4. The solution is defined if 2z — e* + 13/4 >
0, that is, —1.5 < z < 2 (approximately). In that interval, y’ =0 for z =1In2. Tt
can be verified that y”(In2) < 0. In fact, y” () < 0 on the interval of definition.
Hence the solution attains a global maximum at = = In 2.

26. The differential equation can be written as (1+ y?)"'dy = 2(1 + z)dz. In-
tegrating both sides of the equation, we obtain arctany = 2z + 2 + c. Imposing
the given initial condition, the specific solution is arctany = 2z + 2. Therefore,
y = tan(2z + 2?). Observe that the solution is defined as long as —7/2 < 2z + 22 <
7/2. Tt is easy to see that 22z + 22 > —1. Furthermore, 2z + 2% = 7/2 for x ~ —2.6
and 0.6. Hence the solution is valid on the interval —2.6 < & < 0.6. Referring back
to the differential equation, the solution is stationary at 2 = —1. Since y”(—1) > 0,
the solution attains a global minimum at x = —1.

28.(a) Write the differential equation as y=1(4 —y)~'dy = t(1 +¢)~'dt. Integrat-
ing both sides of the equation, we obtain In |y| —In|y — 4| = 4t —4In|1 +¢| + c.
Taking the exponential of both sides |y/(y —4)| = ce? /(1 + t)*. Tt follows that as
t — oo, ly/ly—4) =11+4/(y —4)] = oo. That is, y(t) — 4.

(b) Setting y(0) =2, we obtain that ¢ =1. Based on the initial condition, the
solution may be expressed as y/(y — 4) = —e*/(1 +t)*. Note that y/(y —4) <0,
for all t > 0. Hence y < 4 for all t > 0. Referring back to the differential equation,
it follows that gy’ is always positive. This means that the solution is monotone
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increasing. We find that the root of the equation e /(1 +¢)* = 399 is near t =
2.844.

(c) Note the y(t) =4 is an equilibrium solution. Examining the local direction
field we see that if y(0) > 0, then the corresponding solutions converge to y =
4. Referring back to part (a), we have y/(y —4) = [yo/(yo — 4)] /(1 + t)4, for
Yo # 4. Setting t = 2, we obtain yo/(yo — 4) = (3/e*)*y(2)/(y(2) — 4). Now since
the function f(y) =y/(y —4) is monotone for y <4 and y >4, we need only
solve the equations yo/(yo — 4) = —399(3/e?)* and yo/(yo — 4) = 401(3/e?)*. The
respective solutions are yg = 3.6622 and yg = 4.4042.

32.(a) Observe that (22 + 3y?)/2zy = (1/2)(y/z)~ + (3/2)(y/z). Hence the dif-
ferential equation is homogeneous.

(b) The substitution y = zv results in v+ zv’ = (22 4+ 32%0v?)/22%v. The trans-
formed equation is v’ = (1 +v?)/22zv. This equation is separable, with general
solution v? 4+ 1 =cx. In terms of the original dependent variable, the solution is

2?2 + y2 =cad.

(c¢) The integral curves are symmetric with respect to the origin.
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34.(a) Observe that —(4z + 3y)/(2z +y) = —2 — (y/x) [2+ (y/x)]”". Hence the
differential equation is homogeneous.

(b) The substitution y = z v resultsin v + v’ = —2 — v/(2 + v). The transformed
equation is v/ = —(v? + 5v +4)/(2 + v)z . This equation is separable, with general
solution (v +4)?|v+ 1] = ¢/23. In terms of the original dependent variable, the
solution is (4z +y)? |z + y| = c.
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(c) The integral curves are symmetric with respect to the origin.
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36.(a) Divide by 22 to see that the equation is homogeneous. Substitutingy =z v,
we obtain zv’ = (14 v)2. The resulting differential equation is separable.

(b) Write the equation as (1+v)~2dv = x~!'dr. Integrating both sides of the
equation, we obtain the general solution —1/(1 +v) =In|z| + c¢. In terms of the
original dependent variable, the solution is y = x (¢ — In|z|)~! — z.

(c) The integral curves are symmetric with respect to the origin.
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37.(a) The differential equation can be expressed as y’ = (1/2)(y/z) " — (3/2)(y/z).
Hence the equation is homogeneous. The substitution y = zv results in zv’ =
(1 — 5v%)/2v. Separating variables, we have 2vdv/(1 — 5v?) = dx /.

(b) Integrating both sides of the transformed equation yields —(In |1 — 50v%|)/5 =
In |z| + ¢, that is, 1 —5v% = ¢/ |z|°. In terms of the original dependent variable,
the general solution is 5y% = 22 — ¢/ |z|°.
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(c) The integral curves are symmetric with respect to the origin.
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38.(a) The differential equation can be expressed asy’ = (3/2)(y/x) — (1/2)(y/z)~ L.
Hence the equation is homogeneous. The substitution y = xzv results in zv’ =
(v? —1)/2v, that is, 2vdv/(v? — 1) = dx/x.

(b) Integrating both sides of the transformed equation yields In |v2 — 1| =Inlz| +c,
that is, v> — 1 =c|z|. In terms of the original dependent variable, the general

solution is y? = ca? |z| + 22.

(c) The integral curves are symmetric with respect to the origin.

NS>
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1. Let Q(t) be the amount of dye in the tank at time ¢. Clearly, Q(0) = 200 g.
The differential equation governing the amount of dye is Q’(¢t) = —2Q(t)/200. The
solution of this separable equation is Q(t) = Q(0)e~/10% = 200e~*/1%°. We need
the time T such that Q(T) = 2 g. This means we have to solve 2 = 200e~7/190 and
we obtain that 7= —1001n(1/100) = 1001n 100 ~ 460.5 min.

5.(a) Let @ be the amount of salt in the tank. Salt enters the tank of water at a
rate of 2(1/4)(1+ (1/2)sin t) =1/24 (1/4)sin t oz/min. It leaves the tank at a
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rate of 2@Q/100 oz/min. Hence the differential equation governing the amount of
salt at any time is

Q 1. 1. . Q
E—i‘f'lslnt %

The initial amount of salt is Q9 = 50 oz. The governing differential equation is
linear, with integrating factor pu(t) =e!/%9. Write the equation as (e!/°Q)" =
e!/59(1/2 + (1/4) sin t). The specific solution is Q(t) = 25 + (12.5sin t — 625 cos t +
63150 ¢~t/59) /2501 oz.

(b)

50

40 o

30 A

20 +

50 160 150 260

(¢) The amount of salt approaches a steady state, which is an oscillation of approx-
imate amplitude 1/4 about a level of 25 oz.

6.(a) Using the Principle of Conservation of Energy, the speed v of a particle falling
from a height & is given by

L o
—_ = h.
5™ mg

(b) The outflow rate is (outflow cross-section area)x (outflow velocity): «a+v/2gh.
At any instant, the volume of water in the tank is V(h) = foh A(u)du. The time rate
of change of the volume is given by dV/dt = (dV/dh)(dh/dt) = A(h)dh/dt. Since
the volume is decreasing, dV/dt = —a a/2gh .

(c) With A(h) =7, a = 0.01 7, o = 0.6, the differential equation for the water level
his 7w(dh/dt) = —0.006 7v/2gh , with solution h(t) = 0.000018gt* — 0.006+/2gh(0)t +
h(0). Setting h(0) =3 and g = 9.8, h(t) = 0.0001764 > — 0.046 t + 3, resulting in
h(t) =0 for t ~ 130.4 s.

7.(a) The equation governing the value of the investment is dS/dt = r.S. The value
of the investment, at any time, is given by S(t) = Sge™. Setting S(T) = 2S5y, the
required time is T = In(2)/r.

(b) For the case r = .07, T ~ 9.9 yr.
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(c) Referring to part (a), r = In(2)/T . Setting T = 8, the required interest rate is
to be approximately r = 8.66%.

12.(a) Using Eq.(15) we have dS/dt — 0.005S = —(800 + 10t), S(0) = 150, 000. Us-
ing an integrating factor and integration by parts we obtain that S(¢) = 560,000 —
410, 0002905t 4 2000¢. Setting S(t) = 0 and solving numerically for ¢ yields ¢ =
146.54 months.

(b) The solution we obtained in part (a) with a general initial condition S(0) =
So is S(t) = 560,000 — 560, 000e°-095% + S5e0-005¢ 1 2000¢. Solving the equation
S(240) = 0 yields Sy = 246, 758.

13.(a) Let Q' = —r Q. The general solution is Q(t) = Qoe~"*. Based on the
definition of half-life, consider the equation Qq/2 = Qoe °™°". It follows that
—57307 = In(1/2), that is, r = 1.2097 x 10~* per year.

(b) The amount of carbon-14 is given by Q(t) = Qg e~ 1-2097x107",

(c) Given that Q(T) = Qo /5, we have the equation 1/5 = ¢~1:2097x107*T gqlying
for the decay time, the apparent age of the remains is approximately 7" = 13,305
years.

15.(a) The differential equation dy/dt = r(t) y — k is linear, with integrating factor
p(t) = e~ J 7MW Write the equation as (uy) = —k u(t) . Integration of both sides
yields the general solution y = [—k [ p(7)dT + yo £(0)] /pe(t) . In this problem, the

integrating factor is u(t) = e(cos t=1)/5,

2 -

0.5

(b) The population becomes extinct, if y(t*) =0, for some t = t*. Referring to
part (a), we find that y(t*) = 0 when

o
/ e(cos T*T)/5d7_ _ 561/5yc-
0

It can be shown that the integral on the left hand side increases monotonically, from
zero to a limiting value of approximately 5.0893. Hence extinction can happen only
if 5el/%yy < 5.0893. Solving 5el/%y, = 5.0893 yields y, = 0.8333.
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(c) Repeating the argument in part (b), it follows that y(t*) = 0 when
¢ 1
/ e(cos T—T)/5d7_ I 61/5yc-
0 k

Hence extinction can happen only if e'/%yq/k < 5.0893, so . = 4.1667 k.
(d) Evidently, y. is a linear function of the parameter k.

17.(a) The solution of the governing equation satisfies u® = ug /(3 augt +1). With
the given data, it follows that u(t) = 2000/{/6¢/125 4 1.

(b)
2000 7
1800
1600
1400 H
1200 o

1000 H

50 160 150 260

(¢) Numerical evaluation results in u(¢) = 600 for ¢~ 750.77 s.

22.(a) The differential equation for the upward motion is mdv/dt = —uv? — mg,
in which p = 1/1325. This equation is separable, with m/(uv? + mg)dv = —dt.
Integrating both sides and invoking the initial condition, v(t) = 44.133 tan(0.425 —
0.222t). Setting v(t1) = 0, the ball reaches the maximum height at ¢; = 1.916 s.
Integrating v(t), the position is given by x(t) = 198.75 In [cos(0.222¢ — 0.425)] +
48.57. Therefore the maximum height is z(¢;) = 48.56 m.

(b) The differential equation for the downward motion is m dv/dt = +uv? — mg.
This equation is also separable, with m/(mg — pv?)dv = —dt. For convenience,
set t = 0 at the top of the trajectory. The new initial condition becomes v(0) = 0.
Integrating both sides and invoking the initial condition, we obtain In((44.13 —
v)/(44.13 +v)) = 1/2.25. Solving for the velocity, v(t) = 44.13(1 — !/2:2%) /(1 +
e!/2:25). Integrating v(t), we obtain z(t) = 99.291n(et/2:2%/(1 4 €t/2:25)2) 4- 186.2.
To estimate the duration of the downward motion, set z(t2) =0, resulting in
to = 3.276 s. Hence the total time that the ball spends in the air is t; + o = 5.192s.



30

Chapter 2. First Order Differential Equations

Ve/locrty Positiorn

40 o

30

20

-10 o

10 4

20 4

24.(a) Setting —pv? = v(dv/dx), we obtain dv/dx = —puv.

(b) The speed v of the sled satisfies In(v/vg) = —px. Noting that the unit conversion
factors cancel, solution of In(15/150) = —2000 x results in u = In(10)/2000 ft~* ~
0.00115 ft~! ~ 6.0788 mi~".

(c) Solution of dv/dt = —uv? can be expressed as 1/v — 1/vg = ut. Noting that
1mi/hr = 5280/3600 ft/s, the elapsed time is

t = (1/15 — 1/150)/((5280,/3600)(In(10)/2000)) ~ 35.53s.

25.(a) Measure the positive direction of motion upward. The equation of motion
is given by mdv/dt = —kv — mg. The initial value problem is dv/dt = —kv/m —
g, with v(0) = vy. The solution is v(t) = —mg/k + (vo + mg/k)e ¥/™  Setting
v(t;,) = 0, the maximum height is reached at time t,,, = (m/k) In [(mg + kvo)/mg].
Integrating the velocity, the position of the body is

m vy

k

m
k

Hence the maximum height reached is

z(t) = —mgt/k+ |(—)*g +

| (1= emteim).

k
mug —g(m)an [mg+ vo] .

m = Z(tm) = -
x x(tm) ’ mg

k
(b) Recall that for § < 1, In(1+38) =6 —8%/2+8%/3—6*/4+....

(c) The dimensions of the quantities involved are [k] = MT~1, [vo] = LT, [m] =
M and [g] = LT—2. This implies that kvy/mg is dimensionless.

31.(a) Both equations are linear and separable. Initial conditions: v(0) = ucos A
and w(0) = usin A. We obtain the solutions v(t) = (ucos A)e™"" and w(t) = —g/r +
(usin A + g/r)e "

(b) Integrating the solutions in part (a), and invoking the initial conditions, the
coordinates are z(t) = ucos A(1 —e™")/r and

it+g+ursinA+hr2 U g

5 — (; sin A + T—Q)e_”.

y(t) = —

T r
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(d) Let T be the time that it takes the ball to go 350 ft horizontally. Then from
above, e~ T/5 = (u cos A —70)/u cos A. At the same time, the height of the ball
is given by

(800 + 5usin A)(ucos A — 70)

y(T) = —160T + 803 + Susin A —
ucos A

Hence A and u must satisfy the equality

(800 + 5usin A)(ucos A — 70)
ucos A

ucos A—"70

=10
os A

800111[ }+803+5usinA

for the ball to touch the top of the wall. To find the optimal values for u and A,
consider u as a function of A and use implicit differentiation in the above equation
to find that

du u(u? cos A — T0u — 11200 sin A)

dA 11200 cos A

Solving this equation simultaneously with the above equation yields optimal values
for w and A: u = 145.3ft/s, A ~ 0.644 rad.

32.(a) Solving equation (i), y'(z) = [(k* — y)/y] 2 The positive answer is chosen,
since y is an increasing function of x .

(b) Let y = k> sin?t. Then dy = 2k?sint costdt. Substituting into the equation in
part (a), we find that

2k? sin t cos tdt _ cost

dx sint’
Hence 2k? sin? tdt = dz.
(c) Setting § = 2t, we further obtain k?sin®(0/2) dd = dx. Integrating both sides

of the equation and noting that ¢ = § = 0 corresponds to the origin, we obtain the
solutions x(0) = k(6 — sin)/2 and (from part (b)) y(6) = k*(1 — cos ) /2.
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(d) Note that y/z = (1 —cos 0)/(0 — sin 0). Setting x =1, y = 2, the solution of
the equation (1 —cos 6)/(0 —sin ) =2 is 0 ~ 1.401. Substitution into either of
the expressions yields k ~ 2.193.

2. Rewrite the differential equation as y’ + 1/(¢(t — 4)) y = 0. It is evident that the
coefficient 1/t(t —4) is continuous everywhere except at t = 0,4. Since the initial
condition is specified at ¢t = 2, Theorem 2.4.1 assures the existence of a unique
solution on the interval 0 <t < 4.

3. The function tan ¢ is discontinuous at odd multiples of 7/2. Since 71/2 < 7 <
3m/2, the initial value problem has a unique solution on the interval (7/2,37/2).

5. p(t) =2t/(4 —t?)and g(t) = 3t?/(4 — t?). These functions are discontinuous at
x = £2. The initial value problem has a unique solution on the interval (-2, 2).

6. The function In ¢ is defined and continuous on the interval (0,00). At ¢t =1,
Int =0, so the normal form of the differential equation has a singularity there.
Also, cott is not defined at integer multiples of 7, so the initial value problem will
have a solution on the interval (1, ).

7. The function f(¢,y) is continuous everywhere on the plane, except along the
straight line y = —2t/5. The partial derivative 0f/dy = —Tt/(2t + 5y)? has the
same region of continuity.

9. The function f(¢,y) is discontinuous along the coordinate axes, and on the
hyperbola t? — y? = 1. Furthermore,

of _ +1 oY In |ty|

oy  y(l—t24y%) “T(1-124y?)?

has the same points of discontinuity.

10. f(t,y) is continuous everywhere on the plane. The partial derivative 0f /0y is
also continuous everywhere.

12. The function f(t,y) is discontinuous along the lines ¢t = +kx for k =0,1,2,...
and y = —1. The partial derivative df/dy = cott/(1 + y)? has the same region of
continuity.

14. The equation is separable, with dy/y? = 2tdt. Integrating both sides, the
solution is given by y(t) = yo/(1 — yot?). For o > 0, solutions exist as long as
t2 < 1/yo . For yo < 0, solutions are defined for all ¢.

15. The equation is separable, with dy/y® = —dt. Integrating both sides and
invoking the initial condition, y(t) =yo/v/2y3t+ 1. Solutions exist as long as
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292t +1 >0, that is, 293t > —1. If yo # 0, solutions exist for t > —1/2y2. If
yo = 0, then the solution y(t) = 0 exists for all ¢.

16. The function f(t,y) is discontinuous along the straight lines t = —1 and y = 0.
The partial derivative df/0y is discontinuous along the same lines. The equa-
tion is separable, with ydy = t?dt/(1 +t®). Integrating and invoking the initial
condition, the solution is y(t) = [(2/3)In |1 + 3| + 4] "2 Solutions exist as long
as (2/3)In|1+4 3| 4+ y3 > 0, that is, y3 > —(2/3)In |1+ *|. For all yo (it can be
verified that yo = 0 yields a valid solution, even thoug}é Theorem 2.4.2 does not
guarantee one) , solutions exist as long as ‘1 + t3‘ > e%¥0/2, From above, we must
have t > —1. Hence the inequality may be written as 3> e73%6/2 — 1. It follows
that the solutions are valid for (e™3%/2 — 1)1/3 <t < 0.

18.
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Based on the direction field, and the differential equation, for yy < 0, the slopes
eventually become negative, and hence solutions tend to —oo . For yg > 0, solutions
increase without bound if ¢ty < 0. Otherwise, the slopes eventually become negative,
and solutions tend to zero. Furthermore, yg = 0 is an equilibrium solution. Note
that slopes are zero along the curves y = 0 and ty = 3.

19.
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For initial conditions (tg,yo) satisfying ty < 3, the respective solutions all tend to
zero. For yg < 9, the solutions tend to 0; for yg > 9, the solutions tend to co. Also,
9o = 0 is an equilibrium solution.
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Solutions with ¢ty < 0 all tend to —oo. Solutions with initial conditions (¢o,yo)
to the right of the parabola ¢t = 1+ y? asymptotically approach the parabola as
t — oo. Integral curves with initial conditions above the parabola (and yo > 0)
also approach the curve. The slopes for solutions with initial conditions below the
parabola (and yo < 0) are all negative. These solutions tend to —oo.

21.(a) No. There is no value of ¢y > 0 for which (2/3)(t — t9)?/? satisfies the con-
dition y(1) = 1.

(b) Yes. Let to = 1/2 in Eq.(19).
(c) For tg > 0, |y(2)| < (4/3)3/2 ~ 1.54.
24. The assumption is ¢'(t) + p(t)$(t) = 0. But then c¢’(t) + p(t)co(t) = 0 as well.

26.(a) Recalling Eq.(33) in Section 2.1,

1 t c
V= / p(s)o(s) ds + .

It is evident that y1(t) = 1/u(t) and y2(t) = (1/u(t) fto

(b) By definition, 1/u(t) = e~ /?Mdt Hence y{ = —p(t)/u(t) = —p(t)y,. That is,
yi +p()yr = 0.

() y3 = (—p(t)/u(®)) [y u(s)g(s) ds + pu(t)g(t)/p(t) = —p(t)yz + g(t). This implies
that yg + p(t)y2 = g(t)

30. Since n = 3, set v = y~2. It follows that v’ = —2y 3y’ and v/ = —(y3/2)v’. Sub-
stitution into the differential equation yields —(y3/2)v" — ey = —oy?3, which further
results in v/ + 2ev = 20. The latter differential equation is linear, and can be writ-
ten as (ve%!) = 20e%!. The solution is given by v(t) = o /e + ce=2t. Converting
back to the original dependent variable, y = +v~1/2 = +(0 /e 4 ce~2¢4)71/2,

31. Since n = 3, set v = y~2. It follows that v’ = —2y 3y’ and v’ = —(y*/2)v’. The
differential equation is written as —(y®/2)v’ — (I'cos t + T)y = oy>, which upon
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further substitution is v’ + 2(T"cos t + T)v = 2. This ODE is linear, with integrat-
ing factor u(t) = e2/J(Ieos t+T)dt — o2Usin t4+2Tt The solution is

t
U(t) _ 26_(2F sin t42T't) / 621" sin 7-+2T7-d7_ + Ce—(QF sin t+2Tt).
0

Converting back to the original dependent variable, y = +v~1/2.

33. The solution of the initial value problem y; + 2y; = 0, y1(0) = 1 is y;(t) = e 2.,
Therefore y(17) = y1(1) = e=2. On the interval (1,00), the differential equation
is yg + y2 = 0, with yo(t) = ce=!. Therefore y(17) = y2(1) = ce~!. Equating the
limits y(17) = y(17), we require that ¢ = e~!. Hence the global solution of the
initial value problem is

e?, 0<t<1
e 17t t>1 '

Note the discontinuity of the derivative

, -2 0<t<1
y'(t) = iy :
—e , t>1

a=1, b=2
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For yy > 0, the only equilibrium point is 4* = 0, and ' = ay + by? > 0 when y > 0,
hence the equilibrium solution y = 0 is unstable.
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The equilibrium points are y* = —a/b and y* =0, and ¢ > 0 when y > 0 or y <
—a/b, and y’ < 0 when —a/b < y < 0, therefore the equilibrium solution y = —a/b
is asymptotically stable and the equilibrium solution y = 0 is unstable.
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The only equilibrium point is y* =0, and ¥’ > 0 when y > 0, ' <0 when y < 0,
hence the equilibrium solution y = 0 is unstable.
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The only equilibrium point is y* =0, and ¥’ > 0 when y < 0, ' < 0 when y > 0,
hence the equilibrium solution y = 0 is asymptotically stable.
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The only equilibrium point is y* =1, and y’ <0 for y # 1. As long as yy # 1,
the corresponding solution is monotone decreasing. Hence the equilibrium solution
y = 1 is semistable.
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10.
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The equilibrium points are y* =0,£1, and 3y >0 for y < —1 or 0 <y < 1 and
y < 0for —1 <y < 0ory>1. The equilibrium solution y = 0 is unstable, and the
remaining two are asymptotically stable.

12.

~10

—12 4

—14 -



Chapter 2. First Order Differential Equations

40

T N O
S0
27yy
AT S
=
N —
> r =}
51 @ t
B ~ I8 t
o I =.2 t
e =
vV 2.2 La t
3oy > 5% : 4
——>_7 qu 4
—> 7 e.|0.e 4
> hse
g . t
o= Vg = i
- /UU$QV.U t1
= R
4 = a
By TEE H
s ¢ &
—> 7 o @ vM 44
4 Q,hm 44
oer ._._Tk.w B
o IR X
> * y.|Vw P T T T T ° 44
4 y/\.ﬂ.a c 3 3 3 3 44
o 2 £
arm
B2 °a .
R s
2Y 7
> ®
~ o N EVE “ o
——
— o ————— o —P MQae
2 8=
= =22
=227
eomm
o A D
= o @» N
Fssz DI

The equilibrium points are y* = 0, 1. 3’ > 0 for all y except y = 0 and y = 1. Both
15.(a) Inverting Eq.(11), Eq.(13) shows ¢ as a function of the population y and the

equilibrium solutions are semistable.
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carrying capacity K. With yo = K/3,

L | WS 10

MW - (173)

Setting y = 2yq,

S W(COTE T
ro[2/3) 1= (1/3)]

That is, 7 = (In4)/r. If r = 0.025 per year, 7 = 55.45 years.

(b) In Eq.(13), set yo/K = a and y/K = . As a result, we obtain

BRI
P Bl

r
Given a = 0.1, f = 0.9 and r = 0.025 per year, 7 ~ 175.78 years.

19.(a) The rate of increase of the volume is given by rate of flow in—rate of flow out.
That is, dV/dt = k — aa+/2gh . Since the cross section is constant, dV/dt = Adh/dt.
Hence the governing equation is dh/dt = (k — car/2gh )/ A.

(b) Setting dh/dt = 0, the equilibrium height is h. = (1/2¢)(k/aa)?. Furthermore,
since dh/dt < 0 for h > h. and dh/dt > 0 for h < h,, it follows that the equilibrium
height is asymptotically stable.

22.(a) The equilibrium points are at y* =0 and y* = 1. Since f'(y) = o — 2ay,
the equilibrium solution y = 0 is unstable and the equilibrium solution y =1 is
asymptotically stable.

(b) The differential equation is separable, with [y(1 — y)]_1 dy = a.dt . Integrating
both sides and invoking the initial condition, the solution is

B Yo e _ Yo
y(t) - at —at”
l—yo+yoe Yo + (1 —yo)e

It is evident that (independent of yo) lim; —, oo y(¢) = 0 and lim; , o y(t) = 1.

23.(a) y(t) = yoe 7",

(b) From part (a), dz/dt = —axyoe . Separating variables, dr/z = —ayoe™ tdt.
Integrating both sides, the solution is z(t) = g e=avo(l—e ")/8

(c) Ast — oo, y(t) — 0 and z(t) — 2¢ge *¥/8. Over a long period of time,
the proportion of carriers vanishes. Therefore the proportion of the population that
escapes the epidemic is the proportion of susceptibles left at that time, e~ *¥o/8.

26.(a) For a < 0 , the only critical point is at y = 0, which is asymptotically stable.
For a =0, the only critical point is at y = 0, which is asymptotically stable. For
a > 0, the three critical points are at y =0, ++/a . The critical point at y =0 is
unstable, whereas the other two are asymptotically stable.
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(b) Below, we graph solutions in the case a = —1, a = 0 and a = 1 respectively.
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27.(a) fly) =yla—vy); f'(y) =a—2y. For a <0, the critical points are at y = a
and y = 0. Observe that f’(a) >0 and f’(0) < 0. Hence y = a is unstable and
y = 0 asymptotically stable. For a = 0, the only critical point is at y = 0, which is
semistable since f(y) = —y? is concave down. For a > 0 , the critical points are at
y=0and y = a. Observe that f/(0) > 0 and f’(a) < 0. Hence y = 0 is unstable
and y = a asymptotically stable.

(b) Below, we graph solutions in the case a = —1, a = 0 and a = 1 respectively.
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1. M(z,y) =2x+3 and N(z,y) =2y —2. Since M, = N, =0, the equation is
exact. Integrating M with respect to z, while holding y constant, yields ¢ (x,y) =
z? + 3z + h(y). Now ¢, = h'(y), and equating with N results in the possible

function h(y) = y? — 2y. Hence 9 (z,y) = 2% + 3z + y? — 2y, and the solution is
defined implicitly as 22 + 3z + 3% — 2y = c.

2. M(z,y) = 2x + 4y and N(z,y) = 2z — 2y . Note that M, # N, , and hence the
differential equation is not exact.

4. First divide both sides by (2zy + 2). We now have M (z,y) = y and N(z,y) = =
Since My, = N, =0, the resulting equation is exact. Integrating M with respect
to a, while holding y constant, results in ¥ (z,y) = xy + h(y) . Differentiating with
respect to y, ¢, = x + h'(y). Setting ¥, = N, we find that h’(y) =0, and hence
h(y) = 0 is acceptable. Therefore the solution is defined implicitly as zy = ¢. Note
that if zy + 1 = 0, the equation is trivially satisfied.

6. Write the equation as (ax — by)dx + (bx — cy)dy = 0. Now M (z,y) = ax — by
and N(z,y) = bz — cy. Since M, # N, , the differential equation is not exact.
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8. M(z,y) = e”sin y + 3y and N(z,y) = —3z + ¢” sin y . Note that M,, # N, , and
hence the differential equation is not exact.

10. M(z,y) =y/x + 6x and N(z,y) =In v — 2. Since M, = N, = 1/x, the given
equation is exact. Integrating N with respect to y, while holding x constant,
results in ¢(x,y) =y In x — 2y + h(z). Differentiating with respect to z, ¥, =
y/x + 1 (x). Setting ¢, = M, we find that h'(z) = 6x, and hence h(z) = 322
Therefore the solution is defined implicitly as 3z2 +ylnx — 2y =c.

11. M(z,y) =z Iny+azy and N(z,y) =y In 2+ zy. Note that M, # N, , and
hence the differential equation is not exact.

13. M(z,y) =2z —y and N(z,y) =2y —x. Since M, = N, = —1, the equa-
tion is exact. Integrating M with respect to x, while holding y constant, yields
P(z,y) = 2% — 2y + h(y). Now ¢, = —x + I/(y). Equating 1, with N results in
h'(y) = 2y, and hence h(y) = y?. Thus ¥ (z,y) = 2% — 2y + y*, and the solution
is given implicitly as x? — 2y + 32 = c¢. Invoking the initial condition y(1) =3,
the specific solution is x? —zy +y? = 7. The explicit form of the solution is
y(z) = (z + /28 — 322)/2. Hence the solution is valid as long as 3z2 < 28.

16. M(z,y) = ye*¥ +x and N(x,y) = bz e**¥. Note that M, = e>"¥ 4 2zy >V,
and N, = be?™¥ + 2bxy e®*¥. The given equation is exact, as long as b=1. In-
tegrating N with respect to y, while holding x constant, results in ¥(z,y) =
e?®¥ /2 + h(z). Now differentiating with respect to x, 1, = ye?®¥ + h/(x). Set-
ting 1, = M, we find that h/(z) = z, and hence h(x) = 22/2. We conclude that
W(x,y) = e2¥¥ /2 + 22 /2. Hence the solution is given implicitly as e?*¥ + 22 = c.

17. Note that 1 is of the form ¥ (x,y) = f(x) + g(y), since each of the integrands
is a function of a single variable. It follows that ¢, = f'(x) and ¢, = ¢’(y). That
is, ¥y = M(x,y0) and ¢, = N(zo,y). Furthermore,

0% oM 0% ON

m(xovyo) = ——(x0,y0) and m(%,yo) = O

8y (xO,y0)7

based on the hypothesis and the fact that the point (zo,yo) is arbitrary, ¥gy = ¥y
and My(‘rvy) = Nz(xay)

18. Observe that (M (x)), = (N(y))z =0.
20. My =y lcosy—y?siny and N, =—2e %(cos z +sin x)/y. Multiplying
both sides by the integrating factor u(z,y) = y e®, the given equation can be written
as (e” sin y — 2y sin z)dz + (¥ cos y + 2cos z)dy = 0. Let M = uM and N = N .
Observe that My = N, , and hence the latter ODE is exact. Integrating N with
respect to y, while holding = constant, results in ¥(x,y) = e*sin y + 2y cos = +
h(z). Now differentiating with respect to z, ¥, = e*sin y — 2y sin « + h/(x). Set-
ting 1, = M, we find that ’(z) =0, and hence h(z) = 0 is feasible. Hence the
solution of the given equation is defined implicitly by e®sin y + 2y cos x = c.
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21. My =1 and N, = 2. Multiply both sides by the integrating factor plz,y) =y
to obtain yzdx + (2zy — y?e¥)dy = 0. Let M= yM and N = yN. It is easy to see
that M = N, , and hence the latter ODE is exact. Integrating M with respect
to z yields ¥ (z,y) = zy*> + h(y) . Equating ¢, with N results in B (y) = —y?e?,
and hence h(y) = —e¥(y? — 2y + 2). Thus ¢(x,y) = 2y — e¥(y? — 2y + 2), and the
solution is defined implicitly by zy? —e¥(y? — 2y +2) = c.

24. The equation pM + Ny’ =0 has an integrating factor if (uM), = (uN)4,
that is, pyM — peN = uN, — uM, . Suppose that N, — M, = R(zM —yN), in
which R is some function depending only on the quantity z = zy. It follows that
the modified form of the equation is exact, if puy,M — p,N = pR(xM —yN) =
R(pxzM — pryN). This relation is satisfied if p, = (uz)R and p, = (py)R. Now
consider p = p(xy). Then the partial derivatives are p, = p'y and p,, = ('« . Note
that g/ = dp/dz. Thus p must satisfy w(z ) R(z). The latter equation is sepa-
rable, with dy = R(z)dz, and pu(z) = [ R(z)dz. Therefore, given R = R(zy), it is
possible to determine p = p(xy) Whlch becomes an integrating factor of the differ-
ential equation.

28. The equation is not exact, since N, — M, = 2y — 1. However, (N, — M,)/M =
(2y — 1)/y is a function of y alone. Hence there exists u = p(y) , which is a solution
of the differential equation ' = (2 — 1/y)u. The latter equation is separable, with
dp/p =2 —1/y. One solution is u(y) = e2Y~"¥ =2 /y. Now rewrite the given
ODE as e?Ydx + (2ze? — 1/y)dy = 0. This equation is exact, and it is easy to see
that ¥ (z,y) = ze?¥ — In|y|. Therefore the solution of the given equation is defined
implicitly by ze* —In|y| = c.

30. The given equation is not exact, since N, — M, = 823 /y% + 6/y%. But note that
(Ny — M,)/M = 2/y is a function of y alone, and hence there is an integrating fac-
tor u = p(y). Solving the equation p’ = (2/y)u, an integrating factor is u(y) = y2.
Now rewrite the differential equation as (43 + 3y)dx + (3x + 4y%)dy = 0. By in-
spection, 1 (z,y) = 2* + 3zy + y*, and thesolution of the given equation is defined
implicitly by z* + 3zy +y* = c.

32. Multiplying both sides of the ODE by u = [zy(2z + y)]_l, the given equation is
equivalent to [(3z +y)/(22% + ay)] dz + [(z + y)/(2zy + y?)] dy = 0. Rewrite the
differential equation as

1

2 2 1

L: + 2$+y} dx + {y + 233—|—y] dy=0.
It is easy to see that M, = N,. Integrating M with respect to x, while keep-
ing y constant, results in ¢ (z,y) = 2In|z| +1In|2z + y| + h(y) . Now taking the
partial derivative with respect to y, 1, = (22 +y)~' +h’'(y). Setting ¢, = N,
we find that h'(y) = 1/y, and hence h(y) = In |y|. Therefore ¥ (z,y) = 2In|z| +
In|2z + y| + 1In |y|, and the solution of the given equation is defined implicitly by
223y + x2y? = c.
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Yn + 12y, — 1) = (14 2h)y, — h.
2t) /2. The values
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2. The Euler formula is given by 4,11

(a) 1.1, 1.22, 1.364, 1.5368

(b) 1.105, 1.23205, 1.38578, 1.57179

(c) 1.10775, 1.23873, 1.39793, 1.59144

(d) The differential equation is linear with solution y(¢t) = (1+e

are 1.1107, 1.24591, 1.41106, 1.61277.

All solutions seem to converge to y = 25/9.

All solutions seem to converge to a specific function.
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Solutions with initial conditions |y(0)| > 2.5 seem to diverge. On the other hand,
solutions with initial conditions |y(0)| < 2.5 seem to converge to zero. Also, y =0
is an equilibrium solution.

10.
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Solutions with positive initial conditions increase without bound. Solutions with
negative initial conditions decrease without bound. Note that y = 0 is an equilib-
rium solution.

11. The Euler formula is y,4+1 = y» — 3hy/Yn + dh. The initial value is yo = 2.

(a) 2.30800, 2.49006, 2.60023, 2.66773, 2.70939, 2.73521

(b) 2.30167, 2.48263, 2.59352, 2.66227, 2.70519, 2.73209

(c) 2.29864, 2.47903, 2.59024, 2.65958, 2.70310, 2.73053

(d) 2.29686, 2.47691, 2.58830, 2.65798, 2.70185, 2.72959

12. The Euler formula is y,,+1 = (1 + 3h)y,, — ht,,y2. The initial value is (to,yo) =
(0,0.5).

(a) 1.70308, 3.06605, 2.44030, 1.77204, 1.37348, 1.11925
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(b) 1.79548, 3.06051, 2.43292, 1.77807, 1.37795, 1.12191

(c) 1.84579, 3.05769, 2.42905, 1.78074, 1.38017, 1.12328

(d) 1.87734, 3.05607, 2.42672, 1.78224, 1.38150, 1.12411

14. The Euler formula is y,+1 = (1 — hty,)y, + hyS /10, with (to,yo) = (0,1).

(a) 0.950517, 0.687550, 0.369188, 0.145990, 0.0421429, 0.00872877

(b) 0.938298, 0.672145, 0.362640, 0.147659, 0.0454100, 0.0104931

(c) 0.932253, 0.664778, 0.359567, 0.148416, 0.0469514, 0.0113722

(d) 0.928649, 0.660463, 0.357783, 0.148848, 0.0478492, 0.0118978

17. The Euler formula is yn1+1 = yn + h(y2 + 2t, yn)/(3 + t2). The initial point is
(to,yo) = (1,2). Using this iteration formula with the specified h values, the value
of the solution at ¢t = 2.5 is somewhere between 18 and 19. At ¢ = 3 there is no

reliable estimate.

19.(a)
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(b) The iteration formula is y, 11 = ¥, + hy2 — ht2. The critical value o appears
to be between 0.67 and 0.68. For yg > «q, the iterations diverge.

20.(a) The ODE is linear, with general solution y(t) = t + ce!. Invoking the spec-
ified initial condition, y(to) = yo, we have yg = to + ce®®. Hence ¢ = (yo — to)eto.
Thus the solution is given by ¢(t) = (yo — to)e' 0 + .

(b) The Euler formula is y,+1 = (1 + h)y, + h—ht,. Nowset k=n+1.
(¢) We have y1 = (1 + h)yo +h — hto = (1 + h)yo + (t1 — to) — htg. Rearranging

the terms, y; = (14 h)(yo — to) +t1. Now suppose that y, = (14 h)*(yo — to) +
ti, for some k > 1. Then yg1 = (1 4+ h)yg + h — hty. Substituting for yi, we find
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N

that
Yri1 = (1+ 0 (yo —to) + (1 + h)tg +h — hty, = (1 + h) T (yo — to) + tg + h.
Noting that tx+1 = tx + h, the result is verified.

(d) Substituting h = (t —tg)/n, with t, =1t, y, = (1 + (t —to)/n)"(yo — to) + t.
Taking the limit of both sides, and using the fact that lim, .. (1 + a/n)" = €%,
pointwise convergence is proved.

21. The exact solution is y(t) = e!. The Euler formula is y,.1 = (1 + h)y, . It is
easy to see that y, = (1 4+ h)"yo = (1 + h)"™. Givent > 0, set h = t/n. Taking the
limit, we find that 1lim, e yp = lim, oo (1 +t/n)" = €.

23. The exact solution is y(t) =t/2+ €*'. The Euler formula is y,+1 = (1 +
2h)yn + h/2 —ht,. Since yo=1, y1 =(14+2h)+h/2=(1+2h)+t1/2. It is
easy to show by mathematical induction, that vy, = (1+2h)” +1t,/2. For t >
0, set h=t/n and thus t, =t. Taking the limit, we find that lim, .y, =
lim,, o0 [(1 4+ 2t/n)™ 4+ t/2] = €' + t/2. Hence pointwise convergence is proved.

2. Let z=y—3and 7=t+ 1. It follows that dz/dr = (dz/dt)(dt/dT) = dz/dt.
Furthermore, dz/dt = dy/dt = 1 — y®. Hence dz/dr =1 — (2 + 3)3. The new ini-
tial condition is z(0) = 0.

3.(a) The approximating functions are defined recursively by

Ony1(t) = /0 2[dn(s)+1]ds.

Setting ¢o(t) = 0, ¢1(t) = 2t. Continuing, ¢o(t) = 2t> + 2t , ¢3(t) = 43 /3 + 2t2 +
2t ¢a(t) =2t1/3 +4t3/3 +2t> +2t, .... Based upon these we conjecture that
bn(t) = > p_, 2%t% /k! and use mathematical induction to verify this form for ¢y, (t).
First, let n = 1, then ¢,,(t) = 2t, so it is certainly true for n = 1. Then, using Eq.(7)
again we have

t t n 2k n+1 2k
¢n+1(t):/ 2[¢n(s)+1]ds:/ 2 ngkﬂ ds:zﬁtk,
0 0 k=1"" k=1~

and we have verified our conjecture.
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From the plot it appears that ¢4 is a good estimate for |t| < 1/2.

5.(a) The approximating functions are defined recursively by

Pni1(t) = /0 [~bn(s)/2 + s]ds.

Setting ¢o(t) = 0, ¢1(t) = t2/2. Continuing, ¢o(t) = t2/2 —t3/12, ¢3(t) = t2/2 —
t3/12 + /96, ¢a(t) =12/2 —t3/12 +t*/96 — t5/960, .... Based upon these we
conjecture that ¢, (t) = Y p_; 4(—1/2)*1#*+1/(k 4+ 1)! and use mathematical in-
duction to verify this form for ¢, (t).
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(c) Recall from calculus that e =1+ Z,fil a®t* /k!. Thus

—1/2)k
§ 4 /2) tk+1:467t/2+2t74.
E+1!

0.8

0.6
0.5 o
0.4
0.3 o
0.2 o

0.1 4

¥ T T 1
-2 -1 ) 1 2
z

From the plot it appears that ¢4 is a good estimate for |¢| < 2.

6.(a) The approximating functions are defined recursively by

Pnt1(t) = /0 [dn(s) +1—s]ds.

Setting do(t) = 0, 1(£) = t —£2/2, do(t) = t — £3/6, $a(t) = t — /24, pa(t) = t —
t°/120, .... Based upon these we conjecture that ¢, (t) =t —t""1/(n +1)! and
use mathematical induction to verify this form for ¢,,(¢).
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(c) Clearly ¢(t) =t.

(d)

From the plot it appears that ¢4 is a good estimate for |¢| < 1.

8.(a) The approximating functions are defined recursively by

D (t) = /O [26(s) — s] ds.

Set ¢o(t) = 0. The iterates aregiven by ¢1(t) = —t2/2, ¢o(t) = —t2/2 —t°/10,
d3(t) = —t2/2 —5/10 — t8/80, ¢4 (t) = —t2/2 — t5/10 — 8/80 — t'1 /880 ,.... Upon
inspection, it becomes apparent that

1 t3 t6 (t3)n—1

— 42| =
Pn(t) = t[2+2.5 2.5.8+"'+2.5-8...[2+3(n71)] -

— 2 - (%)
T ’;2~5~8...[2+3(k71)]'
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~10 4

(c) Using the identity ¢, () = ¢1(t) + [$a(t) — d1()] + [#3(t) — da(O)] + ... + [n(t) —
¢n—1(t)], consider the series ¢y (t) + > po i [Pr+1(t) — ¢x(t)]. Fix any ¢ value now.
We use the Ratio Test to prove the convergence of this series:

B 2.5.--(2+3k) . |t|3

(=) | 94 3k
25 (213(k—1))

Prr1(t) — P(t)
Or(t) — dr—1(t)

‘ (=t2)(E*)*

The limit of this quantity is 0 for any fixed ¢t as k — oo, and we obtain that ¢, (t)
is convergent for any t.

9.(a) The approximating functions are defined recursively by

Pn1(t) = /0 [s* + ¢2(s)] ds.

Set ¢o(t) = 0. The first three iterates are given by ¢ (t) = t3/3, ¢o(t) =t3/3 +
£7/63, ¢3(t) = £3/3 +17 /63 + 2t11 /2079 + 15 /59535 .

(b)

The iterates appear to be converging.
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12.(a) The approximating functions are defined recursively by

0= || [=s)

Note that 1/(2y —2) = —(1/2) S>o_y ¥* + O(y7). For computational purposes, use
the geometric series sum to replace the above iteration formula by

1/ 0
bunt) =5 [ @5+ 1542) Y 6k0)] ds
2Jo k=0
Set ¢o(t) = 0. The first four approximations are given by ¢;(t) = —t — 2 — t3/2,
Go(t) = —t —12/2 4+ 13/6 + t1/4 — 155 —15/24 + ... #3(t) = —t — 2/2 + t1/12 —
3t°/20 + 4t5/45 + ..., pa(t) = —t — t2/2 4+ t*/8 — Tt /60 + 16 /15 + ...

(b)

0.5 9

T T T 1
=1 -0.5 0 0.5 1

The approximations appear to be converging to the exact solution, which can be
found by separating the variables: ¢(t) = 1 — /1 + 2t + 2t2 + 13

14.(a) ¢n( )=0, for every n>1. Let a€ (0,1]. Then ¢,(a)=2nae """ =
2na/e”‘1 Usmg lHospltal’s rule, lim,_, 2az/eaz2 = lim, o 1/2€%* #* — (. Hence

b) fol nze " dy = —e~ |é =1— e™. Therefore,

lim (bn dﬂc#/ hm bn(x

n— oo

15. Let t be fixed, such that (¢,y1), (t,y2) € D . Without loss of generality, assume
that y; < yo . Since f is differentiable with respect to y, the mean value theorem as-
serts that there exists £ € (y1,y2) such that f(t,y1) — f(t,92) = fu(t.&)(y1 — y2).
This means that |f(¢t,y1) — f(t,y2)| = |fy(t,&)| |[y1 — y2|. Since, by assumption,
0f /0y is continuous in D, f, attains a maximum K on any closed and bounded
subset of D. Hence |f(¢, yl) ft,y2)| < K |y1 — yal-

16. For a sufficiently small interval of ¢, ¢,,—1(t), ¢n(t) € D. Since f satisfies a
Lipschitz condition, |f (¢, ¢n(t)) — f(t, on-1(t))] < K |dn(t) — ¢pp—1(t)|. Here K =

max | fy|.



56

Chapter 2. First Order Differential Equations

17.(a) ¢ fo f(s,0)ds. Hence |¢1(t) |<f0|t‘|fs 0)| ds <f|t‘Mds:M|t\,1n
which M is the maximum value of |f(¢,y)| on D.

(b) By definition, ¢2(%) fo — f(s,0)]ds. Taking the absolute
value of both sides, \(bg( ) ¢1 )| < fo‘tl | ,01(8)) — f(s,0)]|ds. Based on the

results in Problems 16 and 17,

Il

It
62(t) ~ 1(0)] < Kwu@meSKM/‘wMa
0 0
Evaluating the last integral, we obtain that |¢o(t) — ¢1(£)] < MK |t]* /2.

(c) Suppose that A
MKt
il

|i(t) — di—1(t)] <

for some i > 1. By definition,

¢Hﬂﬂ—%@%=A[ﬂ&@@ﬂ—f@ﬁpﬂﬁﬂﬁ

It follows that
[t]
|@H@—¢mnsl F(5.64(5)) — F(5,bi1(s))] ds

It [t] MK? 1
< | Klgi(s) — gi—a(s)|ds < K#H
0 0 |

_ METT MK
G+ T (41!

Hence, by mathematical induction, the assertion is true.

18.(a) Use the triangle inequality, |a + b| < |a| + |9] .
(b) For [t| < h, [¢1(t)] < Mh, and |¢p(t) — ¢n—1(t)] < MK 'h"/(n!). Hence

"KM SN (KR
() <y K M (R0

(c) The sequence of partial sums in (b) converges to M (eX" —1)/K. By the com-
parison test, the sums in (a) also converge. Since individual terms of a convergent
series must tend to zero, |¢,(t) — ¢n_1(t)] = 0, and it follows that the sequence
|pn(t)| is convergent.

19.(a) Let ¢(t) fo ds and ¢( ) = [y f(s,%(s))ds. Then by linearity of
the integral, ¢(t) fo — f(s,%(s))]ds.

@»nmmMmmuaw—wwv;ﬁuwww»—ﬂaw@nw.
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(¢) We know that f satisfies a Lipschitz condition, |f(¢t,y1) — f(¢,y2)| < K |y1 — ya|,
based on |0f/0y| < K in D. Therefore,

¢(t) — ¥ (t)] S/O |f(87¢(8))—f(8,¢(8))|d8S/0 K |p(s) — v (s)| ds.

1. Writing the equation for each n >0, y; = —0.9yo, y2 = —0.9y; = (—0.9%)yo,
y3 = —0.9y2 = (—0.9)3yo and so on, it is apparent that y,, = (—0.9)" 5o . The terms
constitute an alternating series, which converge to zero, regardless of ¥ .

3. Write the equation for each n > 0, y1 = vV3y0, ¥2 = /4/2y1, y3 = \/5/3 2, ...
Upon substitution, we find that yo = 1/(4-3)/2y1, y3 =+/(5-4-3)/(3-2) yo, - -.
It can be proved by mathematical induction, that

yn:% (n:;!Q)! Yo - L (n+1)(n+2) yo-

V2

This sequence is divergent, except for yg = 0.

4. Writing the equation for each n >0, y1 = —yo, Y2 = Y1, Y3 = —Y2, Ys = U3,
and so on. It can be shown that
) wo, forn=4korn=4k—1
o —yo, forn=4k—-2orn=4k—-3

The sequence is convergent only for yg = 0.

6. Writing the equation for each n > 0,

y1=—05yo+6
Y2 = —0.5y; +6 = —0.5(=0.5yo + 6) + 6 = (—0.5)%yo + 6 + (—0.5)6
ys = —0.5y2 + 6 = —0.5(—0.5y1 + 6) + 6 = (—0.5)°yo + 6 [1 + (—0.5) + (—0.5)]

Yn = (—0.5)"yo +4[1 — (—=0.5)" ]

which follows from Eq.(13) and (14). The sequence is convergent for all yo, and in
fact y, — 4.

8. Let y,, be the balance at the end of the nth month. Then y,4+1 = (1 +r/12)y, +
25. We have y,, = p"[yo — 25/(1 — p)] +25/(1 — p), in which p = (1 +r/12). Here
r is the annual interest rate, given as 8%. Thus y36 = (1.0066)36 [1000 + 12 - 25/r] —
1225/ = $2, 283.63.

9. Let y, be the balance due at the end of the nth month. The appropriate
difference equation is y,4+1 = (14 r/12)y,, — P. Here r is the annual interest rate
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and P is the monthly payment. The solution, in terms of the amount borrowed,
is given by y, = p"[yo + P/(1 — p)] — P/(1 — p), in which p = (1 +r/12) and yo =
8,000. To figure out the monthly payment P, we require that ysg = 0. That is,
p*%lyo + P/(1 — p)] = P/(1 — p). After the specified amounts are substituted, we
find that P = $258.14.

11. Let y, be the balance due at the end of the nth month. The appropriate differ-
ence equation is yn41 = (14 7/12)y, — P, in which r = .09 and P is the monthly
payment. The initial value of the mortgage is yo = $100,000. Then the balance
due at the end of the n-th month is y,, = p"[yo + P/(1 — p)] — P/(1 — p), where
p=(1+7r/12). In terms of the specified values, y, = (1.0075)"[10° — 12P/r] +
12P/r. Settingn = 30 - 12 = 360, and y30 = 0, we find that P = $804.62. For the
monthly payment corresponding to a 20 year mortgage, set n = 240 and ya40 = 0
to find that P = $899.73. The total amount paid during the term of the loan is
360 x 804.62 = $289,663.20 for the 30-year loan and is 240 x 899.73 = $215,935.20
for the 20-year loan.

12. Let y,, be the balance due at the end of the nth month, with yq the initial value
of the mortgage. The appropriate difference equation is y,+1 = (1 +r/12)y, — P,
in which » = 0.1 and P = $1000 is the maximum monthly payment. Given that the
life of the mortgage is 20 years, we require that y240 = 0. The balance due at the end
of the n-th month is y, = p"[yo + P/(1 — p)] — P/(1 — p). In terms of the specified
values for the parameters, the solution of (1.00833)%4%[y, — 12-1000/0.1] = —12 -
1000/0.1 is yo = $103, 624.62.

19.(a) 82 = (p2 — p1)/(ps — pa) = (3.449 — 3)/(3.544 — 3.449) = 4.7263 .
(b) diff= (|6 — 62]/6) - 100 = (|4.6692 — 4.7363|/4.6692) - 100 ~ 1.22%.
(¢) Assuming (p3 — p2)/(ps — p3) = 0§, p4 = 3.5643

(d) A period 16 solution appears near p = 3.565.

0.8 ° © ° © ° © ° e °
0.7
0.6
0.5 © - - - -
04+ o

0.34

0.2+

(e) Note that (pps1 — pn) = 6, (pn — pn_1). With the assumption that 6,, = §, we
have (pns1— pn) =0 1 (pn — pn_1), which is of the form y,11 = ay,, n>3. It
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follows that (pr — px—1) = 0> *(p3 — p2) for k > 4. Then

pn = p1+ (p2—p1) + (ps —p2) + (pa—p3) + ... + (pn — Pn—1)
=pi+(p2—p1)+(pzs—p2) [L+6 " +62+.. 467"

1 - gin
=p1+(p2 —p1) + (p3 — p2) 151

Hence lim,, o pn = p2 + (p3 — p2) [%]. Substitution of the appropriate values
yields

lim p, = 3.5699

n— o0

PROBLEMS

1. The equation is linear. It can be written in the form 3y’ + 2y/z = 22, and the
integrating factor is p(z) = el @/w)de — o2Inw — 42 N[yltiplication by w(z) yields
2%y + 2yx = (yx?) = 2*. Integration with respect to x and division by 22 gives

that y = 23/5 + ¢/2?%.

5. The equation is ezact. Algebraic manipulations give the symmetric form of
the equation, (2zy + y? + 1)dx + (22 + 2zy)dy = 0. We can check that M, = 2z +
2y = N,, so the equation is really exact. Integrating M with respect to x gives that
Y(z,y) = 2%y + 2y + x + g(y), then ¢, = 2% 4+ 2zy + ¢'(y) = 2? + 2zy, so we get
that ¢'(y) = 0, so we obtain that g(y) = 0 is acceptable. Therefore the solution is
defined implicitly as 22y + zy® + = = c.

6. The equation is linear. It can be written in the form y' + (1+ (1/z))y = 1/=
and the integrating factor is p(z) = el 1H(A/z)de — prtlne — gov Multiplication by
p(x) yields xze®y’ + (ze® + %)y = (xe®y)’ = e*. Integration with respect to x and
division by ze” shows that the general solution of the equationis y = 1/x + ¢/(ze®).
The initial condition implies that 0 = 1 + ¢/e, which means that ¢ = —e and the
solution is y = 1/x — e/(xe®) = 71 (1 — e!7%).

7. The equation is separable. Separation of variables gives the differential equation
y(2 + 3y)dy = (423 + 1)dx, and then after integration we obtain that the solution
iszt4r—1y?—1y>=c

8. The equation is linear. It can be written in the form y’ + 2y/x = sinx/x? and the
integrating factor is p(z) = el @/w)de — g2Inz _ 42 Multiplication by p(z) gives
2%y’ + 22y = (2%y)’ = sinx, and after integration with respect to x and division by
22 we obtain the general solution y = (¢ — cosx)/x2. The initial condition implies

that ¢ = 4 + cos 2 and the solution becomes y = (4 + cos2 — cos z)/z2.

11. The equation is exact. It is easy to check that M, =1 = N,. Integrating
M with respect to = gives that ¢(z,y) = 2%/3 + zy + g(y), then ¢, = 2 + ¢/(y) =
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x + e¥, which means that ¢'(y) = e¥, so we obtain that g(y) = e¥. Therefore the
solution is defined implicitly as 23/3 + zy + e¥ = c.

13. The equation is separable. Factoring the right hand side leads to the equa-
tion y' = (1 +y?)(1 +2z). We separate the variables to obtain dy/(1+ y?) =
(1 + 2z)dz, then integration gives us arctany = z + 22 + ¢. The solution is y =
tan(z + 22 + ¢).

14. The equation is eract. We can check that M, =1 = N,. Integrating M with
respect to x gives that ¢ (z,y) = 22/2 + 2y + g(y), then ¢, =z + ¢'(y) = = + 2y,
which means that ¢’(y) = 2y, so we obtain that g(y) = y?. Therefore the general
solution is defined implicitly as #2/2 + zy + y? = ¢. The initial condition gives us
¢ = 17, so the solution is 22 + 2zy + 2y° = 34.

15. The equation is separable. Separation of variables leads us to the equation
d 1—e*
Y _ ¢ dx
Y 14e*

Note that 1+ e — 2e” =1 — e”. We obtain that

1—e” 2e” o -
1n|y\—/1+ezdx—/1—1+erdx—x—21n(1+e )+ é.

This means that y = ce”(1 + €*)~2, which also can be written as y = ¢/ cosh?(z/2)
after some algebraic manipulations.

16. The equation is eract. The symmetric form is (—e™% cosy + e cosx)dz +
(—e %siny + 2e*sinz)dy = 0. We can check that M, =e "siny + 2e?Y cosx =
N,. Integrating M with respect to z gives that ¥ (z,y) = e % cosy + e*sinz +
g(y), then 1, = —e ®siny + 2e?sinx + ¢'(y) = —e “siny + 2e*¥ sinz, so we get
that ¢'(y) = 0, so we obtain that g(y) = 0 is acceptable. Therefore the solution is
defined implicitly as e~ cosy + e?¥ sinz = c.

17. The equation is linear. The integrating factor is p(z) = e~ I3dr — =3z which
turns the equation into e 3%y’ — 3e73%y = (e73%y)’ = e~%. We integrate with re-
spect to = to obtain e 3%y = —e~® 4 ¢, and the solution is y = ce3® — €2* after
multiplication by e3%.

18. The equation is linear. The integrating factor is u(x) = el 2dr — 2% which
gives us €%y’ + 2%y = (e2%y) = e~ The antiderivative of the function on the
right hand side can not be expressed in a closed form using elementary functions,
so we have to express the solution using integrals. Let us integrate both sides of
this equation from 0 to . We obtain that the left hand side turns into

[ @ uto)yds = eyto) - o) =y -3
0
The right hand side gives us fom e=*" ds. So we found that

xr
Y= 6_2”’/ e ds + 322,
0
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19. The equation is eract. Algebraic manipulations give us the symmetric form
(y® + 2y — 32?)dz + (22 + 3zy?)dy = 0. We can check that M, = 3y* +2 = N,.
Integrating M with respect to x gives that v (z,y) = 2y® + 22y — 2 + g(y), then
¥y = 3zy* + 22 + ¢'(y) = 22 + 3zy?, which means that ¢’(y) = 0, so we obtain that

g(y) = 0 is acceptable. Therefore the solution is zy® + 2y — 2 = c.

20. The equation is separable, because iy’ = e*T¥ = e%e¥. Separation of variables
yields the equation e Ydy = e®dx, which turns into —e™¥ = e* + ¢ after integration
and we obtain the implicitly defined solution e* 4+ e~¥ = c.

22. The equation is separable. Separation of variables turns the equation into
(y? + 1)dy = (2® — 1)dz, which, after integration, gives y3/3 +y=123/3 —x +c.
The initial condition yields ¢ = 2/3, and the solution is y + 3y — 23 + 3z = 2.

23. The equation is linear. Division by t gives y' + (1 + (1/t))y = € /t, so the
integrating factor is p(t) = e/ (I+(1/0)dt — gt4Int — 4ot The equation turns into
tely’ + (te! + )y = (tely)’ = e3'. Integration therefore leads to tely = e3!/3 + ¢
and the solution is y = €2t /(3t) + ce~!/t.

24. The equation is exact. We can check that M, = 2cosysinxz cosx = N;. In-
tegrating M with respect to x gives that ¢ (z,y) = sinysin®z + g(y), then 1, =
cosysin® z + ¢'(y) = cosysin® z, which means that ¢’(y) =0, so we obtain that
g(y) = 0is acceptable. Therefore the solution is defined implicitly as siny sin? z = c.

25. The equation is exact. We can check that

2z 22 — g2
M=-2_ 7Y _ N,
Y y2 (22 +y2)2
Integrating M with respect to x gives that (z,y) = 22 /y + arctan(y/x) + g(y),
then ¢, = —2?/y* + z/(2* + y?) + ¢'(y) = z/(2? + y*) — 2% /y?, which means that
g'(y) = 0, so we obtain that g(y) = 0 is acceptable. Therefore the solution is defined
implicitly as 22 /y + arctan(y/z) = c.

28. The equation can be made ezxact by choosing an appropriate integrating factor.
We can check that (M, — N,)/N = (2 —1)/x = 1/ depends only on z, so pu(x) =
el (t/m)dz — ¢lnw — 4 js an integrating factor. After multiplication, the equation
becomes (2yx + 3z2)dx + 22dy = 0. This equation is exact now, because M, =
22 = N,. Integrating M with respect to x gives that ¢ (z,y) = yz? + 23 + g(v),
then v, = 2% + ¢/(y) = 22, which means that ¢’(y) = 0, so we obtain that g(y) =0
is acceptable. Therefore the solution is defined implicitly as =3 + 22y = c.

29. The equation is homogeneous. (See Section 2.2, Problem 30) We can see that

y_zty 1+ (/)
v—y 1-(y/x)

We substitute « = y/x, which means also that y = uz and then v = vz +u =
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(1 +u)/(1 —u), which implies that

, 1+u 1+ u?
ur = —u=

C1-u 1—u’
a separable equation. Separating the variables yields
1—u d
1ougy, _do
1+ u? z
and then integration gives arctanu — In(1+ u?)/2 = In|z| + ¢. Substituting u =
y/x back into this expression and using that

—In(1+ (y/2)*)/2 = In|a| = —In(jz[V/1+ (y/2)?) = — In(v/2? + y?)

we obtain that the solution is arctan(y/x) — In(/2? + y2) = c.

30. The equation is homogeneous. (See Section 2.2, Problem 30) Algebraic manip-
ulations show that it can be written in the form

) _ 3yt 42wy 3(y/2)* +2(y/x)

2xy + 22 2(y/z) +1
Substituting u = y/x gives that y = uz and then
4= 3u? + 2u
V= T outl
which implies that
, _3u2+2u _u2+u
YT ur1 Y T

a separable equation. We obtain that (2u + 1)du/(u® + u) = dx/x, which in turn
means that In(u? +u) = In |z| + ¢. Therefore, u? + u = cz and then substituting
u = y/x gives us the solution (y?/x3) + (y/2?) = c.

31. The equation can be made exact by choosing an appropriate integrating
factor. We can check that (M, — N,)/M = —(32% +y)/(y(32* + y)) = —1/y de-
pends only on y, so u(y) = e/ (/)% = nv — 4/ is an integrating factor. After
multiplication, the equation becomes (3z2y? + y*)dz + (223y + 3zy?)dy = 0. This
equation is exact now, because M, = 622y + 3y?> = N,. Integrating M with re-
spect to x gives that ¢ (z,y) = 23y + y3x + ¢(y), then ¢, = 223y + 3y?x + ¢'(y) =
223y + 3xy?, which means that ¢'(y) = 0, so we obtain that g(y) = 0 is acceptable.
Therefore the general solution is defined implicitly as z3y? + 2y = ¢. The initial
condition gives us 4 — 8 = ¢ = —4, and the solution is z3y? + zy> = —4.

33. Let y; be a solution, i.e. ¥} = ¢1 + q2y1 + q3y3. Now let y = y; + (1/v) also be
a solution. Differentiating this expression with respect to ¢ and using that y is also
a solution we obtain ¢/ =y} — (1/v*)v = q1 + 2y + 39> = ¢1 + ¢2(y1 + (1/v)) +
q3(y1 + (1/v))?. Now using that y; was also a solution we get that —(1/v?)v' =
q2(1/v) + 2g3(y1 /v) + q3(1/v?), which, after some simple algebraic manipulations
turns into v/ = —(g2 + 2¢3y1)v — gs.
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35.(a) The equation is ¥’ = (1 —y)(x + by) =2+ (b—2)y — by*>. We set y =1+
(1/v) and differentiate: y' = —v=20" =z + (b — 2)(1 + (1/v)) — b(1 + (1/v))?, which,
after simplification, turns into v = (b + z)v + b.

(b) When z = at, the equation is v’ — (b+ at)v = b, so the integrating factor is
pu(t) = eb=at*/2 This turns the equation into (vu(t))’ = bu(t), so vu(t) = [ bu(t)dt,
and then v = (b [ p(t)dt)/p(t).

36. Substitute v = ', then v' = y”. The equation turns into t?v’ + 2tv = (t?v)’ =
1, which yields t?v =t + ¢1, so ¢/ = v = (1/t) + (c1/t?). Integrating this expression
gives us the solution y = Int — (c1/t) + ca.

37. Set v =1/, then v/ =y”. The equation with this substitution is tv' +v =
(tv)’ =1, which gives tv =t +¢1, so ¥y =v =1+ (¢1/t). Integrating this expres-
sion yields the solution y =t 4 ¢ Int + c».

38. Set v =1, so v =%". The equation is v’ + tv2 = 0, which is a separable
equation. Separating the variables we obtain dv/v? = —tdt, so —1/v = —t%/2 + ¢,
and then y' = v =2/(t?* + ¢;). Now depending on the value of ¢;, we have the
following possibilities: when ¢; = 0, then y = —2/t + ¢, when 0 < ¢; = k2, then
y = (2/k) arctan(t/k) + c2, and when 0 > ¢; = —k? then

y=(1/k)In|(t — k)/(t+ k)| + co.

We also divided by v =y’ when we separated the variables, and v =0 (which is
y = ¢) is also a solution.

39. Substitute v =%’ and v’ =”. The equation is 2t?v' + v3 = 2tv. This is a
Bernoulli equation (See Section 2.4, Problem 27), so the substitution z = v=2 yields
2/ = —2v730', and the equation turns into 2t?v'v3 + 1 = 2t/v?, i.e. into —2t22'/2 +
1 = 2tz, which in turn simplifies to t22’ 4+ 2tz = (t2z)" = 1. Integration yields t?z =
t + ¢, which means that z = (1/t) + (¢/t?). Now ¢/ =v=4+/1/2z=+t/\/T+c1
and another integration gives

2
Y= ig(t —2c1)Vt+ 1 + co.
The substitution also loses the solution v = 0, i.e. y = c.
40. Set v =1/, then v’ = y”. The equation reads v/ + v = e~¢, which is a linear
equation with integrating factor u(t) = et. This turns the equation into e’ + etv =
(etv)’ = 1, which means that ev =t + ¢ and then 3y’ =v =te™! + ce™t. Another
integration yields the solution y = —te™t + ci1e™? + c.

41. Let v = ¢’ and v/ = . The equation is t>v’ = v2, which is a separable equation.
Separating the variables we obtain dv/v? = dt/t?, which gives us —1/v = —(1/t) +
c1, and then ¢ = v =t/(1 + ¢1t). Now when ¢; = 0, then y = t2/2 + ¢o, and when
c1 # 0, then y =t/c; — (In|1 + c1t|)/c? + co. Also, at the separation we divided by
v = 0, which also gives us the solution y = c.
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43. Set y' = v(y). Then y"’ =v'(y)(dy/dt) = v'(y)v(y). We obtain the equation
v'v 4y =0, where the differentiation is with respect to y. This is a separable
equation which simplifies to vdv = —ydy. We obtain that v?/2 = —y2?/2 + ¢, so

y' =v(y) = £1/c — y?. We separate the variables again to get dy/+/c — y? = *dt,
so arcsin(y/+/c) =t + d, which means that y = \/csin(+t + d) = ¢ sin(t + ¢2).

44. Set y' =v(y). Then y” = v'(y)(dy/dt) = v'(y)v(y). We obtain the equation
v'v + yv® = 0, where the differentiation is with respect to y. Separation of variables
turns this into dv/v? = —ydy, which gives us ¥’ = v = 2/(c; +y?). This implies
that (c1 + y?)dy = 2dt and then the solution is defined implicitly as c1y + y3/3 =
2t + ¢o. Also, y = ¢ is a solution which we lost when divided by ¢y’ = v = 0.

46. Set y' =wv(y). Then y" =v/'(y)(dy/dt) =v'(y)v(y). We obtain the equa-
tion yv'v — v =0, where the differentiation is with respect to 3. This separa-
ble equation gives us dv/v? = dy/y, which means that —1/v = In |y| + ¢, and then
y =v=1/(c—1Inly|). We separate variables again to obtain (¢ — In |y|)dy = dt,
and then integration yields the implicitly defined solution cy — (yIn|y| — y) =t + d.
Also, y = ¢ is a solution which we lost when we divided by v = 0.

49. Set y' = v(y). Then y"’ ='(y)(dy/dt) = v'(y)v(y). We obtain the equation
v'v — 3y? = 0, where the differentiation is with respect to 3. Separation of variables
gives vdv = 3y?dy, and after integration this turns into v?/2 = y® + c¢. The initial
conditions imply that ¢ = 0 here, so (y')? = v? = 2y>. This implies that ' = V2?2
(the sign is determined by the initial conditions again), and this separable equation
now turns into y~3/2dy = \/2dt. Integration yields —2y~ /2 = /2t +d, and the
initial conditions at this point give that d = —/2. Algebraic manipulations find
that y = 2(1 — )2

50. Set v =1y, then v =¢y”. The equation with this substitution turns into
the equation (1 + t2)v’ + 2tv = ((1 +?)v)’ = —3t~2. Integrating this we get that
(1+t*)v=3t""+¢, and ¢ = -5 from the initial conditions. This means that
y' =v=23/(t(1+1t%)) —5/(1 +t2). The partial fraction decomposition of the first
expression shows that y' = 3/t — 3t/(1 +t2) —5/(1 +t2) and then another inte-
gration here gives us that y = 3Int — (3/2) In(1 + t?) — 5arctant + d. The initial
conditions identify d = 2+ (3/2)In2 + 57/4, and we obtained the solution.
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Second Order Linear Equations

1. Let y=-¢€", so that y’ =re" and y” =r?e". Direct substitution into the

differential equation yields (r? + 2r —3)e"™ = 0. Canceling the exponential, the
characteristic equation is 72 + 2r — 3 = 0. The roots of the equation are r = —3,1.
Hence the general solution is y = c1ef + cpe ™.

2. Let y = e™. Substitution of the assumed solution results in the characteristic
equation 72 + 3r +2 = 0. The roots of the equation are » = —2, —1. Hence the
general solution is y = cie ™t + coe 2.

4. Substitution of the assumed solution y = €"* results in the characteristic equation
272 —3r+1=0. The roots of the equation are r =1/2,1. Hence the general
solution is y = c1et/2 + cqet.

6. The characteristic equation is 47?2 — 9 = 0, with roots r = +3/2. Therefore the
general solution is y = ;e 32 4 ¢pe3t/2,

8. The characteristic equation is r? — 2r — 2 = 0, with roots r = 1 + /3 . Hence
the general solution is y = c1e(1 V3t 4 cpe(1+V3)E,

9. Substitution of the assumed solution y = e"* results in the characteristic equa-
tion 72 +7 —2 = 0. The roots of the equation are r = —2,1. Hence the general
solution is y = c1e™ 2 + coet. Its derivative is y’ = —2c1e~ 2t + cpe?. Based on the
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first condition, y(0) = 1, we require that ¢; + c2 = 1. In order to satisfy y’(0) =1,
we find that —2¢; + ¢ = 1. Solving for the constants, ¢; =0 and co = 1. Hence
the specific solution is y(t) = e’. It clearly increases without bound as ¢ — oc.

11. Substitution of the assumed solution y = €™ results in the characteristic equa-
tion 6r% —5r +1=0. The roots of the equation are r =1/3,1/2. Hence the
general solution is y = c1et/3 + coet/?. Tts derivative is y’ = c1et/3/3 + cpet/?/2.
Based on the first condition, y(0) =1, we require that ¢; +c2 =4. In order to
satisfy the condition y’(0) =1, we find that ¢1/3 4 c2/2 = 0. Solving for the con-
stants, ¢; = 12 and ¢, = —8. Hence the specific solution is y(t) = 12¢e'/3 — 8¢t/
It clearly decreases without bound as t — oc.

12. The characteristic equation is 72 + 3r = 0, with roots » = —3, 0. Therefore

the general solution is y = c¢1 + coe ™3, with derivative 3’ = —3coe 3!, In order

to satisfy the initial conditions, we find that ¢; + co = —2, and —3 ¢ = 3. Hence
-3t

the specific solution is y(t) = —1 — e~°*. This converges to —1 as t — oc.



67

-0.5

-1.5 4

13. The characteristic equation is 72 4+ 5r + 3 = 0, with roots r = (=5 + 1/13)/2.
The general solution is y = c1e(=5=VI3t/2 4 0, e(=5+VIL/2 with derivative

,:—5—\/ﬁ
2

In order to satisfy the initial conditions, we require that

—5—+/13 —5+\/ﬁc
2

ci+co=1 and 5 c1 5

Solving for the coefficients, ¢; = (1 —5/v/13)/2 and ¢ = (1 4+ 5/4/13)/2. The so-
lution clearly converges to 0 as t — oco.

cle(

y —5—+/13)t/2 + —9 ‘; v13 026(—5+\/ﬁ)t/2 )

=0.

1.5 9

0.5 1

(<]
M)
wA
IS
o)

14. The characteristic equation is 272 +r — 4 = 0, with roots r = (=14 /33)/4.
The general solution is y = cye(=1=V33)t/4 4 ) o(-1+V33)t/4 with derivative

y' = oSS _4 53 cre(-1=VEL/A 1A Vas —Zm cpe(T1HVEL/A

In order to satisfy the initial conditions, we require that

—-1—-+33 —1+\/33C
2

=0 d
c1+ o an 1 Cc1 1

Solving for the coefficients, ¢; = —2/v/33 and ¢3 = 2/4/33 . The specific solution

is
y(t) = —2 [6(717\/@)% _ e(fl+\/§)t/4:| V33

=1
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It clearly increases without bound as ¢ — oo.

16. The characteristic equation is 4r2 — 1 = 0, with roots 7 = £1/2 . Therefore the
general solution is y = cie t/2 + ¢pet/2. Since the initial conditions are specified
at t = —2, is more convenient to write y = dje~t2)/2 4 dye(*+2)/2 The derivative
is given by y’ = — [die”(+2/2] /2 + [dae(t+?/2] /2. In order to satisfy the initial
conditions, we find that dy +dy =1, and —d;/2+dy/2=—1. Solving for the
coefficients, d; = 3/2, and dy = —1/2. The specific solution is

y(t) = 3~z _ L iy _ 3 2 €2
2 2 2e 2

It clearly decreases without bound as t — oc.

—104

18. An algebraic equation with roots —2 and —1/2 is 2r2 4+ 5r +2 = 0. This is
the characteristic equation for the differential equation 2y” + 5y’ +2y =0.

20. The characteristic equation is 212 — 3r + 1 = 0, with roots r = 1/2, 1. There-
fore the general solution is y = cret/? + coet, with derivative y’ = clet/2/2 + coel.
In order to satisfy the initial conditions, we require ¢; + co = 2and ¢; /2 4+ ¢co = 1/2.
Solving for the coefficients, ¢; = 3, and ¢o = —1. The specific solution is y(t) =
3et/2 —¢t.  To find the stationary point, set y’ = 3e?/2/2 —e! =0. There is a
unique solution, with t; = In(9/4). The maximum value is then y(t;) =9/4. To
find the z-intercept, solve the equation 3e'/? —e! =0. The solution is readily
found to be t5 = 1In9 ~ 2.1972.
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22. The characteristic equation is 4r2 — 1 = 0, with roots r = 4-1/2. Hence the
general solution is y = cie %2 + cpet/? and y' = —cre 4?2 + cpet/? /2. Invoking
the initial conditions, we require that c¢; + co =2 and —cy + co = 23 . The specific
solution is y(t) = (1 — B)e™t/2 + (1 + B)e!/?. Based on the form of the solution, it
is evident that as t — oo, y(t) — 0 aslongas = —1.

23. The characteristic equation is r? — (2a — 1)r + a(a — 1) = 0. Examining the
coefficients, the roots are »r = o, @« — 1. Hence the general solution of the differen-
tial equation is y(t) = c1e® + coel® Dt Assuming o € R, all solutions will tend
to zero as long as a < 0. On the other hand, all solutions will become unbounded
aslongasa—1>0, that is, a > 1.

26.(a) The characteristic roots are r = —3,—2. The solution of the initial value
problem is y(t) = (6 + 8)e™ " — (4 + B)e 3.

b) The maximum point has coordinates to = In[(3(4 + 3))/(2(6 + 53))], yo = 4(6 +
B)*/(27(4+ B)?).

(c) yo = 4(6 4+ B)3/(27(4 + B)?) > 4, as long as > 6 + 613 .
(d) limg— oo to =1n(3/2), limg_y00 yo = 0.

27.(a) Assuming that y is a constant, the differential equation reduces to cy = d.
Hence the only equilibrium solution is y = d/c.

(b) Setting y =Y + d/c, substitution into the differential equation results in the
equation aY” +bY ' +¢(Y +d/c) =d. The equation satisfied by Y is aY” +
bY’'+cY =0.

1.
2t —3t/2
W (e, e 51/2) = 266215 _Ee—gt/z = _get/z-
5 e—2t te—2t
W™ te™) = | gezt (1 —appem2| =€
D. . .
W(e'sin t, e cos t) = et(sirc; :f_l (Jfos ) et (coes EO_S Sin t)‘ _ 2

6.

cos? 6 1+ cos 20

2 —
W(cos™ 0,1 + cos 20) = ’—2 sin 0 cos § —2 sin 20

-o.
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7. Write the equation as y” + (3/t)y’ = 1. p(t) = 3/t is continuous for all ¢ > 0.
Since tg > 0, the IVP has a unique solution for all ¢ > 0.

9. Write the equation as y” + (3/(t —4))y’ + (4/t(t — 4))y = 2/t(t — 4) . The coef-
ficients are not continuous at t = 0 and ¢ = 4. Since ¢y € (0,4), the largest interval
is0<t<4.

10. The coefficient 31In|t| is discontinuous at ¢t = 0. Since to > 0, the largest
interval of existence is 0 <t < oc0.

11. Write the equation as y” + (x/(z — 3))y’ + (In|z| /(x — 3))y = 0. The coeffi-
cients are discontinuous at = 0 and = 3. Since ¢ € (0,3), the largest interval
is0<x<3.

13. y{' =2. We see that t?(2) —2(t?) = 0. yy’ = 2¢3, with t?(y4') — 2(y2) = 0.
Let y3 = c1t? + cot™1, then yi’ = 2c; +2cot 3. It is evident that ys is also a
solution.

16. No. Substituting y = sin(#?) into the differential equation,
—4t?sin(t?) + 2 cos(t?) + 2t cos(t*)p(t) + sin(t?)q(t) = 0.
At t = 0, this equation becomes 2 = 0 (if we suppose that p(¢) and ¢(t) are contin-

uous), which is impossible.

17. W(e?, g(t)) = e?'g’(t) — 2e%'g(t) = 3e*. Dividing both sides by e?*, we find
that g must satisfy the ODE g’ — 2g = 3e2*. Hence g(t) = 3t €' + ce?’.

19. W(f,9)=fg' — f'g. Also, W(u,v) =W (2f —g,f+2g). Upon evaluation,
W(u,v)=5fg" =5f'g =5W(f,g).

20. W(f,9)=fg' —f'g=tcost—sint, and W(u,v)=—4fg’ +4f'g. Hence
W(u,v) = —4t cos t +4sin t.

21. We compute

aryr +agy2 by +boya| _

W (a1y1 + asya,biyr + b =
(a1y1 2Y2, 011 2Y2) aryy + asyh  biy) + bayh

= (a1y1 + a2y2) (bry1 + bays) — (bryr + baye)(ary] + azys) =
= ar1ba (195 — y1y2) — a2bi (Y195 — ¥y1y2) = (a1ba — azb)W (y1, y2).
This now readily shows that y3 and y4 form a fundamental set of solutions if and

only if a1b2 — a2b1 7& 0.

23. The general solution is y = c1e ™3 + coe™t. W(e 3, e7!) = 2e~*, and hence
the exponentials form a fundamental set of solutions. On the other hand, the fun-
damental solutions must also satisfy the conditions y1(1) =1, y{(1) = 0; y2(1) =0,
y4(1) = 1. For yi, the initial conditions require ¢y + ¢y = e, —3¢; —ca = 0. The
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coefficients are ¢; = —e?®/2, co = 3e¢/2. For the solution y», the initial conditions re-
quire ¢; + ¢ = 0, —3c; — co = e. The coefficients are ¢; = —e3/2, co = ¢/2. Hence

the fundamental solutions are

1 3 1 1
gy = _56—3@—1) n 56—(t—1) and gy — _56—3@—1) n 56—(15—1).

24. Yes. y{' = —4 cos 2t; y5' = —4 sin 2t. W (cos 2t,sin 2¢) = 2.

25. Clearly, y; = €' is a solution. y4 = (1 + t) , Y3’ = (2 + t)e!. Substitution into
the ODE results in (2 + t)e! — 2(1 +t)e! + tet = 0. Furthermore, W (e!, tet) = e2t.
Hence the solutions form a fundamental set of solutions.

27. Clearly, y; = z is a solution. y4 = cos z, y; = —sin z. Substitution into the
ODE results in (1 — z cot z)(—sin x) — z(cos x) + sin = 0. We can compute that
W (y1,y2) = x cos x — sin x, which is nonzero for 0 < x < 7. Hence {z,sin z} is a
fundamental set of solutions.

30. Writing the equation in standard form, we find that P(¢) = sin ¢/ cos t. Hence
the Wronskian is W (t) = ce=J(int/cost)dt — celnlcos t] — ¢ o5 ¢, in which ¢ is
some constant.

31. After writing the equation in standard form, we have P(z) = 1/x. The Wron-
skian is W (z) = ce=J(/2)dv — ce=Mlzl — ¢/ in which ¢ is some constant.

32. Writing the equation in standard form, we find that P(z) = —2z/(1 — 2?).
The Wronskian is W (z) = ce~/ ~22/(1=a%) dz _ cem == = ¢/(1 — 2?), in which
c is some constant.

33. Rewrite the equation as p(t)y” + p’(¢t)y’ + q(t)y = 0. After writing the equa-
tion in standard form, we have P(t) = p’(t)/p(t) . Hence the Wronskian is

W(t) = ce [P O/PWdt — o=t p(t) — ¢ /py) .

35. The Wronskian associgted with the solutions of the differential equation is
given by W (t) = ce™J =2/t dt — ce=2/t Since W(2) = 3, it follows that for the
hypothesized set of solutions, ¢ = 3e. Hence W (4) = 3 /e .

36. For the given differential equation, the Wronskian satisfies the first order dif-
ferential equation W'+ p(t)W = 0. Given that W is constant, it is necessary that

p(t) =0.

37. Direct calculation shows that W(fg,fh)=(fa)(fh) — (fg)(fh) = (fg)(f'h+
f0) = (f'g+ fg")(fh) = [*W(g,h).

39. Since y; and ys are solutions, they are differentiable. The hypothesis can thus
be restated as y{(tg) = y4(to) =0 at some point ¢y in the interval of definition.



72

Chapter 3. Second Order Linear Equations

o
w

This implies that W (yy ,y2)(to) = 0. But W(y1,y2)(to) = ce™ JPM  which can-
not be equal to zero, unless ¢ = 0. Hence W (y;,y2) =0, which is ruled out for a
fundamental set of solutions.

42. P=1,Q=xz, R=1. We have P" — Q'+ R=0. The equation is exact.
Note that (y’)' + (zy)’ =0. Hence y’+ xy = c¢;. This equation is linear, with

integrating factor yu = ¢*’/2, Therefore the general solution is

x
y(z) = cle*IQ/Q/ e 2 du + cpe" /2,
zo

43. P=1, Q =322, R=2x. Note that P — Q'+ R = —5x, and therefore the
differential equation is not exact.

45. P=2% Q =2, R=—1. We have P” — Q'+ R =0. The equation is exact.
Write the equation as (z%y’)’ — (zy)’ = 0. After integration, We conclude that
22y’ — xy = c. Divide both sides of the differential equation by x2. The resulting
equation is linear, with integrating factor p = 1/x. Hence (y/z) = cxz~3. The
solution is y(t) = ciz™! 4 cox.

47. P=2%, Q=x, R=2%— 12 Hence the coefficients are 2P’ — Q = 3z and
P"—Q'+R=2x2+1-12 The adjoint of the original differential equation is
given by 2?p” +3zp’ + (22 +1—-1vH)pu=0.

49. P=1,Q =0, R = —x. Hence the coefficients are given by 2P’ — Q =0 and
P"” — Q'+ R = —x. Therefore the adjoint of the original equationis u” —zu=0.

2. 273 = 273" = ¢%(cos 3 — i sin 3).
3. e™=cosm+isinm=—1.
4. 27200 = ¢2(cos(1/2) — i sin(1/2)) = —€2i.

6. w1+ = e(F1H20)In T — pmIn w2 I Ti — (o5 (2 In ) 44 sin (2 In 7)) /7.

8. The characteristic equation 1s r2—2r+6= 0, with roots r =1 + iv/5 . Hence
the general solution is 4 = cie cos V5t 4+ coetsin VBt

9. The characteristic equation is 72 + 2r — 8 = 0, with roots » = —4,2. The roots
are real and different, hence the general solution is y = cie™** + ¢, 2.

10. The characteristic equation is 7% + 2r +2 = 0, with roots 7 = —1 £ 4. Hence
the general solution is y = cie "t cos t + co e~ !sin ¢.
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12. The characteristic equation is 472 +9 = 0, with roots 7 = 4(3/2)4. Hence
the general solution is y = ¢1 cos(3t/2) + ¢g sin(3t/2).

13. The characteristic equation is 72 + 2r + 1.25 = 0, with roots r = —1 4 i/2.
Hence the general solution is y = cief cos(t/2) + co e sin(t/2).

15. The characteristic equation is 72 + 7 + 1.25 = 0, with roots r = —(1/2) £ 4.
Hence the general solution is y = cie= /2 cos t + coe /?sin t.

16. The characteristic equation is % + 4r + 6.25 = 0, with roots r = —2 + (3/2) 1.
Hence the general solution is y = c¢e =2 cos(3t/2) + co e 2! sin(3t/2).

17. The characteristic equation is 72 +4 = 0, with roots r = +2i. Hence the
general solution is y = ¢j cos 2t + ¢ sin 2t. Now y’ = —2¢; sin 2t + 2¢5 cos 2t .
Based on the first condition, y(0) = 0, we require that ¢; = 0. In order to satisfy
the condition y’(0) =1, we find that 2co =1. The constants are ¢; =0 and
¢a = 1/2. Hence the specific solution is y(¢) = sin 2¢ /2. The solution is periodic.

0.6

0.4 +
»
. A A
o T T T T 1
2 4 6 10
b 7
-0.2 1
—0.44

~0.6 -

19. The characteristic equation is r? —2r +5 = 0, with roots r = 1 + 2i. Hence
the general solution is y = cie! cos 2t + cp €' sin 2¢. Based on the initial condition
y(7/2) =0, we require that ¢; =0. It follows that y = coe’sin 2¢, and so the
first derivative is y’ = ¢y el sin 2t + 2¢9 €f cos 2¢. In order to satisfy the condition
y'(n/2) = 2, we find that —2e™/2cy =2. Hence we have ¢y = —e~™/2. There-
fore the specific solution is y(t) = —e*~™/2 sin 2¢. The solution oscillates with an
exponentially growing amplitude.

60 7
50+

40 o

20 1
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20. The characteristic equation is 72 4+ 1 = 0, with roots r = 4. Hence the gen-
eral solution is y = ¢j cos t + ¢ sin t. Its derivative is y’ = —cysin t + ¢o cos t.
Based on the first condition, y(7/3) = 2, we require that ¢; ++v3cy =4. In or-
der to satisfy the condition y'(7/3) = —4, we find that —v/3¢; + c3 = —8. Solving
these for the constants, ¢; = 1 + 2v/3 and Cco = V3 — 2. Hence the specific solution
is a steady oscillation, given by y(t) = (1 4+ 2v/3)cos t + (v/3 — 2)sin t.

21. From Problem 15, the general solution is y = cie~ /2 cos t + co e */?sin t. In-

voking the first initial condition, y(0) = 3, which implies that ¢; = 3. Substituting,
it follows that y = 3e*/2cos t + ¢ e */?sin ¢, and so the first derivative is

/ 2

3
y' = —Se?cos t — 3¢ ?sint +coe ?cos t — %e*t/ sin t.
Invoking the initial condition, y’(0) = 1, we find that —3/2 4+ c; =1, and so ¢z =
5/2. Hence the specific solution is y(t) = 3e/2cos t + (5/2) e */%sin ¢. Tt oscil-
lates with an exponentially decreasing amplitude.

24.(a) The characteristic equation is 572 + 2r 4+ 7 = 0, with roots r = —(1 & iv/34) /5.
The solution is u = cie~*/5 cos v/34t/5 + coe~t/®sin /34t /5. Invoking the given
initial conditions, we obtain the equations for the coefficients: ¢; = 2, —2 + /34 ¢y =
5. That is, ¢; = 2, co = 7/v/34 . Hence the specific solution is

V34 T s V34
—€ Sl ——

u(t) = 275 cos —t+ t.
(t) z B z
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(b) Based on the graph of w(t), T is in the interval 14 <t < 16. A numerical
solution on that interval yields T =~ 14.5115 .

26.(a) The characteristic equation is 2 + 2ar + (a® + 1) = 0, with roots r = —a +
i. Hence the general solution is y(t) = cie™* cos t + cae " sin t. Based on the
initial conditions, we find that ¢; =1 and ¢y = a. Therefore the specific solution
is given by y(t) = e “cos t + ae sin t = V1 + a? e cos (t — ¢), in which ¢ =
arctan(a).

(b) For estimation, note that |y(t)| < v1+ a? e . Now consider the inequality
V1+a? e < 1/10. The inequality holds for ¢ > (1/a)In(10v/1 + a2 ). Therefore
T < (1/a)In(10v1+ a?). Setting a = 1, the numerical value is T ~ 1.8763.

(c) Similarly, Ty /4 ~ 7.4284, Ty ;5 ~ 4.3003, Ty ~ 1.5116.

(d)

T T
0.5 1 1.5 2 2.5 3
a

Note that the estimates T, approach the graph of (1/a)In(10v1+ a?) as a gets
large.

27. Direct calculation gives the result. On the other hand, it was shown in
Problem 3.2.37 that W (fg,fh) = f>W(g,h). Hence W (e  cos ut, e sin ut) =
e? MW (cos pt ,sin put) = e [cos pt(sin pt)’ — (cos ut) sin ut] = pe?M.

28.(a) Clearly, y; and yo are solutions. Also, W (cos t,sin t) = cos?t +sin®t = 1.
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(b) y' =ieit, y"” =i2el = —¢'. Evidently, y is a solution and so y = ¢1y1 + ca¥a.
(c) Setting t =0, 1 =¢ycos 0+ ¢ sin 0, and ¢; = 1.

(d) Differentiating, i e = ¢y cos t. Setting t =0, i = cy cos 0 and hence ¢y = i.
Therefore e = cos ¢+ sin ¢.

29. Euler’s formula is e = cos t +i sin t. It follows that e™* = cost —i sin t.
Adding these equation, e + e~% = 2 cos t. Subtracting the two equations results
in e —e ™ =2isint.

30. Let ry = A1 + i1, and ro = Ao + iz . Then

e(rtr2)t — g(atAa)ttilpatiua)t — c(ArtA2)t [cos(p1 + p2)t + @ sin(pg + p2)t] =
= P22 [(cos gt + isin pyt)(cos pat + isin pgt)] =

rit _rot

Alt( e

= eMb(cos pit + isin pit) - 2t (cos pit + isin pit) = e

Hence e(rit+m2)t — grit grat,

32. Clearly, u' = \e cos ut — pe sin ut = eM (A cos ut — psin ut) and then v’ =
e M (X cos put — psin pt) + eM(—=Ausin ut — p? cos ut). Plugging these into the dif-
ferential equation, dividing by e* # 0 and arranging the sine and cosine terms we
obtain that the identity to prove is

(a(A? — p?) 4+ bA + ¢) cos put + (—2Apa — bp) sin put = 0.

We know that \ # ip solves the characteristic equation ar? + br + ¢ = 0, so a(\ —
ip)? + b\ —ip) + ¢ = a(A\? — p?) + bA + ¢+ i(—2Apa — pb) = 0. If this complex
number is zero, then both the real and imaginary parts of it are zero, but those
are the coefficients of cosput and sin pt in the above identity, which proves that
au' 4+ bu’ 4+ cu = 0. The solution for v is analogous.

35. The equation transforms into y” + y = 0. The characteristic roots are r = =+i.
The solution is y = ¢1 cos(z) + ¢ sin(x) = ¢ cos(Int) + ¢o sin(lnt).

37. The equation transforms into y” + 2y’ + 1.25y = 0. The characteristic roots
are r = —1 +4/2. The solution is
cos(1 Int) sin(3 Int)

y =cie Fcos(x/2) + cae” “sin(x/2) = 1 " + ¢ "

38. The equation transforms into y” — 5y’ — 6y = 0. The characteristic roots are
r = —1, 6. The solution is y = c1e™® + 257 = c1e™ "t 4 c0e®mt = ¢ /t + cotS.

39. The equation transforms into y” — 5y’ + 6y = 0. The characteristic roots are
r =2, 3. The solution is y = c1€%® + c2e3® = 121"t 4 231t = 112 + cot3.

41. The equation transforms into y” + 2y’ — 3y = 0. The characteristic roots are
r =1, —3. The solution is y = c1e® + c2e™3% = 1™t + coe ™31 = ¢t + o /3.
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42. The equation transforms into y” + 6y’ + 10y = 0. The characteristic roots are
r = —3 £ 4. The solution is

3 3

1 1
y =cre P cos(z) + cae” T sin(x) = C1yg cos(Int) + c233 sin(Int).

43.(a) By the chain rule, y'(z) = (dy/dz)x’. In general, dz/dt = (dz/dx)(dx/dt).
Setting z = (dy/dt), we have

fy_dede A [dyde)do_[dyde)dr | dy d ] d

dt?  dedt  dx |dedt| dt |da?dt| dt | dwdr |dt| dt
However,
o i) de_[da)dt do_ iy
de | dt | dt dt? | de dt ~ di?
Hence

dy _ dy [da)® dy dx
dt2  da? | dt dz de2’

(b) Substituting the results in part (a) into the general differential equation, y” +
p(t)y’ + q(t)y = 0, we find that

d?y [dx 2 dy d*x dy dx
a2 th] t i az TP g Ty =0
Collecting the terms,
dz? d?y d’z dx | dy
[dt] Pl |:dt2 p(t)dt] %JFQ(t)ZJ*O-

(c) Assuming (dz/dt)? = kq(t) , and q(t) > 0, we find that dz/dt = \/k q(t) , which
can be integrated. That is, x = u(t) = [ \/kq(t) dt = [ \/q(t) dt, since k = 1.

(d) Let k= 1. It follows that d*z/dt* + p(t)dz/dt = du/dt + p(t)u(t) = ¢'/2\/q +
p+/q - Hence

d*x dz dz]? o q'(t) 4 2p(t)q(t)
][] =

As long as dx/dt # 0, the differential equation can be expressed as

d?y | |d'(t) +2p(t)a(t) | dy Y =0
da 2[q)* ] de |
For the case q(t) < 0, write q(t) = — [—q(t)], and set (dz/dt)? = —q(t).

45. p(t) = 3t and q(t) = t*. We have x = [tdt = ¢?/2. Furthermore,

q'(t) +2p(t)q(t) _ 1+3¢°
2[q(t))*? 2

The ratio is not constant, and therefore the equation cannot be transformed.
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46. p(t) =t — 1/t and q(t) = t*. We have = = [tdt = t?/2. Furthermore,

a'(t) + 2(t)a(t) _
2[q()]*"?

The ratio is constant, and therefore the equation can be transformed. From Problem
43, the transformed equation is

Py | dy
— 4+ = =0.
dx? + dx ty

Based on the methods in this section, the characteristic equation is r2 +r+1 =0,
with roots r = (—1 = 1/3)/2. The general solution is y(x) = c;e™%/% cos V3 2/2 +
co e ®/?sin \/3x/2. Since x = t2/2, the solution in the original variable ¢ is

y(t) = et/4 [cl cos (V3 t2/4) + ¢y sin (ﬁt2/4)] .

2. The characteristic equation is 9r% + 67 + 1 = 0, with the double root r = —1/3.
The general solution is y(t) = cie /3 + eyt e=/3.

3. The characteristic equation is 47% — 47 — 3 = 0, with roots r = —1/2, 3/2. The
general solution is y(t) = cie™t/? + cpe3/2.

4. The characteristic equation is 472 + 12r + 9 = 0, with double root r = —3/2.
The general solution is y(t) = (¢1 + ¢2 t)e—:ﬁt/z'

6. The characteristic equation is 2 — 6r +9 = 0, with the double root r = 3. The
general solution is y(t) = c1e3 + cot 3t

7. The characteristic equation is 472 + 17r +4 = 0, with roots r = —1/4, —4.
The general solution is y(t) = cie~"/* + cye ™%

8. The characteristic equation is 1672 + 24r + 9 = 0, with double root r = —3/4.
The general solution is y(t) = ce™3/4 + cot e384,

10. The characteristic equation is 2r2 + 2r +1 = 0. We obtain the complex roots
r = (=1 % i)/2. The general solution is y(t) = cre~t/? cos(t/2) 4 coe /% sin(t/2).

11. The characteristic equation is 972 — 127 + 4 = 0, with the double root r = 2/3.
The general solution is y(t) = ¢;e%/? + cot €?/3. Invoking the first initial condi-
tion, it follows that ¢; = 2. Now y'(t) = (4/3 + c2)e?/3 + 2cot €24/3 /3. Invoking
the second initial condition, 4/3 + ¢y = —1, or c2 = —7/3. Hence we obtain the
solution y(t) = 2€2*/3 — (7/3)te®/3. Since the second term dominates for large ¢,
y(t) = —oo.
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13. The characteristic equation is 972 + 6r + 82 =0. We obtain the complex
roots 7 = —1/3 =+ 3i. The general solution is y(t) = c;e™/? cos 3t + coe™ /3 sin 3t .
Based on the first initial condition, ¢; = —1. Invoking the second initial condi-
tion, we conclude that 1/3 +3co = 2, or ¢z = 5/9. Hence y(t) = —e~'/3 cos 3t +
(5/9)et/3 sin 3t. The solution oscillates with an exponentially decreasing ampli-
tude.

-0.5

15.(a) The characteristic equation is 472 4+ 12r + 9 = 0, with double root r = —3/2.
The general solution is y(t) = ¢1 e 8t/2 4 ¢yt e3/2. Invoking the first initial condi-
tion, it follows that ¢; = 1. Now y'(t) = (—3/2 4+ c2)e 32 — (3/2)cot e31/2. The
second initial condition requires that —3/2+ ¢y = —4, or ¢y = —5/2. Hence the
specific solution is y(t) = e 3t/2 — (5/2)t e=34/2,

19

-0.5 4



80

Chapter 3. Second Order Linear Equations

(b) The solution crosses the x-axis at t = 2/5.
(c) The solution has a minimum at the point (16/15, —5e~5/%/3).

(d) Given that y'(0) =b, we have —3/24+cy =b, or c¢2 =b+3/2. Hence the
solution is y(t) = e=3"/2 4+ (b + 3/2)t e~3*/2. Since the second term dominates, the
long-term solution depends on the sign of the coefficient b + 3/2. The critical value
is b= -3/2.

16. The characteristic roots are r1 = ro = 1/2. Hence the general solution is given
by y(t) = c1et/? 4 cot €t/2. Invoking the initial conditions, we require that ¢; = 2,
and that 1+ cy = b. The specific solution is y(t) = 2e*/2 + (b — 1)t e*/2. Since the
second term dominates, the long-term solution depends on the sign of the coefficient
b — 1. The critical value is b = 1.

18.(a) The characteristic roots are r; = ro = —2/3. Therefore the general solution
is given by y(t) = cre 23 4 ot e=2t/3 . Invoking the initial conditions, we require
that ¢; = a, and that —2a/3 4+ co = —1. After solving for the coefficients, the
specific solution is y(t) = ae=2/3 + (2a/3 — 1)t e~ /3.

(b) Since the second term dominates, the long-term solution depends on the sign
of the coefficient 2a/3 — 1. The critical value is a = 3/2.

20.(a) The characteristic equation is 72 + 2ar +a? = (r +a)? = 0.
(b) With p(t) = 2a, Abel’s Formula becomes W (y; ,ya) = ce™J 204t = ¢ =20,

(c) y1(t) = e~ is a solution. From part (b), with ¢ =1, e™* yJ(t) + ae~ "y (t) =

e~2% which can be written as (e* y5(t))’ = 1, resulting in e yy(t) = t.

22.(a) If the characteristic equation ar? + br + ¢ has equal roots ry, then ar? +
bri +c=a(r —r1)>=0. Then clearly Lle"'] = (ar? +br + c)e"™ = a(r — ry)?e".
This gives immediately that L[e™!] = 0.

(b) Differentiating the identity in part (a) with respect to r we get (2ar + b)e™ +
(ar? 4+ br + c)te™ = 2a(r — r1)e" + a(r — r1)*te™. Again, this gives L[te™!] = 0.
23. Set yo(t) = t?v(t). Substitution into the differential equation results in

t2 (20" + 4tv’ + 20) — 4t(t%v’ + 2tv) + 6t%0 = 0.
After collecting terms, we end up with t*v” = 0. Hence v(t) = ¢; + cot, and thus
yo(t) = c1t? + cot. Setting ¢; = 0 and ¢z = 1, we obtain yo(t) = t3.
24. Set y2(t) =twv(t). Substitution into the differential equation results in

t2(tv” +2v") + 2t(tv" +v) —2tv = 0.

After collecting terms, we end up with t3v” 4+ 4t>v’ = 0. This equation is linear
in the variable w = v’. It follows that v/(t) = c¢t™*, and v(t) = ¢1¢73 + ¢ . Thus
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Yo(t) = c1t72 + cot . Setting ¢; = 1 and cp = 0, we obtain yo(t) = t=2.

26. Set yo(t) = tv(t). Substitution into the differential equation resultsinv” — v’ =
0. This equation is linear in the variable w = v’. It follows that v’(t) = cie’, and
v(t) = ciet + ca. Thus ya(t) = cite! + cat. Setting ¢; = 1 and co = 0, we obtain
ya(t) = tet.

28. Set yo(x) = e*v(x). Substitution into the differential equation results in v 4
(x —2)/(x — 1) v’ = 0. This equation is linear in the variable w = v’. An integrat-
ing factor is y = e/ (#=2/(@=1dr — o /(3 _ 1), Rewrite the equation as [e*v’/(z —
1))’ = 0, from which it follows that v’(z) = ¢(z — 1)e*. Hence v(x) = cize " + ¢o
and yo(x) = 1z + cae”. Setting ¢; =1 and ¢3 = 0, we obtain ys(x) = x.

29. Set yo(x) = y1(x) v(z), in which y;(z) = 2'/%e>V®. Tt can be verified that y; is
a solution of the differential equation, that is, z2y{’ — (z — 0.1875)y; = 0. Substi-
tution of the given form of s results in the differential equation 22%/%v” + (427/* +
2°/*)v’ = 0. This equation is linear in the variable w = v’. An integrating factor
is p= ef 227741/ 2)]de _ Vr e?V®. Rewrite the equation as [z e*V® 0]’ =0,
from which it follows that v’(z) = ce~*V*/\/z. Integrating, v(x) = cie *V™ + ¢,
and as a result, ya(z) = 1t/ re2VE 4yl /4e2VE | Setting ¢; =1 and ¢ =0, we
obtain yy(x) = 2'/4e2V7,

31. Direct substitution verifies that y;(t) = e9%°/2 is a solution of the differential
equation. Now set ya(z) = y1(z) v(x). Substitution of y, into the equation results
in v” — dzv’ = 0. This equation is linear in the variable w = v’. An integrating
factor is = e~ 9%"/2. Rewrite the equation as [ e=9%"/2p/) =0, from which it
follows that v/(z) = ¢1 € /2. Integrating, we obtain

v(z) = cl/ eMz/Qdu—&—v(O).
0

Hence

x
ya(x) = 01675””2/2/ 392y + 62675902/2.
0

Setting co = 0, we obtain a second independent solution.

33. After writing the differential equation in standard form, we have p(t) = 3/t.
Based on Abel’s identity, W (y1,y2) = cre” J3/t4 = ¢;¢t=3. As shown in Problem
32, two solutions of a second order linear equation satisfy (y2/vy1)" = W (y1,y2)/y>.
In the given problem, y;(t) =t~!. Hence (ty2) = cit~!. Integrating both sides
of the equation, ya(t) =1t !In ¢t + cot~!. Setting ¢; =1 and ¢z = 0 we obtain
ya(t) =t 'Int.

35.  After writing the differential equation in standard form, we have p(z) =
—x/(x —1). Based on Abel’s identity, W(yy,ys) = cel #/@=Ddr — cor(y 1),
Two solutions of a second order linear equation satisfy (y2/y1) = W (y1,%2)/y3. In
the given problem, y;(z) = e”. Hence (e ®yq) =ce ®(xz —1). Integrating both
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sides of the equation, ya(z) = c1x + coe®. Setting ¢; =1 and ¢ =0, we obtain
ya(z) = .

36. Write the differential equation in standard form to find p(z) = 1/x. Based on
Abel’s identity, W(y1,y2) = ce™ JVzde — 2= Two solutions of a second order
linear differential equation satisfy (y2/y1)’ = W (y1,y2)/y?. In the given problem,
y1(x) = 2~/?sin 2. Hence

\/ T 1
. y2)/ =C—/—
S T Sin

(

Integrating both sides of the equation, yq(z) = c12~
ting ¢; = 1 and ¢ = 0, we obtain ys(z) = 27 '/%cos z.

T

1/2 1/2

cos T + cox”+/“sin x. Set-

38.(a) The characteristic equation is ar? +c¢=0. If a,c > 0, then the roots are
r = txiy/c/a . The general solution is

[c . e
y(t) =crcos |/ —t+cosing/— ¢,
a a

(b) The characteristic equation is ar? 4+ br = 0. The roots are r = 0, —b/a, and
hence the general solution is y(t) = ¢; 4+ cpe ="/, Clearly, y(t) — ¢;. With the
given initial conditions, ¢; = yo + (a/b)yj.

which is bounded.

39. Note that 2cos ¢ sin ¢ = sin 2¢. Then 1 — kcos ¢t sin t =1 — (k/2) sin 2t. Now
if 0 <k <2, then (k/2)sin 2t < |sin 2¢| and —(k/2)sin 2t > — |sin 2¢|. Hence

k
l—kcostsint:1—551n2t>1—\sin2t\20.

40. The equation transforms into 3" — 4y’ + 4y = 0. We obtain a double root r = 2.
The solution is y = c1e?* + coze?® = ce? Int 4 colnte?nt = ¢¢2 + cot? Int.

42. The equation transforms into y” — 7y’/2 + 5y/2 = 0. The characteristic roots
are r =1, 5/2, so the solution is y = c;e® + c2e>%/? = c1e™? 4+ e 1/2 = ¢1t +
62t5/2.

43. The equation transforms into y” + 2y’ + y = 0. We get a double root r = —1.
The solution is y = c1e™® + core ™ = cre” Mt + colnte 't =it 4+ cot ! nt.

44. The equation transforms into y” — 3y’ +9y/4 =0. We obtain the double
root r = 3/2. The solution is y = ¢;€3%/2 4 coue®®/2 = 132 4 ¢y Inted /2 =
1t3/? + eot3/? Int.
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2. The characteristic equation for the homogeneous problem is r2 4+ 2r +5 =0,
with complex roots r = —1 4 2i. Hence y.(t) = cie"tcos 2t + coetsin 2t. Since
the function g(¢) = 3 sin 2¢ is not proportional to the solutions of the homogeneous
equation, set Y = A cos 2t + Bsin 2t. Substitution into the given differential equa-
tion, and comparing the coefficients, results in the system of equations B —4A = 3
and A+ 4B = 0. Hence Y = —(12/17) cos 2t + (3/17) sin 2¢t. The general solution
isy(t) =y.(t)+Y.

3. The characteristic equation for the homogeneous problem is 72 —r — 2 = 0, with
roots r = —1, 2. Hence y.(t) = cie™t + c2e?. Set Y = At? + Bt + C. Substitution
into the given differential equation, and comparing the coefficients, results in the
system of equations —2A4 =4, —2A — 2B = -2 and 2A— B —2C =0. Hence Y =
—2t% + 3t — 7/2. The general solution is y(t) = y.(t) + Y.

4. The characteristic equation for the homogeneous problem is 2 + r — 6 = 0, with
roots r = —3, 2. Hence y.(t) = c1e 3" + c2e?’. Set Y = Ae3t + Be™2!. Substitu-
tion into the given differential equation, and comparing the coefficients, results in
the system of equations 64 = 12 and —4B = 12. Hence Y = 2¢3! — 3e=2¢. The
general solution is y(t) = y.(t) + Y.

5. The characteristic equation for the homogeneous problem is 72 —2r —3 =0,
with roots r = —1, 3. Hence y.(t) = cie™! + c2e® . Note that the assignment
Y = Ate™? is not sufficient to match the coefficients. Try Y = Ate~! + Bt2e?.
Substitution into the differential equation, and comparing the coefficients, results
in the system of equations —4A+2B =0 and —8B = —3. This implies that
Y = (3/16)tet + (3/8)t%e~t. The general solution is y(t) = y.(t) + Y.

7. The characteristic equation for the homogeneous problem is 2 +9 = 0, with
complex roots r = +3i. Hence y.(t) = ¢q cos 3t + casin 3t. To simplify the anal-
ysis, set g1(t) =6 and go(t) = t?e3. By inspection, we have Y; =2/3. Based
on the form of gy, set Y5 = Ae3! + Bte? + Ct?e3'. Substitution into the differ-
ential equation, and comparing the coefficients, results in the system of equations
184+ 6B +2C =0,18B+12C =0, and 18C = 1. Hence

1 1

1
4 3t 3t L2 3t
= 1626 27te + 18t e’.

The general solution is y(t) = y.(t) + Y1 + Ya.

Y,

9. The characteristic equation for the homogeneous problem is 2r2 + 3r + 1 = 0,
with roots 7 = —1, —1/2. Hence y.(t) = cie~t + coe~t/2. To simplify the analysis,
set g1(t) = t? and go(t) = 3sin t. Based on the form of g;, set Y1 = A + Bt + Ct2.
Substitution into the differential equation, and comparing the coefficients, results
in the system of equations A+ 3B +4C =0,B+6C =0, and C = 1. Hence we
obtain Y; = 14 — 6t +t2. On the other hand, set Yo = D cos t + F sin t. After
substitution into the ODE, we find that D = —9/10 and E = —3/10. The general
solution is y(t) = y.(t) + Y1 + Y.
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11. The characteristic equation for the homogeneous problem is 2 4+ w2 = 0, with
complex roots r = twgi. Hence y.(t) = ¢y cos wot+ cosin wot. Since w # wy,
set Y = A cos wt + B sin wt. Substitution into the ODE and comparing the co-
efficients results in the system of equations (w3 —w?)A =1 and (w3 —w?)B=0.
Hence

—— Ccos wt.
2 _ 2

The general solution is y(t) = y.(t) + Y.

12. From Problem 11, y.(t) is known. Since cos wqt is a solution of the homogeneous
problem, set Y = At cos wot + Bt sin wpt. Substitution into the given ODE and
comparing the coefficients results in A =0 and B = 1/2wy. Hence the general
solution is y(t) = ¢1 cos wot + casin wot + tsin wot/(2wp ).

14. The characteristic equation for the homogeneous problem is r> —r —2=0,
with roots 7 = —1, 2. Hence y.(t) = ciet + cp €. Based on the form of the right
hand side, that is, cosh(2t) = (%' + e72!)/2, set Y = At €*' + Be™2!. Substitution
into the given ODE and comparing the coefficients results in A = 1/6 and B = 1/8.
Hence the general solution is y(t) = cie ™" + ca e®® +te?' /6 + e721/8.

16. The characteristic equation for the homogeneous problem is r2 4+ 4 = 0, with
roots r = 4 2i. Hence y.(t) = c; cos 2t + cosin 2t. Set Y; = A + Bt + Ct2. Com-
paring the coefficients of the respective terms, we find that A= —-1/8, B=0,
C =1/4. Now set Y2 = De!, and obtain D = 3/5. Hence the general solution is
y(t) = c1 cos 2t + cosin 2t — 1/8 +t2/4 + 3 €' /5. Invoking the initial conditions, we
require that 19/40 + ¢; = 0 and 3/5 + 2¢; = 2. Hence ¢; = —19/40 and ¢ = 7/10.

17. The characteristic equation for the homogeneous problem is 72 —2r +1 =10,
with a double root r = 1. Hence y.(t) = c1e’ + cate’. Consider ¢ (t) = te’. Note
that g; is a solution of the homogeneous problem. Set Y; = At?e! + Bt3e! (the first
term is not sufficient for a match). Upon substitution, we obtain Y; = t3¢!/6. By
inspection, Ya = 4. Hence the general solution is y(t) = cie! + cot e’ + t3e! /6 + 4.
Invoking the initial conditions, we require that ¢; +4 =1 and ¢; +c¢; = 1. Hence
cp=—-3and ¢y =4.

19. The characteristic equation for the homogeneous problem is 2 4+ 4 = 0, with
roots r = £2i. Hence y.(t) = ¢1cos 2t + cosin 2¢. Since the function sin 2t is
a solution of the homogeneous problem, set Y = At cos 2t + Bt sin 2¢t. Upon
substitution, we obtain Y = —3t cos 2t /4. Hence the general solution is y(t) =
1 o8 2t + ¢ sin 2t — 3t cos 2t /4. Invoking the initial conditions, we require that
¢y =2 and 2¢y — (3/4) = —1. Hence ¢; = 2 and ¢y = —1/8.

20. The characteristic equation for the homogeneous problem is 72 +2r 4+ 5 =
0, with complex roots r = —14 2i. Hence y.(t) = cie™ " cos 2t + cae™tsin 2t.
Based on the form of g(t), set Y = Ate ' cos 2t + Bte 'sin 2t. After compar-
ing coefficients, we obtain Y =te tsin 2¢t. Hence the general solution is y(t) =
cre~tcos 2t 4 cpe~tsin 2t + te~tsin 2¢. Invoking the initial conditions, we require
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that ¢y =1 and —c; +2¢2 =0. Hence ¢; =1 and ¢ = 1/2.

22.(a) The characteristic equation for the homogeneous problem is 2 + 1 = 0, with
complex roots r =+ i. Hence y.(t) =c1cost+ cosint. Let g1(t) =t sint and
g2(t) = t. By inspection, it is easy to see that Y3(t) =¢. Based on the form of
g1(t), set Y1(t) = At cos t + Bt sin t + Ct? cos t + Dt?sin t.

(b) Substitution into the equation and comparing the coefficients results in A =0,
B=1/4,C=-1/4,and D =0. Hence Y (t) =t+tsint /4 —t?cos t /4.

23.(a) The characteristic equation for the homogeneous problem is r? — 5r + 6 = 0,
with roots r = 2, 3. Hence y.(t) = c1e?' + coe3. Consider g1 (t) = (3t +4)sin ¢,
and go(t) = et cos 2t. Based on the form of these functions on the right hand side
of the ODE, set Ya(t) = e'(A; cos 2t + Agsin 2t) and Y1 () = (B + Bat)e?!sin t +
(C1 + Cat)e? cos t.

(b) Substitution into the equation and comparing the coefficients results in

1 3 1
Y(t) = —%(et cos 2t + 3¢’ sin 2t) + itth(cos t—sint) + e2t(§ cos t — 5sin t).

25.(a) We obtain the double characteristic root 7 = 2. Hence y.(t) = c1e* + cate®:.
Consider the functions g1(t) = 2t2, go(t) = 4te?', and g3(t) =t sin 2t. The cor-
responding forms of the respective parts of the particular solution are Y;(t) =
Ao + Alt + A2t2, Yg(t) = 62t(32t2 + Bgt?)), and Yg(t) = t(01 cos 2t + CQ sin 2t) +
(D1 cos 2t + Do sin 2t).

(b) Substitution into the equation and comparing the coefficients results in

1 2 1 1
Y(t) = 1(3 4t +2t%) + gt?’e225 + gt cos 2t + 1—6(005 2t — sin 2t).

26.(a) The homogeneous solution is y.(t) = ¢y cos 2t + o sin 2¢. Since cos 2t and
sin 2t are both solutions of the homogeneous equation, set

Y (t) = t(Ag + At + Agt?®) cos 2t + t(By + Byt + Bot?)sin 2t.

(b) Substitution into the equation and comparing the coefficients results in

1 1. 1
Y(t) = (S%t — Etd ) cos 2t + E(2875 + 13t?) sin 2t.

27.(a) The homogeneous solution is y.(t) = cie™" + cate™!. None of the functions
on the right hand side are solutions of the homogenous equation. In order to include
all possible combinations of the derivatives, consider
Y (t) = et (Ag + Art + Ast?) cos 2t + ¢! (By + Byt + Byt?)sin 2t +
+ e ¥(Cycos t + Cysin t) + De.
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(b) Substitution into the differential equation and comparing the coefficients results
in
Y (t) = e'(Ag + Art + Ast?) cos 2t + €' (By + Byt + Byt?)sin 2t
3 3
+ e*t(—ﬁ cos t + 3 sin t) + 2¢'/3,

in which Ay = —4105/35152, A = 73/676, Ay = —5/52, By = —1233/35152, By =
10/169, By = 1/52.

28.(a) The homogeneous solution is y.(t) = cie” cos 2t + coe " sin 2t. None of the
terms on the right hand side are solutions of the homogenous equation. In order to
include the appropriate combinations of derivatives, consider
Y (t) = e ' (At 4 Agt?) cos 2t + e~ ! (Bt + Bot?)sin 2t +
+ e 2(Cy + C1t) cos 2t + e~ (Dy + Dyt) sin 2t.

(b) Substitution into the differential equation and comparing the coefficients results
in
Y(t) = ite_t cos 2t + §t2€_t sin 2t
16 8
Lo Lo .
55¢ (74 10t) cos 2t + T (14 5t)sin 2¢.

30. The homogeneous solution is y.(t) = ¢1 cos A\t 4 ¢o sin At. Since the differential
operator does not contain a first derivative (and A # mm), we can set

N
Y(t) = Z Cyn sin mmt .
m=1
Substitution into the differential equation yields

N N N
— Z m2w2C,, sin mnt + \2 Z C,, sin mmt = Z Qp, Sin mat .

m=1 m=1 m=1

Equating coefficients of the individual terms, we obtain

m —1.2...N.

O = g M

32. The homogeneous solution is y.(t) = cie™ ! cos 2t + coe™'sin 2¢. The input
function is independent of the homogeneous solutions, on any interval. Since the
right hand side is piecewise constant, it follows by inspection that

15, o<t<n/2
Y= { 0, t>m/2 '
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For 0 <t < /2, the general solution is y(t) = cie™tcos 2t + coetsin 2t +1/5.
Invoking the initial conditions y(0) = y’(0) =0, we require that ¢; = —1/5, and
that ¢; = —1/10. Hence
y(t) = 1 i(?e*t cos 2t + e "sin 2t)
5 10

on the interval 0 < ¢ < /2. We now have the values y(7/2) = (1 +e~™/2)/5, and
y'(7/2) = 0. For t > 7/2, the general solution is y(t) = d1e~* cos 2t + dge™ ' sin 2t.
It follows that y(w/2) = —e~™/2d; and y'(7/2) = e~™/2d; — 2e~"/2dy . Since the
solution is continuously differentiable, we require that —e~"/2d; = (1 +e~7"/2)/5
and e~"/2d; — 2e=™/2dy = 0. Solving for the coefficients, d; = 2dy = —(e™/? +1)/5.

0.25

0.8 -

0.6 -

0.4 +

0.2 -

. . ~0.05 -

34. Since a,b,c > 0, the roots of the characteristic equation have negative real
parts. That is, r = a == B¢, where a < 0. Hence the homogeneous solution is

Ye(t) = c1e* cos Bt + coe® sin St .
If g(t) = d, then the general solution is
y(t) = d/c+ cre™ cos Bt + cae* sin Bt.

Since a < 0, y(t) — d/c ast — oo. If ¢ =0, then the characteristic roots are
r=0andr = —b/a. The ODE becomes ay” + by’ = d. Integrating both sides, we
find that ay’ + by = dt + ¢;. The general solution can be expressed as

y(t) = dt/b+ 1 + e,

In this case, the solution grows without bound. If b = 0, also, then the differential
equation can be written as y” = d/a, which has general solution y(t) = dt?/2a +
c1 + c¢o . Hence the assertion is true only if the coefficients are positive.

35.(a) Since D is a linear operator, D%y + bDy + cy = Dy — (r1 + r2) Dy + riray =
D2y —roDy — 11Dy + rimoy = D(Dy — roy) — r1(Dy — roy) = (D — 1) (D — 1r2)y.

(b) Let w= (D —r3)y. Then the ODE (i) can be written as (D —ri)u = g(t),
that is, u’ — ryu = g(t). The latter is a linear first order equation in w. Its general
solution is

t
u(t) = e”t/ e " Tg(T)dr 4 cre™t .

to
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W
o

From above, we have y’ —ryy = u(t). This equation is also a first order ODE.
Hence the general solution of the original second order equation is

t
y(t) = e”t/ e "2Tu(T)dT + coe™t .

to

Note that the solution y(t) contains two arbitrary constants.

37. Note that (2D? +3D + 1)y = (2D + 1)(D + 1)y. Let u = (D + 1)y, and solve
the ODE 2u’+ u = t? 4+ 3sin t. This equation is a linear first order ODE, with
solution

¢
3
u(t) = e_t/2/ e7/? {72/2—&— isin 7':| dr +ce V% =

to
6 3
:t2—4t+8—gcost+gsint+ce*t/2.

Now consider the ODE y’ 4+ y = u(t). The general solution of this first order ODE
is ,
y(t) = e_t/ eTu(r)dr + cae™",

to

in which wu(¢) is given above. Substituting for w(¢) and performing the integration,

9 3
y(t) =t* — 6t + 14 — 1 8 t— 10 sin t 4 cre”t? 4+ cpet.

38. We have (D? +2D + 1)y = (D + 1)(D + 1)y. Let w = (D + 1)y, and consider
the ODE u’ + u = 2e~*. The general solution is u(t) = 2te~* 4+ ce~*. We therefore
have the first order equation u’ +u = 2te~* + cie~!. The general solution of the
latter differential equation is

t
y(t) = e_t/ [27 + c1]dr + coe™t = eTHE? 4 1t + ca).
to

39. We have (D? 4+ 2D)y = D(D + 2)y. Let u = (D + 2)y, and consider the equa-
tion u’ =3+ 4sin 2¢. Direct integration results in u(t) = 3¢ — 2cos 2t + ¢. The
problem is reduced to solving the ODE y’ + 2y = 3t — 2cos 2t + c¢. The general
solution of this first order differential equation is

t
y(t) = e_Qt/ e*7 [37 — 2cos 27 + ¢]dT + cpe % =
to

3,1
= §t - §(cos 2t + sin 2t) + ¢1 + cpe 2.

1. The solution of the homogeneous equation is y.(t) = c1e?* + cpe3t. The functions
y1(t) = €?* and yo(t) = €3 form a fundamental set of solutions. The Wronskian
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of these functions is W (y1,92) = €. Using the method of variation of parameters,
the particular solution is given by Y (¢) = u1(¢) y1(t) + u2(t) y2(t), in which

o3t (9t o2t (9t
up(t) = — Vé?t) ) dt =2e " and us(t) = Vé?t) ) dt = —e 2,

Hence the particular solution is Y'(t) = 2et — ef = €.

3. The solution of the homogeneous equation is y.(t) = cie™! + cate™t. The func-
tions y1(t) = et and ys(t) = te~! form a fundamental set of solutions. The Wron-
skian of these functions is W (y1,y2) = e~ 2. Using the method of variation of
parameters, the particular solution is given by Y (¢) = uq(¢) y1(t) + u2(¢) y2(t), in
which

te~t(3e7t)

WD dt = =3t%/2 and wus(t) =

Ul(t) = —
Hence the particular solution is Y (t) = —3t%e~!/2 + 3t%e~! = 3t2e!/2.

4. The functions y; (t) = e'/? and y(t) = tet/? form a fundamental set of solutions.
The Wronskian of these functions is W (yy,y2) = e!. First write the equation in
standard form, so that g(t) = 4e*/2. Using the method of variation of parameters,

the particular solution is given by Y () = uq(¢) y1 (t) + ua(t) y2(¢t), in which

tet/2(4et/2) et/2(4et/2)

W WD) dt = 4t.

up(t) = — dt = —2t> and us(t) = /

Hence the particular solution is Y () = —2t2et/? + 4t2et/? = 2t%¢t/?

6. The solution of the homogeneous equation is y.(t) = ¢1 cos 3t + cosin 3t. The
two functions y;(¢) = cos 3t and ys(t) = sin 3t form a fundamental set of solu-
tions, with W (y1, y2) = 3. The particular solution is given by Y'(¢) = uy(t) y1(¢) +
ua(t) y2(t), in which

: 2
ui(t) = — / o see Y 3t$(st§c 30) dt = —csc 3t

3t(9 sec? 3t
us(t) = / Cosévéjc)dt = In(sec 3t + tan 3t),

since 0 < ¢t < 7/6. Hence Y () = —1 + (sin 3t) In(sec 3t + tan 3t). The general so-
lution is given by

y(t) = c1 cos 3t + cosin 3t + (sin 3¢) In(sec 3t + tan 3t) — 1.

7. The functions y;(t) = e72* and ys(t) = te 2! form a fundamental set of so-
lutions. The Wronskian of these functions is W (y,y2) = e~#. The particular
solution is given by Y (t) = u1(t) y1(t) + ua(t) y2(¢), in which

ul(t):—/te_é;;t)e_)dt:—lnt and Ug(t):/e_s;/_(t(;_)dt:—l/t.
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Hence the particular solution is Y (t) = —e~2!In t — e~2!. Since the second term is
a solution of the homogeneous equation, the general solution is given by

y(t) = cre ™ + cote ™2t — e In t.

8. The solution of the homogeneous equation is y.(t) = ¢; cos 2t + co sin 2¢. The
two functions y;(t) = cos 2t and yo(t) = sin 2¢ form a fundamental set of solu-
tions, with W (y1,y2) = 2. The particular solution is given by Y (¢) = uy (¢) y1(¢) +
us(t) y2(t), in which

i () = — / sin 2¢(3 csc 2t) dt = —31/2

W(t)
us(t) = /Wdt = zln(sin 2t),

since 0 < t < /2. Hence Y (t) = —(3/2)t cos 2t + (3/4)(sin 2t) In(sin 2¢t). The gen-
eral solution is given by

3 3
y(t) = ¢1 cos 2t + o sin 2t — itcos 2t + z(sin 2t) In(sin 2t).

9. The functions y; (t) = cos (t/2) and y»(t) = sin(¢/2) form a fundamental set of
solutions. The Wronskian of these functions is W(yy,y2) = 1/2. First write the
ODE in standard form, so that g(t) = sec(¢/2)/2. The particular solution is given
by Y'(t) = u1(t) y1(t) + u2(t) y2(t), in which

w(t) = — / cos (t/;%/[?‘z;(t/ 2Dl gt = 2 n(cos (t/2))

sin(t/2) [sec(t/2)]
t) = dt =1t.
UQ( ) / QW(t)
The particular solution is Y (¢) = 2cos(t/2) In(cos (t/2)) + ¢ sin(¢/2). The general
solution is given by

y(t) = c1cos (t/2) + casin(t/2) + 2 cos(t/2) In(cos (t/2)) + ¢ sin(¢/2).

10. The solution of the homogeneous equation is y.(t) = ciet + cotet. The functions
y1(t) = e’ and yo(t) = te' form a fundamental set of solutions, with W (y1,y2) =
e?!. The particular solution is given by Y (t) = uy (t) y1(t) + ua(t) y2(t), in which

ui(t) = —/W(:((flﬁ)dt = —%ma +12)

B et(e) B
us(t) = /mdt = arctan t.

The particular solution is Y (t) = —(1/2)e! In(1 + t2) + te* arctan(t). Hence the
general solution is given by

1
y(t) = cre’ + cote’ — get In(1 4 %) + te’ arctan(t).
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12. The functions y; (t) = cos 2t and y»(t) = sin 2t form a fundamental set of solu-
tions, with W (y1,y2) = 2. The particular solution is given by Y (¢) = uy (¢) y1(¢) +
ua(t) y2(t), in which

1 1

t t
ui(t) = —7/ g(s) sin 2sds and  wug(t) = 7/ g(s) cos 2sds.
2 to 2 to

Hence the particular solution is

1 ’ 1 !
Y(t) = —5 cos 2t/ g(s) sin 2sds + 3 sin Qt/ g(s) cos 2sds.

to tO

Note that sin 2t cos 2s — cos 2t sin 2s = sin(2t — 2s). It follows that

Y(t) = 1/ g(s)sin(2t — 2s)ds .

2 Ji
The general solution of the differential equation is given by

1t
y(t) = c1 cos 2t + cosin 2t + 3 / g(s)sin(2t — 2s)ds.
to

13. Note first that p(t) = 0,q(t) = —2/t> and g(t) = (3t> — 1)/t>. The functions
y1(t) and yo(t) are solutions of the homogeneous equation, verified by substitution.

The Wronskian of these two functions is W (y1,y2) = —3. Using the method of
variation of parameters, the particular solution is Y () = uy(t) y1(¢) + u2(t) y2 (%),

in which oo
B 1)
t)y=— | ————~—dt =1t Int
a®) = [ /6+1n

us(t) /Wdt —t3/3+1/3.

Therefore Y (t) =1/6 +t>Int —t2/3+1/3.

15. Observe that g(t) = te?'. The functions y;(¢) and ya(t) are a fundamental set
of solutions. The Wronskian of these two functions is W (y;,y2) = te!. Using the
method of variation of parameters, the particular solution is Y (t) = u1(¢) y1(¢) +
uz(t) y2(t), in which

ul(t):—/eéé.(et))dt:—e%ﬂ and ug(t):/(l—i_vé)((f)e)dt:tet.

Therefore Y (t) = —(1+1)e?!/2 +te? = —e?/2 4 te?t)2.

16. Observe that g(t) = 2(1 — t) e~t. Direct substitution of y;(t) = ¢! and y2(t) =t
verifies that they are solutions of the homogeneous equation. The Wronskian of the
two solutions is W (y1,y2) = (1 — t) e!. Using the method of variation of parameters,
the particular solution is Y (¢) = uq (¢) y1(t) + ua(t) y2(t), in which

ur(t) = — / wlm;(i))e_dt =te ? +e7%)/2
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21— 1) »
Mt):/ = 2

Therefore Y (t) =te ™t +e t/2 —2te t = —te™t + e71/2.
17. Note that g(z) = In z. The functions y;(z) = 22 and y2(x) = 2% In z are solu-
tions of the homogeneous equation, as verified by substitution. The Wronskian of

the solutions is W (y1,y2) = 2. Using the method of variation of parameters, the
particular solution is Y (z) = ui(x) y1(x) + ua(z) y2(z), in which

2?In x(ln )

up(z) = — W) de = —(In z)%/3
us(z) = xv[/(l(r;;:)dat = (In 2)?/2.

Therefore Y (z) = —2%(In 2)3/3 + 22(In 2)3/2 = 2%(In x)3/6.

19. First write the equation in standard form. Note that the forcing function
becomes g(z)/(1 — x). The functions y;(x) = ¢* and y(x) = x are a fundamental
set of solutions, as verified by substitution. The Wronskian of thesolutions is
W (y1,y2) = (1 — z)e*. Using the method of variation of parameters, the particular
solution is Y (z) = u1 () y1(x) + ua(z) y2(x), in which

) Sl
“mﬁuﬁmﬁ d w) = [ S

0

Therefore

Y(x)__emLIWdT+ijWdT_

, =W ) a-nW)
_ [ (we” —efr)g(r)
i s

20. First write the equation in standard form. The forcing function becomes

g(x)/x?. The functions y;(z) = 2~ /?sin z and yp(z) = 2~'/?cos = are a fun-

damental set of solutions. The Wronskian of thesolutions is W (y1,y2) = —1/z.

Using the method of variation of parameters, the particular solution is Y (z) =

u1(z) y1(x) + uz(z) y2(x), in which
up(z) = / S TNT)) (g(T))dT and  wug(x) = —/ S TR (g(T))dT.

xo T\//]T x
Therefore

_sinz [TcosT (g(T))dt _cosz ["sin T(Q(T))d

TVE e T Ly

1 [sumnel),
‘ﬁA Y

21. Let y1(¢) and y2(t) be a fundamental set of solutions, and W (t) = W (y1,y2) be
the corresponding Wronskian. Any solution, u(t), of the homogeneous equation is

Y (z) T
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a linear combination u(t) = a1y1(t) + aay2(t). Invoking the initial conditions, we
require that
Yo = a1 y1(to) + a2 y2(to)
/! !/ /
Yo = a1y (to) + azys(to)

Note that this system of equations has a unique solution, since W (tp) # 0. Now
consider the nonhomogeneous problem, L [v] = ¢(t), with homogeneous initial con-
ditions. Using the method of variation of parameters, the particular solution is
given by

R e O -

The general solution of the IVP (iii) is

v(t) = Bryr(t) + Baya(t) + Y (t) = Brya (t) + Baye(t) + y1(t)ui (t) + ya(t)ua(t)

in which u; and us are defined above. Invoking the initial conditions, we require
that

0 = B1y1(to) + Baya(to) + Y (to)
0 = B1y; (to) + Bays(to) + Y ' (to)

Based on the definition of u; and us, Y (t9) = 0. Furthermore, since yju{ + yous =
0, it follows that Y /(¢p) = 0. Hence the only solution of the above system of equa-
tions is the trivial solution. Therefore v(t) =Y (t). Now consider the function
y=u+wv. Then L[y] = L{u+v] = L[u]+ L[v] = g(t). That is, y(t) is a solution
of the nonhomogeneous problem. Further, y(to) = u(to) + v(to) = yo, and simi-
larly, y'(to) = y§. By the uniqueness theorems, y(t) is the unique solution of the
initial value problem.

23.(a) A fundamental set of solutions is y;(t) = cos t and y2(t) = sin t. The Wron-
skian W (t) = y1y4 — y{y2 = 1. By the result in Problem 22,

_[*cos(s) sin(t) — cos(t) sin(s)
Vo - | e

g(s)ds

0

= / [cos(s) sin(t) — cos(t) sin(s)] g(s)ds .

to

Finally, we have cos(s) sin(t) — cos(t) sin(s) = sin(t — s).

(b) Using Problem 21 and part (a), the solution is
¢
y(t) = yo cost + y,sint + / sin(t — s)g(s)ds .
0

24. A fundamental set of solutions is y;(t) = e and ya(t) = €’ . The Wronskian
W (t) = y1ys — y{ye = (b — a)el@t®t By the result in Problem 22,

t _as bt at ,bs t _as bt at ,bs
e®®e’ —e*e 1 e®®e’ —ee
= _—_— = .
Y (t) /to W) g(s)ds P /to @b g(s)ds
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Hence the particular solution is

¢
Y(t) = L eP=9) _ eat=9) | g(s5)ds
b—a g ’

to

26. A fundamental set of solutions is y;(t) = € and ys(t) = te® . The Wronskian
W (t) = y19y4 — y{y2 = €2**. By the result in Problem 22,

t as+at at+as t as+at
te —se (t—s)e
Y(t)= ds = - ds .
( ) /t (S) g(S) i ~/to 62(13 g(S) i

0

Hence the particular solution is

Y(t) = / (t — 5)e = g(s)ds .

to

27. The form of the kernel depends on the characteristic roots. If the roots are real

and distinct,
b(t—s) _ ,a(t—s)
e e
Kt—-s)=———
(t—s) —
If the roots are real and identical,
K(t—s)=(t—s)e*t™%)

If the roots are complex conjugates,

A(t—s)

e sin p(t — s)

I

K(t—s)=

28. Let y(t) = v(t)y1(t), in which y;(¢) is a solution of the homogeneous equation.
Substitution into the given ODE results in

v"y1 + 20"y + vy +p(t) [0y + oy + gty = g(t) .
By assumption, y{" + p(t)y1 + q(¢)y1 = 0, hence v(t) must be a solution of the ODE
vy + 290 + ()] v’ = g(t).

Setting w = v’, we also have w'y; + [2y{ + p(t)y1] w = g(¢) .

30. First write the equation as y” 4+ 7t 'y + 5t 2y = ¢t~!. As shown in Problem
28, the function y(t) =t 1v(t) is a solution of the given ODE as long as v is a
solution of

o [P T =
that is, v + 5t~' v’ = 1. This ODE is linear and first order in v’. The integrating

factor is = t°. The solution is v/ = /6 + ct~>. Direct integration now results in
v(t) =t2/12+ 1t + co. Hence y(t) = t/12 4 c1t75 + et ™1,

31. Write the equation as y” —t~1(1 +t)y +t 'y =te*. As shown in Problem
28, the function y(t) = (1 +t)v(t) is a solution of the given ODE as long as v is a
solution of

(I+t)v"+ 2=t (1+t)*] v =te*,



95

w

that is,
"o 1+ t v = t 6215
t(t+ 1) t+1

This equation is first order linear in v/, with integrating factor u = t=1(1 +t)Ze~t.
The solution is v/ = (t2e%! + cite?) /(1 + t)2. Integrating, we obtain v(t) = €2!/2 —
e?/(t+1) + cret/(t + 1) + co. Hence the solution of the original ODE is y(t) =
(t—1)e? /2 +crel + ca(t+1).

32. Write the equation as y” + (1 — )7y — (1 —¢)~ty = 2(1 — t) e~t. The func-
tion y(t) = e'v(t) is a solution to the given ODE as long as v is a solution of

el + 2" +t(1—t) et v =2(1—t)e ",

that is, v” +[(2—1)/(1 —t)]v’ = 2(1 — t) e~ 2!, This equation is first order linear
in v/, with integrating factor p = e*/(t — 1). The solution is

v =(t—=1)(2e7% 4 cre?).

Integrating, we obtain v(t) = (1/2 —t)e™2' — cite™! + co. Hence the solution of
the original ODE is y(t) = (1/2 — t)e™t — 1t + caet.

1. Rcos § =3 and Rsin § =4, so R = /25 =5 and § = arctan(4/3). We obtain
that v = 5 cos(2t — arctan(4/3)).

3. Rcos 6 =4 and Rsin § = —2, so R = /20 = 2v/5 and § = —arctan(1/2). We
obtain that u = 21/5 cos(3t 4 arctan(1/2)).

4. Rcos 6 = —2and Rsin § = —3,s0 R = v/13 and § = 7 + arctan(3/2). We obtain
that v = V13 cos(nt — m — arctan(3/2)).

5. The spring constant is k = 2/(1/2) = 4 Ib/ft. Mass m = 2/32 = 1/16 1b-s?/ft.
Since there is no damping, the equation of motion is u” /16 + 4u = 0, that is, u” +
64u = 0. The initial conditions are w(0) =1/4 ft, v/(0) =0 ft/s. The general
solution is wu(t) = A cos 8t + B sin 8t. Invoking the initial conditions, we have
u(t) =cos 8 /4. R=1/4ft, § =0 rad, wg =8 rad/s, and T'=m/4 s.

7. The spring constant is k = 3/(1/4) = 12 Ib/ft. Mass m = 3/32 Ib-s?/ft. Since
there is no damping, the equation of motion is 3u” /32 + 12u = 0, that is, u” +
128u = 0. The initial conditions are u(0) = —1/12 ft, u/(0) = 2 ft/s. The general
solution is u(t) = A cos 8v/2t + B sin 8/2¢. Invoking the initial conditions, we
have

1 1
u(t) = —— cos 8V2t + —— sin 8V/2¢.
Q 12 42

R = /11/288 ft, § = m — arctan(3/v/2) rad, wy = 8v/2 rad/s, T = 7/(4v/2) s.
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10. The spring constant is k = 16/(1/4) = 64 1b/ft. Mass m = 1/2 1b-s?/ft. The
damping coefficient is v = 2 Ib-s/ft . Hence the equation of motion is " /2 + 2u’ +
64u = 0, that is, u” +4u’+128u =0. The initial conditions are u(0) =0 ft,
u'(0) = 1/4 ft/s. The general solution is u(t) = A cos 2v/31t + B sin 2¢/31¢. In-
voking the initial conditions, we have

u(t) = e % sin 2V/31¢.

0.015 o
0.010 o

0.005

o
1 0.' f s )

-0.005 o

-0.010 4

Solving u(t) =0, on the interval [0.2, 0.4], we obtain ¢ = m/2v/31 = 0.2821 s.
Based on thegraph, and the solutlon of u(t ) = —0.01/12 ft, we have |u(t)] < 0.01
for t > 7 =1.5927.

11. The spring constant is k =3/(.1) =30 N/m. The damping coefficient is
given as v =3/5 N-s/m. Hence the equation of motion is 2u” + 3u’/5 + 30u =
0, that is, u” +0.3u’ 4+ 15u = 0. The initial conditions are «(0) = 0.05 m and
u’(0) = 0.01 m/s. The general solution is u(t) = A cos ut + B sin ut, in which p =
3.87008 rad/s. Invoking the initial conditions, we have u(t) = e~%15(0.05 cos ut +
0.00452sin put). Also, u/wo = 3.87008/+/15 ~ 0.99925 .

13. The frequency of the undamped motion is wy = 1. The quasi frequency of the
damped motion is p = /4 —~2 /2. Setting p = 2w /3, we obtain v = 2v/5 /3.

14. The spring constant is k = mg/L. The equation of motion for an undamped
system is mu” + mgu/L = 0. Hence the natural frequency of the system is wg =

v/g/L. The period is T = 27 /wy .

15. The general solution of the system is u(t) = A cos y(t — tg) + B sin y(t — to) .
Invoking the initial conditions, we have wu(t) = ugcosy(t — to) + (uf/v)siny(t —
to). Clearly, the functions v = ug cosy(t — to) and w = (u/7v)sin~y(t — to) satisfy
the given criteria.

16. Note that r sin(wot — 8) = r sinwot cos § — r coswyt sinf. Comparing the
given expressions, we have A = —rsin§ and B=rcosf. That is, r=R=
VA2 + B?, and tan 6 = —A/B = —1/tan §. The latter relation is also tan 6 +
cotd=1.

18. The system is critically damped, when R =2,/L/C . Here R = 1000 ohms.
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21.(a) Let u = Re™7*/?™ cos(ut — §). Then attains a maximum when ut, —J§ =
2kn. Hence Ty = tgy1 —ti, =27/ 1.

(0) (1)) = =7/ e s/ 2 (s /20, Hence ) i) =
er(2m/u)/2m _ oy Ta/2m

(€) A =Infu(ty)/u(ti1)] = 27/ p)/2m = 7y /pm .
22. The spring constant is k = 16/(1/4) = 64 Ib/ft. Mass m = 1/2 1b-s?/ft. The

damping coefficient is v =2 lb-s/ft. The quasi frequency is u =231 rad/s.
Hence A = 27 /+/31 ~ 1.1285.

25.(a) The solution of the IVP is u(t) = e~*/8(2 cos 3v/7t/8 4 (21/7/21) sin 3v/7t/8).

2 o

Using the plot, and numerical analysis, 7 ~ 41.715.
(b) For v =0.5, 7 &~ 20.402; for y = 1.0, 7 ~ 9.168; for y = 1.5, 7 ~ 7.184.
(c)

30 H

20 1 he

(d) For y =16, 7~ 7.218; for y =17, 7 = 6.767; for v =18, 7 ~ 5.473; for
v=1.9, 7 = 6.460. 7 steadily decreases to about 7,,;, ~ 4.873, corresponding to
the critical value yp =~ 1.73.

(e) We can rewrite the solution as u(t) = Re~7%/2 cos(ut — §), where R = 4//4 — ~2.
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Neglecting the cosine factor, we can approximate 7 by solving Re 77/2 =1 /100,
thus finding

2 2 400
7~ —In(100R) = —-In| — | .
g ( ) gl <\/4 - 72>
For v = 0.25, 7 &= 42.4495; for v = 0.5, 7 &~ 21.3223; for v = 1.0, 7 ~ 10.8843; for

v =15, 7 ~ 7.61554; for v = 1.6, 7 ~ 7.26143; for v = 1.7, 7 ~ 6.98739; for v = 1.8,
T 2 6.80965; for v = 1.9, T ~ 6.80239.

26.(a) The characteristic equation is mr? +~yr + k = 0. Since 42 < 4km , the roots
are ri 9 = (—y £ iy/4mk — 42)/2m. The general solution is

dmk — 2 dmk — ~?
R !
m m

u(t) = e vt/2m

Invoking the initial conditions, A = ug and B = (2muvg — yug)/+/4mk — 2.

(b) We can write u(t) = Re~"/?" cos(ut — §) , in which

_ 2 _
. \/ug L Cmw—uep l@mvowl |

dmk — ugy/4dmk — 2

ay)

I
=

+

(2muvg — yuo)? 5 m(kud 4+ yuovo + mv3) a+ by
dmk —~2 dmk — 2 S\ Amk —427

It is evident that R increases (monotonically) without bound as v — (2vmk)~ .

28.(a) The general solution is u(t) = Acos v/2t + Bsin v/2t. Invoking the initial
conditions, we have u(t) = v/2 sin v/2 t.

(b)
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The condition »'(0) = 2 implies that u(t) initially increases. Hence the phase point
travels clockwise.

31. Based on Newton’s second law, with the positive direction to the right, > F =
mu”, where Y F = —ku —~u’. Hence the equation of motion is mu” 4+ ~vu' +
ku=0. The only difference in this problem is that the equilibrium position is
located at the unstretched configuration of the spring.

32.(a) The restoring force exerted by the spring is Fis = —(ku + eu?®). The oppos-
ing viscous force is F; = —yu’. Based on Newton’s second law, with the pos-
itive direction to the right, Fs 4+ Fy =mu”. Hence the equation of motion is

mu” +yu’ + ku+eud =0.

(b) With the specified parameter values, the equation of motion is u” +u =0.
The general solution of this ODE is u(t) = A cos t + B sin t. Invoking the initial
conditions, the specific solution is u(t) =sin t. Clearly, the amplitude is R =1,
and the period of the motion is T' = 27.

(c) Given € = 0.1, the equation of motion is u” +u + 0.1u® = 0. A solution of the
IVP can be generated numerically. We estimate A = 0.98 and 7' = 6.07.

e=0.1
0.8
0.6
0.4

0.2 4

0.2
-0.4
-0.6

~0.8 -
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w
o

(d) For e=0.2, A=0.96 and T = 5.90. For e = 0.3, A = 0.94 and T = 5.74.

£=02 £=03

0.8 - 0.8
0.6 o 0.6 4
u
0.4 - 0.4
0.2 0.2 4
o ] o
2 4 6 8 10 12 2 4 8 10 12
t t
-0.2 -0.2
-0.4 1 -0.4
-0.6 - -0.6 1
_0.8 4 -0.8 -

(e) The amplitude and period both seem to decrease.

(f) For e = —-0.1, A=1.03 and T'=6.55. For e =—0.2, A=1.06 and T = 6.90.
For e = —0.3, A=1.11 and T =7.41. The amplitude and period both seem to
increase.

2. We have sin(a+ ) = sin « cos 8 £ cos « sin 5. Subtracting the two identities,
we obtain sin(a + ) —sin(a — ) =2 cos a sin B. Setting o+ =7t and a —
B = 6t, we get that o = 6.5t and S = 0.5t. This implies that sin 7t — sin 6t =
2 sin (t/2) cos (13t/2).

3. Consider the trigonometric identities cos(a 4 ) = cos « cos 8 F sin « sin S.
Adding the two identities, we get cos(a — ) + cos(a+ ) = 2 cos a cos B. Com-
paring the expressions, set « + 8 = 27t and a — 8 = «t. This means « = 37t/2 and
B = wt/2. Upon substitution, we have cos(mt) + cos(2nt) = 2 cos(37t/2) cos(nt/2).

4. Adding the two identities sin(a =+ ) =sin « cos 8 %+ cos a sin 3, it follows
that sin(a — 8) +sin(a + 8) = 2sin « cos 8. Setting a + 8 =4t and o — § = 3t,
we have a = 7t/2 and 8 = t/2. Hence sin 3t + sin 4t = 2 sin(7¢/2) cos(t/2) .
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6. Using MKS units, the spring constant is k = 5(9.8)/0.1 =490 N/m, and the
damping coefficient is v = 2/0.04 = 50 N-s/m. The equation of motion is

5u” 4+ 50u” + 490u = 10 sin(t/2) .
The initial conditions are ©(0) =0 m and «’(0) = 0.03 m/s.

8.(a) The homogeneous solution is u.(t) = Ae = cos /73t + Be 5t sin /73t . Based
on the method of undetermined coefficients, the particular solution is

1

Ut) = {53081

Hence the general solution of the ODE is u(t) = u.(t) + U(¢). Invoking the initial
conditions, we find that

[—160 cos(t/2) + 3128 sin(t/2)].

A =160/153281 and B = 38344373 /1118951300 .

Hence the response is

383443y/73
)= |160e 5t cos VT3t + o OV IT =Sty T3] + U(L).
ult) = 5gag7 |160€ " cos om0 ¢ +U®

(b) wc(t) is the transient part and U(t) is the steady state part of the response.

()

0.02 o

0.01

-0.01 +

-0.02 4

(d) The amplitude of the forced response is given by R = 2/A, in which

A = /25(98 — w?)2 + 2500 w2 .

The maximum amplitude is attained when A is a minimum. Hence the amplitude
is maximum at w = 4v/3 rad/s.

9. The spring constant is k = 12 1b/ft and hence the equation of motion is

6
3—2u” + 12u =4 cos Tt,
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that is, u” + 64u = (64/3) cos 7¢. The initial conditions are u(0) =0 ft, v/(0) =
0 ft/s. The general solution is wu(t) = Acos 8¢ + Bsin 8¢ + (64/45) cos 7t. In-
voking the initial conditions, we have wu(t) = —(64/45) cos 8t + (64/45) cos Tt =
(128/45) sin(/2) sin(15t/2) .

12. The equation of motion is 2u” + u’ 4+ 3u = 3 cos 3t — 2sin 3t. Since the system
is damped, the steady state response is equal to the particular solution. Using
the method of undetermined coefficients, we obtain us4(t) = (sin 3t — cos 3t)/6.
Further, we find that R = /2 /6 and § = arctan(—1) = 37/4. Hence we can write
uss(t) = (V2 /6) cos(3t — 31 /4).

13.(a,b) Plug in u(t) = Rcos(wt — ¢) into the equation mu” + yu' 4+ ku = Fy cos wt,
then use trigonometric identities and compare the coefficients of coswt and sinwt.
The result follows.

(c) The amplitude of the steady-state response is given by
Fo
- Vm2(wZ —w?)2 +42w? ’
Since Fy is constant, the amplitude is maximum when the denominator of R is
minimum. Let z = w?, and consider the function f(z) = m?(w3 — 2)? + v%2. Note

that f(2) is a quadratic, with minimum at 2z = w3 — v%/2m?. Hence the amplitude
R attains a maximum at w?,,, = wi —2/2m?. Furthermore, since w? = k/m,

2
2 2 i
—w?l1— .
Wmaz = “0 [ 2km}

Substituting w? = w?,,, into the expression for the amplitude,

FO FO FO

R: = —_— .
VA Am? + 42 (W — ~2/2m2) Vwiy? —42/4m2 qwey/1 — 42 /4mk

17.(a) The steady state part of the solution U(t) = A coswt + B sin wt may be found
by substituting this expression into the differential equation and solving for A and
B. We find that

32(2 — w?) 8w
= 5 B == .
64 — 63w? 4 16w* 64 — 63w? 4 16w*
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(b) The amplitude is
8

A= .
V64 — 63w? + 16 w?

()

(d) See Problem 13. The amplitude is maximum when the denominator of A is
minimum. That is, when w = wpe, = 3v/14 /8 & 1.4031. Hence A = 64/+/127 .

18.(a) The homogeneous solution is u.(t) = Acos ¢t + Bsin ¢t. Based on the method
of undetermined coefficients, the particular solution is

U(t) cos wt .

T 1-uw?
Hence the general solution of the ODE is u(t) = u.(t) + U(¢). Invoking the initial
conditions, we find that A = 3/(w? — 1) and B = 0. Hence the response is

u(t) [cos wt —cos t].

T1-w?

AR il

(a) w=10.7 (b) w=0.8 (¢) w=0.9

Note that
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19.(a) The homogeneous solution is u.(t) = Acos t + Bsin ¢. Based on the method
of undetermined coefficients, the particular solution is

U(t) cos wt .

T 1 w?
Hence the general solution is u(t) = u.(t) + U(t). Invoking the initial conditions,
we find that A = (w? +2)/(w? — 1) and B = 1. Hence the response is

1

u(t) = T~ [3 cos wt — (w? + 2) cos t} +sin t.

Note that
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21.(a)

(b) Phase plot - u’ vs u :

23.(a)
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(b) Rvs w
2.59
] .
2]
1.59
p .
]
0.549 -
r T T T T T T T T
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

(c) The amplitude for a similar system with a linear spring is given by
5
R= .
V25 — 4902 + 2504

04 | o6 0’8 1’0 12 14 1'6 1's 270
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CHAPTER

4

Higher Order Linear Equations

1. The differential equation is in standard form. Its coefficients, as well as the
function ¢(t) =¢, are continuous everywhere. Hence solutions are valid on the
entire real line.

3. Writing the equation in standard form, the coefficients are rational functions
with singularities at £ = 0 and ¢t = 1. Hence the solutions are valid on the intervals
(=00,0), (0,1), and (1,00).

5. Writing the equation in standard form, the coefficients are rational functions
with a singularity at z¢o = 1. Furthermore, ps(z) = tan x/(z — 1) is undefined,
and hence not continuous, at z = £(2k + 1)7/2, k=0,1,2,.... Hence solutions
are defined on any interval that does not contain xy or xj .

6. Writing the equation in standard form, the coefficients are rational functions with
singularities at x = +2. Hence the solutions are valid on the intervals (—oo, — 2),
(—=2,2), and (2,00).

7. Evaluating the Wronskian of the three functions, W(f1, f2, f3) = —14. Hence
the functions are linearly independent.

9. Evaluating the Wronskian of the four functions, W(fi, f2, fs, fa4) = 0. Hence
the functions are linearly dependent. To find a linear relation among the functions,

109
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we need to find constants ¢y, ca, c3, ¢4, not all zero, such that
c1fi(t) + cafa(t) + s fs(t) +cafa(t) =0.
Collecting the common terms, we obtain
(co +2¢c3 + cg)t? +(2¢1 — 3+ cy)t + (=3c1 +ca+¢4) =0,

which results in three equations in four unknowns. Arbitrarily setting ¢4 = —1,
we can solve the equations ¢y +2c3 =1, 2¢; —c3 =1, —3¢1 +c2 = 1, to find that
c1=2/7, co =13/7, c3 = —3/7. Hence

2f1(8) + 13fa(t) — 3f3(t) — Tfa(t) = 0.

10. Evaluating the Wronskian of the three functions, W (fi, f2, f3) = 156 . Hence
the functions are linearly independent.

11. Substitution verifies that the functions are solutions of the differential equation.
Furthermore, we have W (1,cos t,sin t) = 1.

12. Substitution verifies that the functions are solutions of the differential equation.
Furthermore, we have W(1,t,cos t,sin t) = 1.

14. Substitution verifies that the functions are solutions of the differential equation.
Furthermore, we have W (1,t,et te™t) = e=2t.

15. Substitution verifies that the functions are solutions of the differential equation.
Furthermore, we have W (1,2, 13) = 6z .

16. Substitution verifies that the functions are solutions of the differential equation.
Furthermore, we have W (z,z2,1/x) = 6/x .

18. The operation of taking a derivative is linear, and hence (ciy; + ngg)(k) =

clygc) + czyék). It follows that

Llciyi + coya] = Cly§n) + C2y§n) +p1(019§n71) + C2y§n71)) + ... palciyr + c2yo).

Rearranging the terms, we obtain L [c1y1 + caye] = c1L [y1] + c2 L [y2]. Since y; and
y2 are solutions, L [c1y1 + cay2] = 0. The rest follows by induction.

20.(a) Let f(t) and g(t) be arbitrary functions. Then W(f,g) = fg' — f'g. Hence
W'(f.9)=1Ff'g"+fg"—f"9—1f'9"=fg” — f"g. That is,

W'(f,g) = ’ff// gg// .

Now expand the 3-by-3 determinant as

! i
Y1 Y3
1

v Y3

i A
Y1 Y2
1 A

Y1 Y2

/ !

Y2 Y3
+

vl yd vs

W(y1,y2,93) = y1 — Y2
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Differentiating, we obtain

/ ’ / / / /
W’ =/ Y2 Y3l Y1 Y3 iYL Yl
(ylv Y2, yS) Y1 yz// y?:/ 2 yll/ yé’ Ys ylll yz//
/ / / / / /
Y2 Y3 Y1 3 Y1 2
+ — + .
1 2/// yg/// Y2 yl/// yé// Y3 yl/// y2///

The second line follows from the observation above. Now we find that

, y1/ yz’/ y?f 1 Y2 Ys
Wiy, y2,y3) = |y Y5 ya|+|vi Ys Y3

1 " " "

vi' ys ous| |l oy s

Hence the assertion is true, since the first determinant is equal to zero.

(b) Based on the properties of determinants,

P3yr DP3Y2 P3Y3
p2(t)ps(O)W' = |p2yi p2ys P23l
yl/// y2/// y3/I/
Adding the first two rows to the third row does not change the value of the deter-
minant. Since the functions are assumed to be solutions of the given ODE, addition

of the rows results in

, P3 Y1 P3 Y2 P3Y3
p2(Ops(OOW' = | payi  p2ys  D2Y3
—-py! —prys —p1ys

It follows that po(¢)ps(H)W' = —p1(t)p2(t)p3(t)W . As long as the coefficients are
not zero, we obtain W' = —p;(t)W.

(c) The first order equation W' = —p; (t)W is linear, with integrating factor u(t) =
el P14t Hence W (t) = ce~ /P11t Furthermore, W (t) is zero only if ¢ = 0.

(d) It can be shown, by mathematical induction, that

U1 Y2 s Yn—1 Yn
yi Yz o Yno1i Yn
W/(yl,y%"'vyn): .
y%n—?) yén—Q) y(n—12) y’gn—Q)
- —
RS R VG 8

Based on the reasoning in part (b), it follows that

pa(t)ps(t) ... pn (W' = —p1(t)p2(t)p3(t) . .. pu ()W,
and hence W' = —p;(t)IV.

21. Inspection of the coefficients reveals that p;(¢) = 2. Based on Problem 20, we
find that W’ = —2W, and hence W = ce~%.
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=
N

22. Inspection of the coefficients reveals that p;(¢) = 0. Based on Problem 20, we
find that W' = 0, and hence W = c.

24. Writing the equation in standard form, we find that p;(t) = 1/t. Using Abel’s
formula, the Wronskian has the form W(t) = ceJ1/tdt = ce=Int — ¢/t

26. Let y(t) = y1(t)v(t). Then y' =yjv+y1v’, y”" =y{'v+2y{v' +y1v”, and
y" =y{"v+3y{"v' + 3y{v"” + y1v”’. Substitution into the ODE results in

n 1.1

yi"v + 3y{"v’ + 3y{v” +y1v” + 1 [yv + 2y{v’ + 0" +
+p2 [y{v + y1v'] + psyrv = 0.

Since y; is assumed to be a solution, all terms containing the factor v(¢) vanish.
Hence

y1v" 4+ [pryr + 3yl v + Byl + 2p1y{ + payn] v’ =0,

which is a second order ODE in the variable u = v’.

28. First write the equation in standard form:
2 1
" t(tti Y t;ét—: Y - t2(t6+ g¢ ="
Let y(t) = t?v(t). Substitution into the given ODE results in
t(t+4) o
t+3
Set w = v”. Then w is a solution of the first order differential equation

t44
t(t+3)

t2v///+3 =0.

w' +3 w=0.

This equation is linear, with integrating factor pu(t) = t*/(t +3). The general so-
lution is w = c(t + 3)/t*. Integrating twice, v(t) = c1t~! + c1t 72 + cot + c3. Hence
y(t) = cit + ¢y + cot® + c3t?. Finally, since y;(t) = t? and y»(t) = t3 are given so-
lutions, the third independent solution is y3(t) = ¢1t + ¢;.

1. The magnitude of 1 +i is R = v/2 and the polar angle is 7/4. Hence the polar
form is given by 1+ i = /2 ™/4.

3. The magnitude of —3 is R = 3 and the polar angle is 7. Hence —3 = 3¢,

4. The magnitude of —i is R = 1 and the polar angle is 37/2. Hence —i = e37%/2,

5. The magnitude of v/3 — i is R = 2 and the polar angle is —7/6 = 117/6 . Hence
the polar form is given by /3 —i = 2e!17/6,



4.2

113

6. The magnitude of —1 —i is R = V2 and the polar angle is 57/4. Hence the
polar form is given by —1 — i = /2 57¥/4,

7. Writing the complex number in polar form, 1 = €>™™ where m may be any
integer. Thus 1'/3 = 2™7/3_ Setting m = 0, 1,2 successively, we obtain the three
roots as 11/3 =1, 11/3 = ¢27i/3  11/3 = ¢47/3_ Equivalently, the roots can also be
written as 1, cos(2m/3) + i sin(27/3) = (=1 +iv/3)/2, cos(4m/3) + isin(4r/3) =
(-1 —iV3)/2.

9. Writing the complex number in polar form, 1 = e*™™ where m may be any
integer. Thus 1Y/4 = e2™7™/4  Setting m = 0, 1,2, 3 successively, we obtain the
three roots as 11/4 =1, 11/4 = ¢mi/2 11/4 = ¢7i 11/ = ¢37/2 Equivalently, the
roots can also be written as 1, cos(w/2) + i sin(7/2) =4, cos(w) + isin(r) = —1,
cos(3m/2) + isin(37/2) = —i.

10. In polar form, 2(cos 7/3 + i sin 7/3) = 2e*(/3+2m™) in which m is any integer.
Thus [2(cos 7/3 + ¢ sin 7r/3)]1/2 = 21/2 ¢i(n/6+mm) - With m = 0, one square root
is given by 21/2¢7/6 = (/3 4+4)/v/2. With m = 1, the other root is given by
21/2 ei?w/ﬁ — (_\/?T _ Z)/ﬂ

11. The characteristic equation is > —r? —r + 1 = 0. The roots are r = —1,1, 1.
One root is repeated, hence the general solution is y = cie™ + coet + catel.

13. The characteristic equation is 73 — 2r2 —r +2 =0, with roots r = —1,1,2.
The roots are real and distinct, so the general solution is y = c1e~* + cpe? + c3e?t.

14. The characteristic equation can be written as r?(r? — 4r +4) = 0. The roots
are r = 0,0,2,2. There are two repeated roots, and hence the general solution is
given by y = ¢1 + cot + czet + cqte?.

16. The characteristic equation can be written as (72 — 1)(r? —4) = 0. The roots
are given by r = &1, £ 2. The roots are real and distinct, hence the general solution
is y = cre”t + coet + c5e™ 2 + cqe?t.

17. The characteristic equation can be written as (r> —1)2 = 0. The roots are
given by r =41 , each with multiplicity three. Hence the general solution is
Yy = cret 4+ cote™t 4 cgt?et + cqel + cstet + cgt?el.

18. The characteristic equation can be written as r?(r* — 1) = 0. The roots are
given by 7 =0,0,£1,4+4. The general solution is y = c¢; + cot + cze™! + cget +
c5co8t+cgsin t.

19. The characteristic equation can be written as r(r* — 3r3 4+ 3r2 — 3r +2) =
0. Examining the coefficients, it follows that r* — 3r3 +3r2 = 3r +2 = (r — 1)(r —
2)(r? +1). Hence the roots are r = 0,1,2,+14. The general solution of the ODE is
given by y = c¢; + coet + c3e? +cycos t +cssin t.

20. The characteristic equation can be written as r(r® — 8) = 0, with roots r = 0,
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2e2m7m/3 ' =0,1,2. That is, r = 0,2, —1 + iv/3 . Hence the general solution is
y=ocy +coe?t fet [c;»,cosﬁt—&—qsinﬁt]

21. The characteristic equation can be written as (r* 4+ 4)2 = 0. The roots of the
equation 7* +4 =0 are r =1 £+ i, —1 + i. Each of these roots has multiplicity
two. The general solution is y = e’ [c1 cos t + cosin t] + te' [c3cos t + c4sin t] +
e tescos t+cgsin t] +te ! [crcos t + cgsin t].

22. The characteristic equation can be written as (r2+1)2 =0. The roots are
given by r = 4+, each with multiplicity two. The general solution is y = ¢y cos t +
cosin t + ¢ [c3 cos t + cqsin t].

24. The characteristic equation is 73 + 572 + 6r +2 = 0. Examining the coeffi-
cients, we find that 73+ 5r? + 6r + 2 = (r + 1)(r? 4+ 4r + 2). Hence the roots are
deduced as r = —1, —2 £ /2 . The general solution is y = cie~t + coe(~2FV2t 4
cze(~2=V2)t,

25. The characteristic equation is 1873 + 2172 4+ 14r +4 = 0. By examining the
first and last coefficients, we find that 1873 4 2172 4+ 14r + 4 = (2r + 1)(9r? 4 6r +
4). Hence the roots are r = —1/2, (—1 + v/34)/3. The general solution of the ODE
is given by y = c1e 2+ e7t/3 [y cos(t/V/3) + ezsin(t/V3) ].

26. The characteristic equation is r* — 773 + 612 + 30r — 36 = 0. By examining
the first and last coefficients, we find that r* — 7r3 + 6r2 +30r — 36 = (r — 3)(r +
2)(r? — 6r +6). The roots are r = —2,3,3 + /3. The general solution is y =
cre 2 4 cpedt 4 c3eBVI BTV,

28. The characteristic equation is r* 4 673 + 17r2 + 22r + 14 = 0. It can be shown
that 74+ 6r° + 17r2 + 22r + 14 = (r? + 2r + 2)(r? + 4r + 7). Hence the roots are
r=—1+14, -2 =+ i/3 . The general solution of the euqation is y = e~*(c; cost +
cosint) + e~ (c3cos /3t + cysin/31).

32. The characteristic equation is 73> — 72 +r —1 =0, with roots r =1, 1.
Hence the general solution is y(t) = c¢ie’ + ca cos t + cgsin ¢. Invoking the initial
conditions, we obtain the system of equations ¢; +c¢o =2, ¢; +¢3 = —1,¢1 —co =
—2, with solution ¢; =0, ¢ =2, ¢cg = —1. Therefore the solution of the initial
value problem is y(t) = 2cos t — sin ¢, which oscillates as t — oo.
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33. The characteristic equation is 2r* — 3 — 9r2 4+ 4r +4 =0, with roots r =
—1/2,1, +2. Hence the general solution is y(t) = cie™*/? + coe? + cze™2 4 c4e?t.
Applying the initial conditions, we obtain the system of equations ¢; + ¢ + ¢3 +
Cy = 727 761/2#‘02 7263 +264 == 0, C1/4+CQ +403 +4C4 = 72, 701/84*62 7863 +
8¢y = 0, with solution ¢; = —16/15, ¢ = —2/3, ¢3 = —1/6, ¢4 = —1/10. There-
fore the solution of the initial value problem is y(t) = —(16/15)e~/? — (2/3)e! —
e=2t/6 — €2 /10. The solution decreases without bound.

z
0.2 0.4 0.6 0.8
i i i i
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35. The characteristic equation is 673 + 572 + 7 = 0, with roots r = 0,—-1/3,—1/2.
The general solution is y(t) = ¢; + coe™ /3 4 c3e7/2. Invoking the initial condi-
tions, we require that ¢; +co +c3 = =2, —c2/3 —¢3/2 =2, c2/9+ c3/4 =0. The
solution is ¢; = 8, ¢co = —18, c3 = 8. Therefore the solution of the initial value
problem is y(t) = 8 — 18e~*/3 4- 8e~*/2. Tt approaches 8 as t — co.
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36. The general solution is derived in Problem 28 as
y(t) = e "[eicos t + cosin t] + e 2t [03 cosV3t+cysin V3t .
Invoking the initial conditions, we obtain the system of equations

C1 =+ C3 — ].
—C1 + C2 — 263 + \A‘:’TC4 = -2
—2c3 4¢3 —4V3 ¢4 =0
2¢1 4 2¢5 4+ 10c5 + 9vV3 ¢4 = 3
with solution ¢; = 21/13, ¢; = —38/13, c5 = —8/13, ¢4 = 17/3/39.

19

0.5 4

~0.5 -

The solution is a rapidly decaying oscillation.

40.(a) Suppose that cie™t + coe™! + ... + c,e™! = 0, and each of the ry are real
and different. Multiplying this equation by e~"'*, we obtain that ¢; 4 coe(™2 ") 4
<.+ ¢cpelm=m)t = 0 Differentiation results in

co(re — rl)e(”*”)t + .ot enlrn — Tl)e(’“"frl)t =0.

(b) Now multiplying the latter equation by e~ (2=t and differentiating, we obtain

Calrs = 12)(rs = 11)el™ T g el = 72 — )™ T = 0.

(c) Following the above steps in a similar manner, it follows that
cn(rn - rnfl) v (Tn - T1>6(Tn_rn—1)t =0.

Since these equations hold for all ¢, and all the r; are different, we have ¢, = 0.
Hence cie™t + coe™! + ...+ ¢, 1™ 11 =0, —oc0o<t<o0.

(d) The same procedure can now be repeated, successively, to show that ¢; = ¢y =
...=¢, =0.
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41.(a) Recall the derivative formula

dar n\ d"u n\ dv d" " tu n\ d"v
Zon (W) = (o) Vi T (1) PPl A (n> Pk

Let u= (r —r1)® and v = ¢(r). Note that

CZZL (r=m)*]=s-(s=1)...(s=n+1)(r—r)""
and -
drs [(r—r)’]=s!.
Therefore "
=] =0

only if n < s, since it is assumed that ¢(r1) # 0.

(b) Differential operators commute, so that

o dt . d¥ det dk

(Tt = — (Y= (¢ rt .
oraE ¢ ) = qr () = gwte”)
Likewise,
ol db o db dert dF
— (— e = —— (— V= — (¥ rt .
o \ar ¢ = g o g )

It follows that

6] L rt] __ L J rt
7L =L[ e
(¢) From Eq. (i), we have
aj rt j rt
%[e Z(r) =Lt e"].
Based on the product formula in part (a),

aj rt
i [e Z(r)}

if j <s. Therefore L[t/ "] =0 if j <s.

T="r1

2. The general solution of the homogeneous equation is y. = c1et + coe™ + c3 cos t +
eqsin t. Let g1(t) =3t and go(t) = cos t. By inspection, we find that Y;(t) =

—3t. Since go(t) is a solution of the homogeneous equation, set Y5(t) = t(Acos t +

Bssin t). Substitution into the given ODE and comparing the coefficients of similar

term results in A =0 and B = —1/4. Hence the general solution of the nonhomo-

geneous problem is y(t) = y.(t) — 3t — ¢sin ¢ /4.
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3. The characteristic equation corresponding to the homogeneous problem can be
written as (r +1)(r? + 1) = 0. The solution of the homogeneous equation is y. =
cre t+cocos t+egsin t. Let g1(t) = e~ ! and go(t) = 4t. Since g1 (t) is a solution
of the homogeneous equation, set Y;(t) = Ate~'. Substitution into the ODE results
in A =1/2. Now let Y2(t) = Bt + C. We find that B = —C = 4. Hence the general
solution of the nonhomogeneous problem is y(t) = y.(t) +te t/2 +4(t — 1).

4. The characteristic equation corresponding to the homogeneous problem can
be written as r(r+ 1)(r —1) = 0. The solution of the homogeneous equation is
Ye = ¢1 + coe! + cge”t. Since g(t) = 2 sin t is not a solution of the homogeneous
problem, we can set Y (t) = A cos t + B sin ¢. Substitution into the ODE results

in A=1and B =0. Thus the general solution is y(t) = ¢1 + cae’ + cze™* + cos t.

6. The characteristic equation corresponding to the homogeneous problem can
be written as (r?+1)2 =0. It follows that y. = 1 cos t + casin t + t(cz cos t +
cgsin t). Since g(t) is not a solution of the homogeneous problem, set Y (t) =
A+ Becos 2t + C'sin 2¢t.  Substitution into the ODE results in A =3, B =1/9,
C = 0. Thus the general solution is y(t) = y.(t) + 3 + cos 2t /9.

7. The characteristic equation corresponding to the homogeneous problem can be
written as r3(r® +1) = 0. Thus the homogeneous solution is

Yo =1+ cat + cst® + cae™t 4 €t/? | e5cos(V3B 1/2) 4 ¢ sin(ﬁt/Q)} .

Note the g(t) =t is a solution of the homogenous problem. Consider a particular
solution of the form Y (t) = t3(At + B). Substitution into the ODE gives us that
A =1/24 and B = 0. Thus the general solution is y(t) = y.(t) +t*/24.

8. The characteristic equation corresponding to the homogeneous problem can
be written as r3(r + 1) = 0. Hence the homogeneous solution is y. = c¢; + cat +
c3t? 4+ cuet. Since g(t) is not a solution of the homogeneous problem, set Y (¢) =
Acos 2t + Bsin 2¢. Substitution into the ODE results in A = 1/40 and B = 1/20.
Thus the general solution is y(t) = y.(t) + (cos 2t + 2sin 2t)/40.

10. From Problem 22 in Section 4.2, the homogeneous solution is y. = ¢j cos t +
casint +t[cgcos t 4 cysin t]. Since g(t) is not a solution of the homogeneous
problem, substitute Y (¢) = At + B into the ODE to obtain A = 3 and B = 4. Thus
the general solution is y(t) = y.(t) + 3t + 4. Invoking the initial conditions, we find
that ¢y = =4, co = —4, c3 =1, ¢4 = —3/2. Therefore the solution of the initial
value problem is y(t) = (t —4)cos t — (3t/2 +4)sin t + 3t + 4.
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11. The characteristic equation can be written as r(r? — 3r + 2) = 0. Hence the
homogeneous solution is y. = c1 + cae! + cze?. Let g1(t) = €' and go(t) = t. Note
that g; is a solution of the homogeneous problem. Set Y;(t) = Atet. Substitution
into the ODE results in A = —1. Now let Y5(t) = Bt? + Ct. Substitution into the
ODE results in B=1/4 and C =3/4. Therefore the general solution is y(t) =
c1 + coel + cze?t — tet + (t2 + 3t) /4. Invoking the initial conditions, we find that
¢y =1, cy =c3=0. The solution of the initial value problem is y(t) =1 — te’ +
(> +3t)/4.

T T 1
0.5 1 1.5

12. The characteristic equation can be written as (r — 1)(r + 3)(r? + 4) = 0. Hence
the homogeneous solution is y. = cie! + cae ™3t + c3 cos 2t 4 ¢4 sin 2t. None of the
terms in g(t) is a solution of the homogeneous problem. Therefore we can assume a
form Y (t) = Ae™" + Bcos t + C'sin t. Substitution into the ODE results in the val-
ues A=1/20, B=-2/5, C = —4/5. Hence the general solution is y(t) = cie’ +
c2e™3t + c3co8 2t + ¢y sin 2t + €71 /20 — (2cos t + 4sin t)/5.  Invoking the initial
conditions, we find that ¢; = 81/40, co = 73/520, c¢5 = 77/65, c4 = —49/130.
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14. From Problem 4, the homogeneous solution is y. = ¢1 + cae! + c3e™t. Consider
the terms gy (t) = te~* and go(t) = 2cos t. Note that since r = —1 is a simple root
of the characteristic equation, we set Y;(t) = (At + B)e~t. The function 2cos ¢
is not a solution of the homogeneous equation. We set Ya(t) = C'cos ¢t + Dsin t.
Hence the particular solution has the form Y (t) = t(At + B)e™" + C cos t + Dsin t.

15. The characteristic equation can be written as (r? —1)2 = 0. The roots are
given as 7 = + 1, each with multiplicity two. Hence the solution of the homogeneous
problem is y. = cre + cotel + cze™t + cate™t. Let g1(t) = €! and go(t) = sin £. The
function e’ is a solution of the homogeneous problem. Since r = 1 has multiplicity
two, we set Y;(t) = At?e’. The function sin ¢ is not a solution of the homogeneous
equation. We can set Y3(t) = Bcos t 4+ C'sin t. Hence the particular solution has
the form Y (t) = At?e! + Bcos t + C'sin t.

16. The characteristic equation can be written as 72(r? 4 4) = 0, and the roots are
r =0, £2¢. The root r = 0 has multiplicity two, hence the homogeneous solution
is Yo = €1 + cat + c3c08 2t + ¢4 sin 2t. The functions g1 (t) = sin 2¢ and go(t) = 4
are solutions of the homogenous equation. The complex roots have multiplicity
one, therefore we need to set Yi(t) = At cos 2t + Bt sin 2t. Now go(t) =4 is as-
sociated with the double root 7 =0, so we set Ya(t) = Ct?. Finally, g3(t) = te'
(and its derivatives) is independent of the homogeneous solution. Therefore set
Y3(t) = (Dt + E)et. Conclude that the particular solution has the form Y (t) =
At cos 2t + Bt sin 2t + Ct? + (Dt + E)et.

18. The characteristic equation can be written as r%(r? + 2r + 2) = 0, with roots
r =0, with multiplicity two, and r = —1 £ ¢. This means that the homoge-
neous solution is y. = c1 + cot + cse tcos t +cge tsin t. The function g1(t) =
3et 4+ 2te~t, and all of its derivatives, is independent of the homogeneous solu-
tion. Therefore set Y;(t) = Ae' + (Bt + C)e™t. Now go(t) = e 'sin t is a solution
of the homogeneous equation, associated with the complex roots. We need to set
Ya(t) =t(De tcos t+ Eetsin t). It follows that the particular solution has the
form Y (t) = Ae! + (Bt + C)e ' +t(De tcos t + Ee 'sin t).
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19. Differentiating y = u(t)v(t), successively, we have
y' =u'v+uv’

y// — U/,U+2ulvl+uvll

=3 <”> L (1= )
i=o M

Setting v(t) = e, v\9) = ade*t. So for any p=1,2,...,n,

P
FOEESS (1?) o =),

=0
It follows that

n

p
L [e%t] = et Z nyp Z (?)aa‘ MOES)) ().
» i=0 M

=0
It is evident that the right hand side of Eq. (%) is of the form
et [kzo ™ 4 k™Y Lk, u +ky, u} .

Hence the operator equation L [e®u] = e (b t™ + by t™ 1 + ... + b1t + by, ) can
be written as

kou™ + kw4 4 kpoqu 4+ kpu=bot™ + b " 4 b at + by, -

The coefficients k;, 2 =0,1,...,n can be determined by collecting the like terms
in the double summation in Eq. (). For example, kg is the coefficient of (™).
The only term that contains u(™) is when p=n and j = 0. Hence kg =ay. On
the other hand, k,, is the coefficient of w(t). The inner summation in (%) contains
terms with u, given by a”u (when j = p), for each p =0,1,...,n. Hence

n
k, = E Gpepal.
p=0

21.(a) Clearly, e* is a solution of y’ —2y =0, and te~* is a solution of the dif-

ferential equation y” + 2y’ +y = 0. The latter ODE has characteristic equation
(r+1)>=0. Hence (D —2)[3¢*] =3(D—2)[e*] =0 and (D +1)*[te”"] = 0.
Furthermore, we have (D —2)(D + 1)?[te™!] = (D —2)[0] =0, and (D — 2)(D +
1)2 [3e*] = (D + 1)%(D — 2) [3¢*!] = (D +1)*[0] = 0.

(b) Based on part (a),
(D—2)(D+1)*[(D=2*D+1)Y] =(D-2)(D+1)*[3¢* —te”"] =0,

since the operators are linear. The implied operations are associative and commuta-
tive. Hence (D — 2)*(D + 1)3Y = 0. The operator equation corresponds to the so-
lution of a linear homogeneous ODE with characteristic equation (r — 2)4(r +1)3 =
0. The roots are r = 2, with multiplicity 4 and r = —1, with multiplicity 3. It
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follows that the given homogeneous solution is Y (t) = c1€?! + cote?® + czt?e?t +
cat3e® + cse™t + cgte™t + crt?e~t, which is a linear combination of seven indepen-
dent solutions.

22. (15) Observe that (D — 1) [e!] = 0 and (D? + 1) [sin t] = 0. Hence the operator
H(D) = (D —1)(D? + 1) is an annihilator of e’ +sin ¢. The operator correspond-
ing to the left hand side of the given ODE is (D? — 1)2. It follows that

(D+1)%D-1)3D?*+1)Y =0.

The resulting ODE is homogeneous, with solution Y (¢) = c1e™" + cate™" + czel +
catel + cst?el + cgcos t + crsin t.  After examining the homogeneous solution of
Problem 15, and eliminating duplicate terms, we have Y (t) = cst?e! + cg cos t +
Cr sin .

22. (16) We find that D[4] =0, (D — 1)?[te!] = 0, and (D? + 4) [sin 2¢] = 0. The
operator H(D) = D(D — 1)?(D? + 4)is an annihilator of 4 + te! + sin 2t. The op-
erator corresponding to the left hand side of the ODE is D?(D? +4). It follows
that

D*(D —1)*(D* +4)*Y =0.

The resulting ODE is homogeneous, with solution Y'(t) = ¢; + cot + c3t? + cqel +
cstel + cg cos 2t + crsin 2t + cgt cos 2t + cot sin 2t.  After examining the homoge-
neous solution of Problem 16, and eliminating duplicate terms, we have Y (t) =
cst? + cqet + cstet + cst cos 2t + cot sin 2t.

22. (18) Observe that (D —1)[e!] =0, (D +1)?[te”!] = 0. The function e !sin ¢
is a solution of a second order ODE with characteristic roots r = —1 4 7. It follows
that (D? 4+ 2D + 2) [e~!sin t] = 0. Therefore the operator

H(D)=(D-1)(D+1)*D*+2D +2)
is an annihilator of 3e! 4 2te™t + e~!sin t. The operator corresponding to the left
hand side of the given ODE is D?(D? + 2D + 2). It follows that
D*(D —1)(D+1)*(D*+2D +2)*Y =0.

The resulting ODE is homogeneous, with solution Y (t) = ¢ + cat + czet + cqe™ +
cste™t 4+ e7t(cg cos t + cysin t) + te"t(cg cos t + cosin t). After examining the ho-
mogeneous solution of Problem 18, and eliminating duplicate terms, we have Y (t) =
czet + cqet + este™t +te (cgcos t + cosin t).

2. The characteristic equation is r(r? — 1) = 0. Hence the homogeneous solution is
ye(t) = c1 + cae’ + cze™t. The Wronskian is evaluated as W (1,ef,e™*) =2. Now
compute the three determinants
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t

1 0
Wg(t) =0 et 0| = et.
0 1

et

The solution of the system of equations (10) is

i) = it ==t (0 = 2 v
w(t) = tpVVVZ’S) — te! /2.

Hence uy(t) = —t2/2, us(t) = —e7t(t +1)/2, uz(t) = e'(t — 1)/2. The particular
solution becomes Y (t) = —t2/2 — (t +1)/2 + (t —1)/2 = —t?/2 — 1. The constant
is a solution of the homogeneous equation, therefore the general solution is

y(t) = c1 + coe’ +czet —t2/2.

3. From Problem 13 in Section 4.2, y.(t) = cie™ + cae? + cze?'. The Wronskian is
evaluated as W(e™!, et, e?!) = 6 e2t. Now compute the three determinants

0 et €2 et 0 e
Wi(t) =10 et 2e%| =€, Wy(t)=|-et 0 2e%| = -3¢,
1 et 4e?t e”t 1 4e*

et et 0
Ws(t) = |—et e 0] =2
et e 1

Hence u{(t) = €% /6, uj(t) = —e3t/2, uj(t) = €*'/3. Therefore the particular so-
lution can be expressed as Y (t) = e* [¢%"/30] — e [e3 /6] + 2! [¢*' /6] = ' /30.

6. From Problem 22 in Section 4.2, y.(t) = ¢y cos t + casin t + ¢ [c5 cos t + ¢4 sin t].
The Wronskian is evaluated as W (cos t,sin ¢,t cos t,t sin t) = 4. Now compute the
four auxiliary determinants

0 sint tcost tsint

Wit) = 0 cqst cos.t—tsint sint+tco§t
0 —sint —2sint—tcost 2cost—tsint

1 —cost —3cost+tsint —3sint—tcost

= —2sint + 2t cost,

cos t
—sin t
—cos t

sin ¢

0 t cost

0 cost—tsint
0 —2sint—tcost
1 —3cost+tsint

=2t sin t+ 2cos t,

tsint
sint+1tcost
2cost—tsint
—3sint—tcost

cos t
—sin t
—cos t

sin t

Ws(t) =

sint 0
cost 0
—sint O
—cost 1

tsint
sint+1%cost
2cost—tsint
—3sint—tcost

= —2cos t,
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cos t sin ¢ tcost 0

—sint cost cost—tsint 0 .
Walt) = —cost —sint —2sint—tcost 0| —2sin £.

sint —cost —3cost+tsint 1

It follows that
uj(t) = [—sin®t +tsintcost] /2, uj(t) = [tsin®t +sint,cost] /2,
uj(t) = —sin t cos t/2, and uj(t) = —sin®t/2.
Hence
uy(t) = (3sintcost — 2t cos®t —t)/8, ug(t) = (sin®t — 2cos®t — 2tsint cost + t2)/8,
us(t) = —sin®t/4, and  u4(t) = [cos t sin t — t] /4.

Therefore the particular solution can be expressed as Y (t) = wui(t) cost + ua(t) sint +
us(t)tcost + uy(t)tsint = (sint — 3tcost — t?sint)/8. Note that only the last term
is not a solution of the homogeneous equation. Hence the general solution is
y(t) = crcos t + casin t +t[c3cos t + cysin t] — 2 sin t /8.

8. Based on the results in Problem 2, y.(t) = ¢1 + coel + cset. Tt was also shown
that W(1,ef,et) =2, with Wi(t) = =2, Wa(t) = e, W5(t) = e'. Therefore we
have u{(t) = —csc t, uj(t) =e tcsct /2, uj(t) = et csc t /2. The particular solu-
tion can be expressed as Y (t) = [u1(¢)] + e [ua(t)] + €' [us(t)]. More specifically,

t gt —t gt
Y (t) = In|esc(t) 4 cot(t)]| + % / e~ % csc(s)ds + 67 e’ csc(s)ds
to t()

= In |esc(t) 4 cot(t)] + / cosh(t — s) csc(s)ds.

to

9. Based on Problem 4, u{(t) =sec t, us(t) = —1, ui(t) = —tan t. The particu-
lar solution can be expressed as Y (t) = [u1(t)] + cos t [uz(t)] + sin ¢ [us(t)]. That
is, Y(t) = Insec(t) + tan(t)| — ¢ cos ¢ + sin ¢ In|cos(t)|. Hence the general solution
of the initial value problem is y(t) = ¢; + ¢a cos t + ¢z sin ¢ + In [sec(t) 4 tan(t)| —
t cos t + sin t In|cos(t)|. Invoking the initial conditions, we require that ¢; + ¢ =
2,¢c3 =1, —co = —2. Therefore y(t) = 2cost + sint + In|sec(t) + tan(t)| — tcost +
sintln |cos(t)|. Since —m/2 < t < w/2, the absolute value signs may be removed.

2.2 4
2.1 49
2.0

1.9 4

1.7 4

1.6 4

1.4 4

1.3 4
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10. From Problem 6, y(t) = c; cost + casint + cgt cost + cut sint — t? sint/8. In or-
der to satisfy the initial conditions, we require that ¢c; =2, co +¢3 =0, —c1 + 2¢4 =
—1,-3/4 — c3 — 3c3 = 1. Therefore y(t) = (Tsint — Ttcost + 4tsint — t2sint) /8 +
2cost.

12. From Problem 8, the general solution of the initial value problem is
y(t) = c1 + cae’ + cze” " + In|esc(t) + cot(t)| +

et [ et !
+— [ e Fesce(s)ds+ — [ e®cse(s)ds.
2 Ji 2 Ji

In this case, tg = 7/2. Observe that y(7/2) = y.(7/2), y'(7/2) = yl(7/2), and
y”(n/2) =yl (w/2). Therefore we obtain the system of equations

c1 + coe™? 4 e/ = 2,

coe™? — 0367“/2 =1,

/2

c2e™? 4 c3e”T/? = 1.

Hence the solution of the initial value problem is

t

y(t) = 3 — e ™2 £ In|esc(t) + cot(t)| + / cosh(t — s) csc(s)ds.
w/2
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13. First write the equation as y"’ +z 'y” — 2272y’ 4+ 2273y = 22. The Wron-
skian is evaluated as W (x, 22, 1/2) = 6/2. Now compute the three determinants

0 22 1/x x 0 1/z
Wi(z) =0 2z —1/2%|=-3, Wa(x)=|1 0 —1/2? =2/x,
1 2 2/48 01 2/3
r 22 0
Wa(z)=1{1 2z 0|=2?
0 2 1
Hence uj(z) = —2?, uj(z) = 22/3, uj(xr) = 2*/3. Therefore the particular solu-

tion can be expressed as

Y(z) =z [-2°/3] + 2® [2° /3] —|—% [2°/15] = 2% /15.

15. The homogeneous solution is y.(t) = ¢1 cos t + cosin t + c3 cosh ¢ + ¢4 sinh ¢.
The Wronskian is evaluated as W (cos t,sin t, cosh ¢,sinh t) = 4. Now the four
additional determinants are given by Wi(t) = 2 sin t, Wa(t) = —2 cos ¢, Ws(t) =
—2 sinh ¢, Wy(t) = 2 cosh ¢. If follows that

ui(t) =g(t) sin(t)/2,  ug(t) = —g(t) cos(t)/2,
us(t) = —g(t) sinh(t)/2, uy(t) = g(t) cosh(t)/2.

Therefore the particular solution can be expressed as

Y(t) = M/ g(s) sin(s)ds — M/ g(s) cos(s) ds—

2 to 2 to
h(t) [* inh(t) [*

_ cosh(t) / g(s) sinh(s)ds + sinh(t) / g(s) cosh(s)ds.
2/ 2/,

Using the appropriate identities, the integrals can be combined to obtain

Y(t)= f/ g(s) sinh(t — s) ds — %/ g(s) sin(t — s)ds.

2 to to

17. First write the equation as y"' — 32~ ly” + 6272y’ — 62 3y =g(x) /2. Tt
can be shown that y.(z) = c1x + co 22 + c3 x> is a solution of the homogeneous
equation. The Wronskian of this fundamental set of solutions is W (x, 2% 2?) =
223, The three additional determinants are given by Wi(x) = 2%, Wa(x) = —223,
Ws(x) = 2. Hence u(z) = g(z)/22%, us(z) = —g(z) /23, uj(z) = g(z)/22*. Now
the particular solution can be expressed as

“g(t) “g(t) “g(t)

0 0 0

1 x 2 2 3
:5/ {m—m—km}g(t)dt.
zo



CHAPTER

5

Series Solutions of Second Order

Linear Equations

1. Apply the ratio test:

(@ =3)"] _

lim = lim |z—3|=|z—3|.
n — o0

n—oo |(z—3)"|
Hence the series converges absolutely for |z — 3| < 1. The radius of convergence
is p=1. The series diverges for x = 2 and x = 4, since the n-th term does not
approach zero.

3. Applying the ratio test,

‘n! x2nt2 } ] 72

n1—>moo |(n+1)|1‘2”| - nl—>moo'n,+1 -

The series converges absolutely for all values of . Thus the radius of convergence
is p=o00.

4. Apply the ratio test:

|2n+1$n+1|
lim = lim 2z|=2]|z|.
Hence the series converges absolutely for 2|z| < 1, or |z| < 1/2. The radius of
convergence is p = 1/2. The series diverges for x = +1/2, since the n-th term

does not approach zero.
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Chapter 5. Series Solutions of Second Order Linear Equations

6. Applying the ratio test,

: |”(I*x0)n+1| : n
1 - 1 _n _ _ B '
”E%O|(n+1)(a:—xo)"| ] [(z = z0)| = |(z — =)

Hence the series converges absolutely for |(z — xp)| < 1. The radius of convergence
isp=1. At x = 29 + 1, we obtain the harmonic series, which is divergent. At the
other endpoint, x = zg — 1, we obtain

00 _1)n
Z(n) ,

n=1

which is conditionally convergent.

7. Apply the ratio test :

_[3"(n+1)2(z+2)" . (n41)?
hm = —_—
n = oo ‘3”+1n2(,1:—|-2)”| nooo 3n2

1
(@ +2)] =g l(@+2)].
Hence the series converges absolutely for § [z 4 2| < 1, or |z + 2| < 3. The radius
of convergence is p = 3. At z = —5 and = = +1, the series diverges, since the n-th

term does not approach zero.

8. Applying the ratio test,

. nt(n+ 1)1t _ n" 1
im = lim —|z| = —|z],
n—oo |(n+1)"Hnlzn|  n—ooo (n+1)7 e
since
n
1
lim — = lim (14 =) ""=¢"1.

Hence the series converges absolutely for |z| < e. The radius of convergence is
p=ec. At x = e, the series diverges, since the n-th term does not approach zero.
This follows from the fact that
nle™
lim ——=1.

n—00 nN\/2mn

10. We have f(z) = e®, with f(")(z) = e, for n =1,2,.... Therefore f((0) = 1.
Hence the Taylor expansion about xyp = 0 is

o0 :En
T __ —_
-y o
n=~0
Applying the ratio test,
|n!x”+1|
™ —  lim |z| = 0.

The radius of convergence is p = c0.
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11. We have f(z) =z, with f/(z) =1 and f™(z) =0, for n=2,.... Clearly,
f(1)=1and f’(1) =1, with all other derivatives equal to zero. Hence the Taylor
expansion about zg = 1 is

=1+ (z-1).

Since the series has only a finite number of terms, it converges absolutely for all x .

14. We have f(z) =1/(1+2z), f'(z) = —-1/(1 + )2, f"(x) =2/(1 + 2)3,... with
fO(z) = (=1)"n!/(1 4+ 2)"*!, for n>1. Tt follows that f(™(0) = (—1)"n! for
n > 0. Hence the Taylor expansion about zg =0 is

1 o0
— _1 n n'
1+ T;O( )’z

Applying the ratio test,

|wn+1‘

lim = lim |z| = |z]|.

The series converges absolutely for || < 1, but diverges at x = +1.

15. We have f(z) =1/(1—2z), f'(z) =1/(1 —2)2, f"(z) =2/(1 —z)3,... with
fO(z) =n!/(1 —2)"*! for n > 1. It follows that £ (0) = n!, for n > 0. Hence
the Taylor expansion about zg = 0 is

1 o0
l—m:gx'

n=0

Applying the ratio test,

o]
lim = lim |z|=|z|.

The series converges absolutely for |z| < 1, but diverges at z =+ 1.

16. We have f(z)=1/(1—2), f'(z) =1/(1 — )2, f"(x)=2/(1 —x)3,... with
f () =n!/(1 —z)**, for n > 1. It follows that f(™)(2) = (—=1)"*'n! for n > 0.
Hence the Taylor expansion about xg = 2 is

1 - n n
R DCCEL

Applying the ratio test,

@2
lim ———— = lim |z —2|=|z—2|.
n— oo ‘(x72)n| n — oo

The series converges absolutely for | — 2| < 1, but diverges at z =1 and z = 3.

17. Applying the ratio test,

P (U B 3
n— 0o | x| n—oo N

x| = |-



130 Chapter 5. Series Solutions of Second Order Linear Equations

The series converges absolutely for |z| < 1. Term-by-term differentiation results in

= Zan”_l:1+4x+9x2+16x3+...

n=1
Z (n—1)2""2 = 44 18z + 4822 + 1002> + . ..

Shifting the indices, we can also write

oo

y' = Z(n+1)2x” and y” = Z(n+2)2(n+1)x
n=20

n=0

20. Shifting the index in the second series, that is, setting n =k + 1,

o0
g apxktt = E ap_12" .

k=0 n=1

Hence

k=1

(oo} (oo}

k
E Ap12° + E aka: g ak+1x + E Ap— 13:
k=0 k=0

=a1 + Z (ags1 + akfl)xk—’_l.
k=1
21. Shifting the index by 2, that is, setting m =n — 2,

oo [ee]

Z n(n —ap,z" 2 = Z (m+2)(m+ Dayizz™

n=2 =

= Z n+2)(n+1a,r22™.

22. Shift the index down by 2, that is, set m =n 4 2. It follows that

o0 oo oo
E apz™t? = E Ao ™ = g Ay " .
n=20 m=2

n=2

24. Clearly,

oo oo o0

(1—2?) Z n(n —1)a,z" 2 = Z n(n —1a,z" 2 — Z n(n — Dayz™.

n=2 n=2 n=22
Shifting the index in the first series, that is, setting k =n — 2,

oo oo

Z n(n —1a,z™ 2% = Z (k4 2)(k + 1)ag o "

n=2 =

Z (n+2)(n+ 1)ap42z™.
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Hence

o0 o0 o0

(1— 2% Z n(n —1)a,z" 2 = Z (n+2)(n+ Dapsaz™ — Z n(n — 1)a, a".

n=2 n=0 n=2
Note that when n = 0 and n = 1, the coefficients in the second series are zero. So

oo oo

(1 —2?) Z n(n —1a,z" 2% = Z [(m+2)(n+ Dantz —n(n —1)ay]z™.

n=2 n=0

26. Clearly,

o0 o0 o oo
E na, "t 4+ x g anpx" = E nan 2" + E an 2"t
n=0 n=20

n=1 n=1
Shifting the index in the first series, that is, setting k =n —1,

o0

i na, " = Z (k+ l)akﬂxk.

n=1 k=0

Shifting the index in the second series, that is, setting k =n+ 1,

o0 o0
E an 2"t = g ap_12".
n=20

k=1

Combining the series, and starting the summation at n =1,

o0 oo oo
Z na, 2" '+ x Z an " = a; + Z [(n+ Dapt1 + an—1]a™.
n=0

n=1 n=1

27. We note that

o0 (o) o0 o0
T Z n(n — Day, a2 4 Z an " = Z n(n —Da, 2" + Z anx".
n=2 n=0 n=2 n=0
Shifting the index in the first series, that is, setting k =n — 1,
oo oo oo
Z n(n —Da, 2" = Z k(k + a2 = Z k(k + Dagg12",
n=2 k=1 k=0

since the coefficient of the term associated with k = 0 is zero. Combining the series,
o0

x Z n(n —1a, 2" 2 + Z ap " = Z [n(n+ Dapsr + an) ™.
n=20

n=2 n=0
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o
N

1.(a,b,d) Let y = ag + a1z + asx® + ... + apz™ +.... Then

o0

n=2 n=0

Substitution into the ODE results in

o0

Z(n+2)(n+1 Yanto " Zan =

n=0

or

ST+ 2)(n+ Dants —an)a™ = 0.
n=0

Equating all the coefficients to zero,

(n+2)(n+1apt2 —an, =0, n=0,1,2,....
We obtain the recurrence relation
an+2:a—n, n=0,1,2,....

(n+1)(n+2)
The subscripts differ by two, so for £ =1,2,...

aop = 2E=2 a2k —4 _ __ %
T k—1)2k  (2k—3)(2k—2)(2k— 12k T (2k)!
and
a _ @21 a2k—3 _ _ ai
T 0k2Ek+ 1) (2k—2)(2k—1)2k(2k+1) T (2k+ 1)
Hence
o 2 p2k+1
- g (2 2k + 1)1
The linearly independent solutions are
2?2 2 S
y1*1+—+ﬁ+a+ .=cosh x
3 x® a2l
—x—l—?—l—g—l—?—% . =sinh x.

(c¢) The Wronskian at 0 is 1.

4.(a,b,d) Let y = ag + a1x + asx® + ... + apz™ + .... Then

inn—lan in+2 Y(n+ Dagyio 2™

n=2 n=20

= Z n(n —1Da,z"? = Z (n+2)(n+ 1apt2 ™.
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Substitution into the ODE results in

oo

n+2)(n+ Dapisz™ + k222 apz” =0.
> N

n=0 n=0

Rewriting the second summation,

(n+2)(n+ Dapsaz™ + Z k2a,_o " =0,

n=0 n=2

that is,

2a2 +3-2azz + Z [(n+2)(n+ 1)ans2 + kan—2] 2" = 0.

n=2

Setting the coefficients equal to zero, we have as =0, a3 =0, and
(n+2)(n+1)apo +k%an_o=0, for n=2,34,....

The recurrence relation can be written as

kQCLn_Q
Upgo = ———— "2 =9234,....
2 (n+2)(n+1)
The indices differ by four, so a4, ag, ai2,... are defined by
k2aq ka4 k2ag
G4=———, Gg = ——— , Q13 = —
YTy T TR T 121
Similarly, as, ag, a13,... are defined by
k2a1 ]412(15 k2a9
a5 =——, Qg = ———, ay3 = —
ST 54 YT 98P T 1312

The remaining coefficients are zero. Therefore the general solution is

k> 4 Kt 8 k° 12
= 1-— —
Y ao[ 13" Ys7r 43" nars7aszt %
K5 k 9 ke 13
o [x—Mw T9 8547 1B12.9.8.4.4° ]
Note that for the even coefficients,
k24—
m = = > :1,2, g
a4 (4m — 1)dm mn 3
and for the odd coefficients,
k%a4m—3
] = — . 0Am=3 =1,2,3,....
ml = m@m 1) 3

Hence the linearly independent solutions are
(oo}
-1 m+1 k22174 m-+1
yi(z) =14 Z (=) ( )
m:03~4-7-8 . (dm+3)(dm+4)

B 0o (_1>m+1(k2$4)7n+1
ya(z) == 1+mZ:04-5.8~9...(4m+4)(4m+5) '
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(¢) The Wronskian at 0 is 1.

6.(a,b) Let y = ap + a1z + axz® + ...+ a,2™ +.... Then

oo 9]
y/ = Z nanxnfl = Z (n + 1)&7L+12En
n=0

n=1

and

M8

y" = Z n(n —Da,z"? =

n=2 n

Substitution into the ODE results in

(n+2)(n+1)ap422™.

Il
o

o

oo e}
(24 2?) Z (n+2)(n+ Dapizz™ —x Z(n—i— Dapyr12"™ +4 Z anz” =0.

n=0 n=20 n=0

Before proceeding, write

oo

z? Z (n+2)(n+ Dapqaz™ = Z n(n — Da,z"

n=0 n=
and
x Z (n+1app12" = Z napx".
n=0 n=1
It follows that
dag + 4as + (3ag + 12a3)z+

+ Z 2(n+2)(n+ 1)ant2 + n(n — Da, —na, +4a,] 2" = 0.
n=2
Equating the coeflicients to zero, we find that as = —ag, ag = —a; /4, and
n?—2n+4
Opyo =————7——0ay, n=012,....
2T o+ 2)(n+1)
The indices differ by two, so for £k =0,1,2,...
(2k)* — 4k + 4

G2k = To 0k 1 2) 2k + 1)

and
(2k +1)2 — 4k +2

A2k43 = — 202k + 3)(2k + 2) A2k+1-

Hence the linearly independent solutions are

z* 2f

o224 T
yi() SRR i

Y
4 160 1920

yo(z) =2 —

(c¢) The Wronskian at 0 is 1.



135

7.(a,b,d) Let y = ag + ayr + asz? + ...+ a,2™ +.... Then

o0 o0
y' = Z napz" ! = Z (n+ Dapp12”
n=1 n=0
and
y" = Z n(n —1a,z" 2 = Z (n+2)(n+ apso ™.
n=2 n=20
Substitution into the ODE results in
Z (n+2)(n+1apioz™ +x Z (n+1ap12™ + 2 Z apz™ =0.
n=0 n=0 n=0

First write

(o) (o)
x Z (n+ Dappi2™ = Z napx".

n=0 n=1

We then obtain

2as + 2a¢ + Z [(n+2)(n+ 1apss +na, +2a,]z" =0.

n=1
It follows that az = —ag and apy2 = —an/(n+1), n=0,1,2,.... Note that the
indices differ by two, so for £k =1,2,...
aon = _ 92k=2 agk—4 _ (=1)*ag
T % -1 (2k—3)2k—-1) 7 1-3-5...(2k—1)
and
a _ _O2k—1 _ _ O2k—3 _  _ (=D*ay
2k 2k (2k—2)2k T 2-4-6...(2k)°

Hence the linearly independent solutions are

T X T T
—1- 4+ 2 - =1
(@) 1713 135" +§11-3~5...(2n—1)
yg(x):x—x—S—Fi—L—l— :x_A'_OO%
2 2.4 2.4.6 7 4946 (2n)

(c¢) The Wronskian at 0 is 1.

9.(a,b,d) Let y = ap + a1 + azz® + ... + a,2™ +.... Then

oo

oo
y' = Z nan,x" "t = Z (n+ 1apy12"

n=1 n=20
and

b= 3 - D = 3 (0 20+ Dan 2™

n=2 n=20
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Substitution into the ODE results in

o0

(1+2?) Z (n+2)(n+ 1)apioz™ — 4z Z (n+1)aps12" +6 Z apz” =0.

n=0 n=20 n=20

Before proceeding, write

z? Z (n+2)(n+1)apoz™ = Z n(n — 1apz™
n=20 n=2
and
T Z (n+ Day12™ = Z na,x".
n=0 n=1

It follows that
6ag + 2az + (2a1 + 6az)z+

+ Z [(n+2)(n+ Daptz +n(n—1)a, —4nay, + 6a,] 2" =0.
n=2
Setting the coefficients equal to zero, we obtain as = —3ag, azg = —a1/3, and
(n—2)(n—3)
=—0—Q—= =0,1,2,....
An+2 (n+1)(n+2)an7 n 5 Ly 4y

Observe that for n =2 and n = 3, we obtain a4 = a5 = 0. Since the indices dif-
fer by two, we also have a, =0 for n > 4. Therefore the general solution is a
polynomial

y = ag + a1z — 3apx® — a12/3.

Hence the linearly independent solutions are

yi(z) =1-32> and yo(z) =2 —2°/3.

(c) The Wronskian is (22 + 1)2. At x = 0 it is 1.

10.(a,b,d) Let y = ag + a1z + asx® + ... + a,a™ +.... Then

o0 oo

b= 3 nln - Dane? = 3 (0 20+ Dan iz

n=2 n=20

Substitution into the ODE results in

(4-27) Z (n+2)(n+1ayp22" +2 Z apz™ =0.
n=0 n=0
First write
oo oo
z? (n+2)(n+ Dapiaz™ = Z n(n — Dayz™.
n=20 n=2

It follows that
2ag + 8az + (2a1 + 24a3)x+
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—1—2 (n+2)(n+ 1apt2 — n(n — Day, + 2a,] 2" =0.

n=2
We obtain ag = —ag/4, ag = —a1/12 and
4(n+ 2)apt2 = (n—2)a,, n=0,1,2,....

Note that for n = 2, a4 = 0. Since the indices differ by two, we also have as, =0
for k =2,3,.... On the other hand, for k=1,2,...,

S (2k — 3)agk—1 _ (2k —5)(2k — 3)agk—3 _ —a '
42k +1) 42(2k — 1)(2k + 1) 4k (2k — 1)(2k + 1)
Therefore the general solution is
2+l
y—ao+a1$—a0 alz4n Den 1)

Hence the linearly independent solutions are y;(z) = 1 — 22/4 and
3 5 7 p2n+1

@) =T 15~ 900 " a0 T Z4”(2n—1)(2n+ )’

(¢) The Wronskian at 0 is 1.

11.(a,b,d) Let y = ag + a1z + asx® + ... + apz™ + .... Then

y = i napx" "t = i (n+ Day 12"
n=1 n—=0
and - -
y" = Z n(n —1a,z" 2 = Z (n+2)(n+ 1ayox™.
n=2 n=0
Substitution into the ODE results in
(3 —2?) i(n+2)(n+1)an+2x”—3x i(n—i—l Jan+1z" Zan =
n=0 n=0
Before proceeding, write
2 i (n+2)(n+ apiz2™ = i n(n — 1)a,z"
n=0 n=2

and
o0 o0
x Z (n+ Dappi2™ = Z napx".
n=20 n=1
It follows that
6as — ag + (—4a; + 18a3)x+

+ Z n+2)(n+ 1apta —n(n — Da, —3na, —ay] 2™ =0.

n=2



138 Chapter 5. Series Solutions of Second Order Linear Equations

We obtain as = a¢/6, 2a3 = a1/9, and
3(n+2)apt2=Mn+a,, n=0,1,2,....
The indices differ by two, so for k =1,2,...

a o (2/€ — 1)(12]@,2 . (2k — 3)(2]{7 - 1)a2k,4 - - 3-5... (2k — 1) aop
RTUTTR@RK) T 32(2k—2)(2k) 7 3F-2-4...(2k)
and
a - (2]@)&2]6,1 o (2k - 2)(2]?)0,2]6,3 o - 2:4-6... (Qk) ay
T B0k+1) RRE—1)(2k+1) 7 3%.3.5...(2k+1)°
Hence the linearly independent solutions are
A Y = 3-5...2n— 1)z
=14+ — 4+ — + — =1
n@) =1+ g +or gt +nzl 304, (2n)
203 8x°  16x7 2-4-6...(2n) x>t
pa(@) =+ =g+ e o '_z+¥13n-35 2n+1)

(¢) The Wronskian at 0 is 1.

12.(a,b,d) Let y = ag + a1z + agz? + ... + a,2™ +.... Then

y' = Z na,z" ! = Z (n+ Day412”
n=1 n=0
and
y" = Z n(n —1)a,a™ 2 = Z (n+2)(n+ api22™.
n=2 n=0
Substitution into the ODE results in
(1—x) Z (n+2)(n+1)apioz™ +x Z (n+ Dapp12™ — Z apz" =0
n=0 n=0 n=0
Before proceeding, write
x Z (n+2)(n+ 1)ayoz™ = Z (n+1)napprz”
n=20 n=1
and
oo
xZ(n—i—l pyp12” Znana:
n=0 n=1

It follows that

2a9 —ap + Z [(n+2)(n+ Danta — (n+ D)nanpyr +nay, —ay)z™ = 0.
n=1

We obtain as = ag/2 and
n+2)(n+1apt2 — (n+Dnaper + (n—1)a, =0
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for n=0,1,2,.... Writing out the individual equations,

3-2a3—2-1as =0
4-3a4—3-2a3+ay=0
5-4das —4-3a4+2a3=0
6-5a6 —5-4a5+3a,=0

The coefficients are calculated successively as az = ao/(2-3), a4 = a3/2 — as/12 =
ap/24, a5 = 3a4/5 — a3/10 = ag/120, .... We can now see that for n > 2, a, is
proportional to ag. In fact, for n > 2, a, = ag/(n!). Therefore the general solution

18
- (Z0£L'2 a()SCS a0$4
Yy =ag+ a1+ 21 + 30 + I

Hence the linearly independent solutions are ys(x) = z and

oo :L’n Y
yi(r) =1+ Z e e
n=2
(¢) The Wronskian is e*(1 — z). At x =0 it is 1.
13.(a,b,d) Let y = ag + a1z + asx® + ... + a,z™ + .... Then

oo o
y' = Z nanpx" "t = Z (n+ 1apy12"

n=1 =0

3

and

M8

y" =Y nn—Da,a"? = 3 (n+2)(n+ Dagoa”
n=2

3
Il
<)

Substitution into the ODE results in
o0 o0 o0
2 Z (n+2)(n+Dayq22" + Z (n+ Day 2™ + 3 Z anz™ =0.
n=~0 n=0 n=0

First write

(o) o0
x Z (n+ Daypi2™ = Z napx".

n=0 n=1

We then obtain

day + 3ap + Z 2(n+2)(n+1)ante +nay +3a,]2z" =0.

n=1
It follows that ay = —3ag/4 and

2(n+2)(n+ Dapi2+ (n+3)a, =0
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for n =0,1,2,.... The indices differ by two, so for k=1,2,...

_ (2](3 + l)agk_z . (2](1 — 1)(2]€ + l)agk_4
2(2k — 1)(2k)  22(2k — 3)(2k — 2)(2k — 1)(2k)

B (=1)*3-5 ... (2k +1) u

B 2k (2k)! o

Q2 =

nd
"  (2k+2)agg-1 (2k)(2k + 2)ask_3

G2k T k) 2k + 1) 22(2k — 2)(2k — 1)(2k)(2k + 1)

_ (=1)F4-6... (2k)(2k + 2)

2F (2 + 1)!

aj .

Hence the linearly independent solutions are

yi(z) =1- Zﬂ + 3%:54 - @mﬁ +...= ,20 (—1)”325(2n)('2n i 1)x2”

B 1, 1 5 1 . _ ~ (—1)"4-6...(2n+2) 4,4
yQ(l')—l’*g.’E +%x ~ 570% +...fx+n;1 o7 @n 1 1] T .
(¢) The Wronskian at 0 is 1.

15.(a) From Problem 2, we have
yi(x) = 720 ;2; and  yo(z) = ni;) M ~

Since ap = y(0) and a; = y’(0), we have y(x) = 2y;(z) + y2(z) . That is,

1 1 1 1
y(x):2+x+x2+§x3+1x4+ﬁ$5+ﬂ$6+~--

The four- and five-term polynomial approximations are

pa=2+x+2>+2%/3 and ps =2+ + 2 +2%/3 + 21 /4.
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(c) The four-term approximation p4 appears to be reasonably accurate (within 10%)
on the interval |z| < 0.7.

17.(a) From Problem 7, the linearly independent solutions are

n 2n n 2n+1
—14—2135 )andy2 —x+2246 o)
Since ap = y(0) and a; = y’(0), we have y(z) = 4y1(z) — y2(x). That is,

1 4 1 4
y(x):4—x—4x2+§x3+§x4—§x571—5x6+...-

The four- and five-term polynomial approximations are

1 1 4
p4:4—x—4x2—|—§x3, andp5:4—x—4x2+§x3+§m4.

(¢c) The four-term approximation p4 appears to be reasonably accurate (within 10%)
on the interval |z| < 0.5.

18.(a) From Problem 12, we have
o0 xn
yl(x)zl‘*‘ZH and  ya(z) ==.
n=2
Since ap = y(0) and a; = y’(0), we have y(z) = =3 y1(x) + 2y2(x). That is,
3 1 1 1
— 349, 22 Lt 14 1.5 1
y() = =3+ 20— 5o¥ = 5a® — gal e’ — orpal 4
The four- and five-term polynomial approximations are
3 1 3 1 1
D4 :73+2x75x275x and ps = 73+2:cf§x275x37§:c4
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(¢) The four-term approximation p4 appears to be reasonably accurate (within 10%)
on the interval |z| < 0.9.

20. Two linearly independent solutions of Airy’s equation (about xg = 0) are

x3n
—1
@) +n§::12-3 L Bn-1)3n)
x3n+1

x):x+§13.4,,,(3n)(3n+1)-

Applying the ratio test to the terms of y;(z),

|2-3...(3n — 1)(3n) 3" *3| _ 1 3
lim = lim |z|” =0.
n—00]2:-3...3n+2)B3n+3)x3?| n—ooo (3n+1)(3n+2)(3n+3)
Similarly, applying the ratio test to the terms of ys(z),
|34 ...(3n)(3n + 1) 23" +4| , 1 3
lim |z]” =0.

- lim
n—oo|3-4...(3n+3)(3n+4) :c5”+1| n—oo (3n+2)(3n + 3)(3n + 4)

Hence both series converge absolutely for all x.

21. Let y=ap + a1z +asx®> + ... +a,2” +.... Then

o) 00
yl = Z nanx Z TL+1 (Ln+1$

n=1 n=0

and
o0

o
Z (n —1)a,z" 2 = Z(n+2)(n+l)a7l+2x”.

= n

(=)

Substitution into the ODE results in

o0

Z (n+2)(n+1)ap2 2™ — 22 Z (n+1app12™ + A Z anz™ =0.

n=0 n=20 n=0
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First write

o0 (o)
x Z (n+ Daypi2™ = Z napx".

n=0 n=1

We then obtain

o0
2a0 + Nag + Z [(m+2)(n+ Dantz —2na, + Aay] 2" =0.

n=1
Setting the coefficients equal to zero, it follows that
an+42 = —(2n ) Qn
(n+1)(n+2)
for n =20,1,2,.... Note that the indices differ by two, so for £k =1,2,...
(4k —4 — Naog—2 (4 —8 — \)(4k —4 — Naog_4

azk =

(2k —1)2k  (2k —3)(2k — 2)(2k — 1)2k
704ﬁA.“Qf4h+&Mf4k+®
- (2k)! do-
and
4k —2— Nagp—1  (4k — 6 — \)(4k — 2 — Nasy_3
G TTTORRE+ 1) (2k - 2)(2k — 1)2k(2k + 1)
_04ﬁ(A—®.”Q—4k+®Q—4h+%a
(2k +1)! L

Hence the linearly independent solutions of the Hermite equation (about xg = 0)

are

Ay AA=4) , AMA—4HA-8) 4

y1(xz) = fazer T Gl x
A—2 A=2)(A—06) A=2)(A=6)(A—10)
e i T TR 71 i
(b) Based on the recurrence relation
(2n —A)
Q. = Qnp
T+ 1)(n+2)

the series solution will terminate as long as A is a nonnegative even integer. If
A = 2m, then one or the other of the solutions in part (b) will contain at most
m/2+ 1 terms. In particular, we obtain the polynomial solutions corresponding to
A=0,2,4,6,8,10 :

A=0 | y(z)=1

A=2 | plr) =2

A=4 | y(z)=1-22°

A=6 | yo(z) =2 —22%/3

A=8 | yi(z) =1—42° + 42*/3
A=10 | yo(z) = o — 423 /3 + 42° /15




144

Chapter 5. Series Solutions of Second Order Linear Equations

(c) Observe that if A =2n, and ag = a; =1, then

g2n ... (2n —4k 4+ 8)(2n — 4k + 4)
(2k)!

asr = (71)

and
s (2n—2)...(2n—4k+6)(2n — 4k +2)
(2k + 1)! '

for k=1,2,... [n/2]. It follows that the coefficient of ™, in y; and yo, is

~1)REE for n = 2k
an_{( Vay for

azry1 = (—1)

k

(71)’“7(24,6_&!)! for n=2k+1

Then by definition,

[ @) =
H"(x){< ot 2 B )

(—1)* (2,5)1/( ) for n =2k
= (-1 )k% ya(x) for n =2k+1

Therefore the first six Hermite polynomials are

Ho(fﬁ) =1

H1 (.13) =2z

Hy(z) = 42 — 2

Hg(x) = 8 — 12z

Hy(x) = 162" — 4822 + 12

Hs(z) = 322° — 1602° + 120z

24. The series solution is given by
24 6 28

=1—-a?4+ "= -4

y(@) Y% T30 "0
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\ -

T T T 1
-2 -1 1 2
x
-1 4

27. The series solution is given by

1,4 1,8 $12

A T
y(@) 12 T2 sstod T

f T T 1
-2 1 2
x
—0.2

28. Let y =ag + a1z +asx®>+... +a,2" +.... Then

o
y/ _ 2 :nanxn—l _

n=1 n=0

K

(n+ 1Dapy12”

and

(n+2)(n+ apy22".

M8

y" = Z n(n —1a,z" 2 =

n=2 n=0

Substitution into the ODE results in
(1—x) Z (n+2)(n+ Dapi22™ + Z (n+ Dappia™ —2 Z apx” =0.
n=0 n=0 n=0

After appropriately shifting the indices, it follows that

oo
2a9 — 2a0 + Z [(m+2)(n+ Dapt2 — (n+ Dnapyr +nay, —2a,]z™ =0.

n=1
We find that as = ag and
n+2)(n+1apt2 — (n+ Dnapis + (n—2)a, =0
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for n =1,2,.... Writing out the individual equations,
3-2a3—2'1a2—a1:0

4-3a4—3-2a3=0

5-4das —4-3a4 +a3=0

6-5a6 —5-4a5+2a4=0

Since ag = 0 and a; = 1, the remaining coefficients satisfy the equations
3-2a3—1=0
4-3a4—3~2a3=0
5-4das —4-3a4+a3 =0
6-5a6 —5-4a5+2a,=0

That is, a3 = 1/6,a4 = 1/12, a5 = 1/24, ag = 1/45,.... Hence the series solution
of the initial value problem is

_ 1 3 1 4 1 5 1 6 13 7
y(o) =@+ ot + o T ot te

e
W

2. Let y = ¢(x) be a solution of the initial value problem. First note that

"

y" = —(sin 2)y’ — (cos x)y.
Differentiating twice,

n

y"" = —(sin z)y"” — 2(cos x)y’ + (sin z)y
yW = —(sin 2)y"" — 3(cos x)y" + 3(sin z)y’ + (cos x)y .

Given that ¢(0) = 0 and ¢’(0) = 1, the first equation gives ¢”(0) = 0 and the last
two equations give ¢”’(0) = —2 and ¢*)(0) = 0.
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4. Let y = ¢(x) be a solution of the initial value problem. First note that

"o_

y" = -2y’ — (sin 2)y.
Differentiating twice,
y" = —x?y" — (22 +sin z)y’ — (cos z)y
yW = —22y"" — (4z +sin z)y” — (24 2cos x)y’ + (sin z)y.
Given that ¢(0) = ap and ¢’(0) = a1, the first equation gives ¢”(0) = 0 and the
last two equations give ¢’’(0) = —ag and ¢ (0) = —4a;.

5. Clearly, p(z) = 4 and ¢(x) = 6z are analytic for all 2. Hence the series solutions
converge everywhere.

8. The only root of P(z) = x is zero. Hence ppin = 1.
12. The Taylor series expansion of e”, about o =0, is
(oo}

>

n=20

Let y = ag + a1z + asx® + ... + ap,a™ + . ... Substituting into the ODE,

Z ::::] [Z(”+2)(”+1)an+25€” +x Zoanx":O.

n=0 n=0

First note that

8

n
! .

3

o o
T E apx” = E an12" = apx + a1z’ +asx® + ... 4 an_12" + ... .
n=0

n=1

The coefficient of ™ in the product of the two series is

1
cn:2agg—|—6a3 '+12a4 '—|—...

1
(n—1) (n—2)
oot (4 Dnans + (n+2)(n+ Dapto .
Expanding the individual series, it follows that
2a5 + (2a3 + 6a3)x + (ag + 6az + 12a4)2* + (az + 6az + 12a4 + 20as)x> + . ..
...+a0m+a1m2+a2x3+... =0.

Setting the coeflicients equal to zero, we obtain the system 2as = 0, 2as + 6a3 +
ap =0, as + 6az + 12a4 + a1 =0, as + 6az + 12a4 + 20a5 + a3 =0, .... Hence the
general solution is

3 4 5 6

z x T
y(x) = ag + a1 —aog + (ag —al)ﬁ + (241 — ap) —ap—2a1)——+....

w3 120
We find that two linearly independent solutions (W (y1,y2)(0) = 1) are

2t
) =1-—+—=—-——+...
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x* 25 b

yo(z) =z — 273 "6

Since p(z) = 0 and ¢(z) = xe™* converge everywhere, p = 0o

13. The Taylor series expansion of cos x, about zg =0, is

& —1)g2n
COS *r = Z ((2)”/)'

n=0

Let y = ag + a12 + asx® + ... + anx™ + .... Substituting into the ODE,

x© nx2n > >
[Z((;)n)' [Z(n+2)(n+1an+2x +Znan *22007@'”:0

n=0 n=0 n=1

The coefficient of ™ in the product of the two series is
en = 2a2b, + 6asby,—1 + 12a4by, o + ... + (n + D)na,4101 + (n + 2)(n + 1)any42bo,
in which cos = by + by + bgx? + ...+ b,x™ +.... It follows that

2@2 — 2@(] + Z cnx" + Z (TL — 2)anx" =0.

n=1 n=1
Expanding the product of the series, it follows that
2a5 — 2aq + 6azr+(—as + 12a4)x? + (—3as + 20as)x> + . ..
..—a1x+a3x3—|—2a4x4+...:0.

Setting the coefficients equal to zero, as —ag =0, 6ag —a; =0, —as + 12a4 =0,

—3a3 + 20a5 + a3 =0, ... . Hence the general solution is
, e 4 5 G 27
y(z) = ap + a1 + apx +01€+GOE+01@+00@+G1%+--- .
We find that two linearly independent solutions (W (y1,y2)(0) = 1) are
G
yi(z) =1+ 27 +—+§0+
T
yg( )—Z‘-‘rg“r%“r%“r

The nearest zero of P(x) = cos x is at x = +7/2. Hence pin = 7/2.

14. The Taylor series expansion of In(1 + ), about 2o =0, is

oo ( 1)n+1zn

In(1+2) = Z%

n=1
Let y = ag + a12 + asx® + ... + a,x™ + .... Substituting into the ODE,

D

nn

] Z n+2)(n+ a2 2"
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+

&0 ( n+1 oo
Z 1 (n+ Dapt12"™ —x Zan =0.
n n=0

n=1 —0
The first product is the series
2a5 + (—2ay + 6a3)x + (ay — 6az + 12a4)x* + (—ag + 6az — 12a4 + 20as)x® + ...
The second product is the series
a1z + (202 — a1/2)a:2 + (3az — as + a1 /3)2® + (4ay — 3a3/2 + 2a2/3 — a1/4)333 +
Combining the series and equating the coefficients to zero, we obtain
2a90 =0
—2a9 +6as+a1 —apg=0
12a4 — 6ag + 3a2 — 3a1/2 =0
20as — 12a4 + 9a3 — 3as + a1/3 =0

Hence the general solution is

(@) = a0+ + (a0 — )’ + (2ag + an) oy ar s+ Gy a0)
Yy\r) = ap a1 an al 6 Qo aq 21 a1120 3 — Qg 120

We find that two linearly independent solutions (W (y1,y2)(0) = 1) are

1'3 1'4 1’6

_1 . -

nE)=1+-+5 -5t
() x3+x4+7x5+

T)=0T— -+ =+ —

Y2 6 24 120

The coefficient p(x) = e® In(1 + z) is analytic at zo = 0, but its power series has a
radius of convergence p = 1.

15. If y; = x and y» = 22 are solutions, then substituting y» into the ODE results
in
2 P(z) 4 22 Q(x) + 2°R(z) = 0.

Setting x = 0, we find that P(0) = 0. Similarly, substituting y; into the ODE
results in Q(0) = 0. Therefore P(z)/Q(x) and R(z)/P(z) may not be analytic.
If they were, Theorem 3.2.1 would guarantee that y; and yo were the only two
solutions. But note that an arbitrary value of y(0) cannot be a linear combination
of y1(0) and y2(0). Hence o = 0 must be a singular point.

16. Let y = ag + a1 + asz® + ... + apz™ + . ... Substituting into the ODE,

oo

Z(n—i—laon Zan =

n=0

That is,

> [0+ Danss — an] 2" = 0.
n=0
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Setting the coefficients equal to zero, we obtain

an
pi1 = ——
n+1 n+ 1
for n=0,1,2,.... It is easy to see that a, =ag/(n!). Therefore the general
solution is
z?2 a3
y(x)_a0[1+x++3)'+ :|_a0€w.

The coefficient ag = y(0), which can be arbitrary.

17. Let y = ap + a1 + azx? + ... + a,x™ + .... Substituting into the ODE,

o0 o0
Z(n+1)an+1x"—x Z apx” =0.
n=0 n=20

That is,

oo oo
Z (n+ a1 ™ — Z p12" =
n=0 n=1

Combining the series, we have

al + Z [(n+ 1apt1 — ap—1] " =0.

n=1

Setting the coefficient equal to zero, a1 = 0 and a1 = ap—1/(n+ 1) forn =1,2,....
Note that the indices differ by two, so for £ =1,2,...

o — a2k —2 _ a2k —4 _ _ ao
Tk T (2k—2)(2k) T 24 ... (2k)
and
agp+1 =0.

Hence the general solution is

31‘2 334 .T6 an 22
— v - /2
y(sc)—ao[l—l—2+222!+233!+...+2nn!—|—..}—aoe .

The coefficient ag = y(0), which can be arbitrary.

19. Let y = ag + a1z + asx® + ... + apz™ + . ... Substituting into the ODE,

(1-2a) Zn—i—lanHm Zanx”:O
= n=20
That is,

o0 (o) (o]
E (n+ Dapyr 2™ E na,z" — E anpx’ =
— n=0

n=1

Combining the series, we have

ap — ap + Z [(n+1Dapt1 —na, —ay] 2™ =0.

n=1
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Setting the coefficients equal to zero, a; = a9 and a,41 = a, for n=0,1,2,....

Hence the general solution is

y@)=a [l+z+2”+2°+.. . +2"+.. ] =ao
The coefficient ag = y(0), which can be arbitrary.

21. Let y = ag + a1 + asx® + ... + a2 + .. .. Substituting into the ODE,

o

Z(n+1)an+1x"+x ianxnzl—i—x.

n=0 n=0
That is,
o0
Zn+1an+1x —l—Zan 12t =14z.
= n=1

Combining the series, and the nonhomogeneous terms, we have

(o)
(a1 — 1) + (2a2 +ag — 1)x + Z [(m+ Dapt1 +an—1] 2" =0.

n=2
Setting the coefficients equal to zero, we obtain a; =1, 2as +ag—1 =0, and

Ap—2
Up = — 5 n:3,4,....
n

The indices differ by two, so for k=2,3,...

I S (=) tay _ (=1)*(ao — 1)
2k (2k)  (2k—2)(2k) " 4-6...(2k) 2-4-6...(2k)’
and for k=1,2,...
o agg—1 agk—3 o o (*1)]C
a2k+1 = — = =... = .
(2k+1)  (2k—1)(2k+1) 3.5...(2k+1)
Hence the general solution is
(m)—a +$+ﬂx2_£+a i_ﬁ.i_a LG_
i) = o 2 3 09291 T35 0933
Collecting the terms containing ag,
z? x? 28
y(m):ao |:1—2+222'_233'+:|
2?2 23 x? z° 8 a7
+[“z‘3‘22m+3.5+m‘3.5.7+ }

Upon inspection, we find that

2 3 $4 x5 .’EG 1.7

y(x):aoe_””2/2+ w+x——x——7+7+7—7+... .
2 3 222! 3.5 233! 3.5-7
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Note that the given ODE is first order linear, with integrating factor p(z) = v’ /2,
The general solution is given by

x
y(x) = e_x2/2/ e 2 dy + (y(0) — 1)6_:‘32/2 +1.
0

23. fa =0, then y1(z) =1. If « = 2n, then agy, =0 form >n+ 1. As aresult,

yi(x) =1
- 2"p(n—1)...(n—m+1D2n+1)(2n+3)...2n+2m —1) ,
_1’m m.
Fa ) '
a=0]1
a=2|1-3z2
a=4[1-102% + 22"

If « =2n+1, then agm1 =0 form>n+1. As a result,

ya(z) =
N z”: (_1)m2mn(n —1).(n=mADEn+3)2n+5)...CnA2m+ 1) g
= (2m + 1)!
a=1|=z
a=3 | z— %x?’
14 3 21
a=5|z—Frd4 2ad
24.(a) Based on Problem 23,
a=2|1-32? y1(1) = -2
a=4]1-10z2+ Lzt | y1(1) =3
Normalizing the polynomials, we obtain
PQ(Q’,‘) =1
Py(z) =—=+ §x2
: 22
3 15 35
P _ 2 v.2 4
(D=5 Tt
a=1 |z y2(1) =1
a=3|z— 2" y2(1) = -2
a=5|z— S+ T | (1) =5
Similarly,
Pi(z)==x
Ps(x) = —gx + gx?’
1
Ps(z) = §5x - %x?’ + %x‘r’
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(¢) Po(x) has no roots. Pj(x) has one root at © = 0. The zeros of Py(x) are at
x==+1/v/3 . The zeros of P3(z) are x = 0,++/3/5 . The roots of Py(z) are given
by x? = (15 +2v/30)/35, (15 — 21/30)/35. The roots of Ps(z) are given by z = 0
and 2% = (35 +2v/70)/63, (35 — 2/70)/63.

25. Observe that

IR B
Py =Y Zk,n_ o (0.

But P,(1) =1 for all nonnegative integers n.

27. We have
2 n _ < ()" Fn! o
(@ -1 =3, Kn— k) "
k=0
which is a polynomial of degree 2n. Differentiating n times,

dn " (=) k!
2o S (2k)(2k — 1) ... (2k —n+ 1)z*F "
in which the lower index is u = [n/2] + 1. Note thatif n = 2m + 1, theny =m + 1.
Now shift the index, by setting kK = n — j. Hence

dn [n/2] (_1)‘771 .
e (@ -1 =>" m(2n —2))(2n—2j—1)...(n—2j +1)z"" %
j=0
[n/2]
n! Z QTL—QJ) 22
= (n— 5 (n —25)! ’

Based on Problem 25,
dn

— )" =l 2"P,(z).
@ =) =l 2Py (0)



154

Chapter 5. Series Solutions of Second Order Linear Equations

e
S

29. Since the n + 1 polynomials Py, P;, ..., P, are linearly independent, and
the degree of Py is k, any polynomial f of degree n can be expressed as a linear
combination

fl@) =" axPi(z).
k=0
Multiplying both sides by P, and integrating,
1 n 1
/ f@) P (z)dz = > ay, / Pi(2) P (2)dz .
—1 k=0 —1

Based on Problem 28,

1
2
P, P, = .
/_1 1 (2) P () = 5
Hence
! 2
P = .
/_1 f(z) P (x)dx Gy Um

1. Substitution of y = =" results in the quadratic equation F(r) = 0, where F(r) =
r(r—1)+4r +2=17r?+3r+2. The roots are r = —2, —1. Hence the general
solution, for x #0,is y = c1 272 + cp L.

3. Substitution of y = " results in the quadratic equation F(r) =0, where F(r) =
r(r—1)—3r+4=17?—4r+4. The root is r = 2, with multiplicity two. Hence
the general solution, for x # 0, is y = (¢ + ¢ In|z|) 22,

5. Substitution of y = 2" results in the quadratic equation F'(r) =0, where F'(r) =
r(r—1) —r+1=17%2—2r+1. The root is r = 1, with multiplicity two. Hence the
general solution, for x # 0, is y = (¢1 + ¢2 In|z|) .

6. Substitution of y = (z — 1)" results in the quadratic equation F(r) =0, where
F(r) =72+ Tr +12. The roots are r = —3, —4. Hence the general solution, for
r# 1l isy=c (x—1)3+cp(x—1)"%

7. Substitution of y = 2" results in the quadratic equation F(r) = 0, where F(r) =
r?2 +5r — 1. The roots are r = —(5 & v/29)/2. Hence the general solution, for

z#£0,isy=0c \x|_(5+@)/2 + o |m|_(5_m)/2.

8. Substitution of y = " results in the quadratic equation F'(r) = 0, where F(r) =
72 —3r +3. The roots are complex, with = (3 + i1/3)/2. Hence the general
solution, for x # 0, is

32 V3 32 . V3

y=c |z COS(T In |x]) + 2 |z sin(T In |z]).
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10. Substitution of y = (x — 2)" results in the quadratic equation F(r) = 0, where
F(r) = r? 4+ 4r + 8. The roots are complex, with r» = —2 + 2i. Hence the general
solution, for x # 2,isy = ¢1 (x — 2) "2 cos(2 In |z — 2|) + co(z — 2) "2 sin(2 In |z — 2|).

11. Substitution of y = z" results in the quadratic equation F(r) =0, where
F(r) =r? 47+ 4. The roots are complex, with r = —(1 + iy/15)/2. Hence the
general solution, for x # 0, is

—1/2

y=c |z| cos( In|z|) + o |:c|_1/2 sin( In |x]).

12.  Substitution of y = z" results in the quadratic equation F(r) =0, where
F(r)=r?—5r+4. The roots are r =1, 4. Hence the general solution is y =
c1X + c2 xt.

14. Substitution of y = 2" results in the quadratic equation F(r) =0, where
F(r) = 4r? + 4r + 17. The roots are complex, with r = —1/2 4+ 2i. Hence the
general solution, for > 0, is y = c¢; 27 /2 cos(2 In ) + c 27 /?sin(2 In ). Invok-
ing the initial conditions, we obtain the system of equations

1
c1 =2, —501 + 2¢co = —3.

Hence the solution of the initial value problem is

y(z) =227 % cos(2 In 2) — 2~ /?sin(2 In ).

As z — 0T, the solution decreases without bound.

15. Substitution of y =z results in the quadratic equation F(r) =0, where
F(r) =r* —4r + 4. The root is r = 2, with multiplicity two. Hence the general
solution, for = < 0, is y = (¢; + ca In |z|) 2%, Invoking the initial conditions, we
obtain the system of equations

(G 2, —201 — Cy = 3.
Hence the solution of the initial value problem is

y(r) = (2 -7 1In |z]) 2°.



156

Chapter 5. Series Solutions of Second Order Linear Equations

0.5 4

We find that y(z) — 0Oasz — 0.

18. We see that P(xz) =0 when x =0 and 1. Since the three coefficients have no
factors in common, both of these points are singular points. Near = = 0,

2x

lim wp(e) = lim o sq—yz = 2
lim 2%¢(z) = lim xQL =4.
z—0 z—0 ;CQ(]_ — x)Q

The singular point = = 0 is regular. Considering x = 1,

. . 2x
ignl(x = Dp(z) = ilgll(x - l)m :

The latter limit does not exist. Hence z = 1 is an irregular singular point.

19. P(x) =0 when =0 and 1. Since the three coefficients have no common
factors, both of these points are singular points. Near x = 0,

I (z) = 1i T —2
i p(e) = by o sy

The limit does not exist, and so z = 0 is an irregular singular point. Considering
z=1,
T —2

ilml(x — Dp(z) = ilml(x — 1)m =1.
—3x

. _ 2 _ . _ 2 _

Clnrnl(a: 1)%q(z) = ilml(x 1) 7x2(1 ) 0.

Hence x = 1 is a regular singular point.

20. P(x) =0 when z =0 and +£1. Since the three coefficients have no common
factors, both of these points are singular points. Near x = 0,

lim zp(z) = lim =

z—0 a0 13(1 — 22)
The limit does not exist, and so x = 0 is an irregular singular point. Near z = —1,
2
lim (x + p(z) = lim (x +1) 54— = —1.

rz——1 rx——1 LES(]. —:L'2)
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lim (z 4 1)%q(x) = lim (z + 1)2# =0.

r——1 z——1 23(1 — x2?)

Hence © = —1 is a regular singular point. At z =1,

. , 2
ilinl(m — Dp(x) = ilgll(ﬂ? - 1)m —1.
lim (z — 1)%q(z) = lim (¢ — 1)* > = 0.

z—1 z—1 x?’(l — x2)

Hence x = 1 is a regular singular point.

22. The only singular point is at z = 0. We find that

x
li =l —=1.

z? — 12
lim z2¢(x) = lim 2? T = —v2.
z—0 z—0 x

Hence z = 0 is a regular singular point.

23. The only singular point is at x = —3. We find that

. . —2x
wl_l}lllg(x +3)p(z) = xl_l)II_lg(l‘ + 3):1: T3 = 6
fim (2 + 3)%(z) = lim (z+3)? =2~
Jim (o4 3P(@) = Jim (@437 S50 =0
Hence x = —3 is a regular singular point.
24. Dividing the ODE by x(1 — 22)3, we find that
2

1
= d = .
p@) = Ta—y i) = e
The singular points are at =0 and 1. For = = 0,
1
=1.

i ep(e) = lim e =

2
=0.

li 2 — i 2
limy 2%q(w) = limy (1 +2)2(1 — 2)3

Hence z = 0 is a regular singular point. For x = —1,
1 1

O |

lim (z+41)p(z) = lim (z+ Um

z——1 r——1
2

. 2 T 2
Hence x = —1 is a regular singular point. For x =1,
1 1

1
1

lim (x — )p(z) = lim (z — 1)m =-3-

rz—1 rz—1
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. 3 2
e = DPa) = I = 0 S

The latter limit does not exist. Hence = = 1 is an irregular singular point.

25. Dividing the ODE by (z + 2)%(z — 1), we find that
2
(x+2)(z—1)"
The singular points are at + = —2 and 1. For x = —2,

3

Jim o+ 2)pla) = lim (o +2) 7o

p(x) = m and ¢(v) =

The limit does not exist. Hence = —2 is an irregular singular point. For z =1,

lim (z — )p(z) = lim (z — 1) 5

z—1 z—1 (a:+2)2 =0.

. . —2
lim (2 — 1)%q(x) = lim (z — 1) EES TV

Hence z = 1 is a regular singular point.

26. P(x) =0 when £ =0 and 3. Since the three coefficients have no common
factors, both of these points are singular points. Near x = 0,

I (@) = I z+1 _1
ano P = T B3 T 3
2. =2 _y.

. 2 T
liy o) = i a® s

Hence x = 0 is a regular singular point. For x = 3,

. . z+1 4
T (+ = 3)p(w) = lim =z — 3)m =3
lim (2 — 3)2¢(2) = lim (2 — 3)2——>— =0
z—3 z—3 x(g — (E) ’

Hence x = 3 is a regular singular point.

27. Dividing the ODE by (22 + z — 2), we find that

z+1 2
p(z) = (z+2)(x—1) and - q(z) = (x+2)(x—1)"
The singular points are at x = —2 and 1. For x = -2,
z+1 1

lim (z +2)%¢(z) = lim 2z +2) =

r——2 B z—=—-2 x—1
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Hence x = —2 is a regular singular point. For x =1,
tinye ) = iy S5 = 5.
li (o~ 1g(a) = iy 5= o,

Hence = = 1 is a regular singular point.

29. Note that p(x) =1In|z| and ¢(z) = 3z. Evidently, p(z) is not analytic at
xo = 0. Furthermore, the function xp(x) =« In|z| does not have a Taylor series
about g = 0. Hence x = 0 is an irregular singular point.

30. P(x) =0 when x =0. Since the three coefficients have no common factors,
z = 0 is a singular point. The Taylor series of e* — 1, about = = 0, is

e —l=a+2?/2+2%/6+....

Hence the function x p(z) = 2(e® — 1)/x is analytic at = 0. Similarly, the Taylor
series of e™® cos x, about x = 0, is

e cosx=1—a+a%/3—at/6+....

The function z2g(z) = =% cos x is also analytic at # = 0. Hence x = 0 is a regular
singular point.

31. P(x) =0 when x =0. Since the three coefficients have no common factors,
x = 0 is a singular point. The Taylor series of sin x, about z = 0, is

sinz =z —2°/3! +2° /5 — ...

Hence the function zp(x) = —3sin x/x is analytic at x = 0. On the other hand,
q(x) is a rational function, with

1+ 22
li 2 — I 2
2y =

=1.

Hence z = 0 is a regular singular point.

32. P(x) =0 when £ =0. Since the three coefficients have no common factors,
x = 0 is a singular point. We find that

lim 2 p(z) = lim 2+ = 1

iy eple) = e =1
Although the function R(x) = cot z does not have a Taylor series about =0,
note that z2¢(z) = x cot x =1 — 22/3 — 24 /45 — 225/945 — .. .. Hence x =0 is a
regular singular point. Furthermore, q(x) = cot z/2% is undefined at x = £ nrw.
Therefore the points x = +n7 are also singular points. First note that

lim (zFnmp(z)= lim (z7F mr)l =0.
x

rz—+tnm z—+nm
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Furthermore, since cot x has period w,

1

) = ot 2/ = cot(w F nm)/a = cotla F nm)

Therefore

(x F nm)?q(z) = (x F nw)cot(z F nr) [(x(:s;ﬁ)mr] .

From above,
(x F nm)cot(x F nm) =1— (z F nr)?/3 — (x F nw)*/45 — ... .

Note that the function in brackets is analytic near x = £ nn. It follows that the
function (z F nm)%q(x) is also analytic near x = +nw. Hence all the singular
points are regular.

34. The singular points are located at © = +nw, n =20,1,.... Dividing the ODE
by z sin z, we find that x p(z) = 3 csc x and z%¢q(x) = 2 csc . Evidently, z p(z)
is not even defined at = 0. Hence x = 0 is an irregular singular point. On the
other hand, the Taylor series of z csc x, about z =0, is

rescx=142%/6+ 72360+ ... .
Noting that csc(z F nw) = (—1)"csc z,
(x F nm)p(x) =3(—1)"(z F nm)csc(x F nw)/x

— 3(=1)"(z T nr)cse(z T n) [W;im] .

It is apparent that (x F nm)p(x) is analytic at * = £ nm. Similarly,
(x F nm)%q(z) = (x F nm)’csc x = (=1)"(xz F nw)?csc(z F nr),

which is also analytic at x = +nmw. Hence all other singular points are regular.

36. Substitution of y = z" results in the quadratic equation 72 —r + 3 =0. The

roots are
1+ +1—-45
r=—.
2

If 8> 1/4, the roots are complex, with r; 5= (1 £ i/48 —1)/2. Hence the
general solution, for x # 0, is

1 1
y=c |z|"? 008(5\/46 —1 In|a|) + ca |z|*? sin(; /45 — 1 InJz).

Since the trigonometric factors are bounded, y(z) — 0as x — 0. If 5 =1/4, the

roots are equal, and
1/2 1/2

y=c1 |z|’" 4+ co |2] In |z| .

Since lim, 0 /]z| In |z| =0, y(z) — Oas z — 0. If 8 < 1/4, the roots are real,
with 12 = (1 £ /1 —45)/2. Hence the general solution, for z # 0, is

1/24+/1—45/2 1/2—/1=43/2

y=ci |z + ca |7
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Evidently, solutions approach zero as long as 1/2 — /1 —45/2 > 0. That is,
0<B<1/4.

Hence all solutions approach zero for 8 > 0.

37. Substitution of y = 2" results in the quadratic equation 72 —7 —2 =0. The

roots are 7 = —1, 2. Hence the general solution, for = # 0, is y = c;z ™! + ¢y 2.

Invoking the initial conditions, we obtain the system of equations
c1+co =1, —c1+2c0 =7
Hence the solution of the initial value problem is

2 - 1
y(z) = 3 Tl g J?:’y z2.

The solution is bounded, as z — 0, if v =2.

38. Substitution of y = z" results in the quadratic equation 7% + (v — 1)r +5/2 =
0. Formally, the roots are given by

|—atva?=9a=9 l-a+,/(a-1-vi0)(a—1+VI0)
"= 2 - 2

(i) The roots will be complex if |1 — | < +/10. For solutions to approach zero, as
z — oo, weneed —v10 <1—-a<0.

(ii) The roots will be equal if |1 — & = +/10 . In this case, all solutions approach
zero as long as 1 —a = —v10 .

(iii) The roots will be real and distinct if |1 — a| > +/10. It follows that
l-a+ Va2 -2a-9

rmaz - 2

For solutions to approach zero, we need 1 —oa + Va2 —2a—9 <0. That is,
1 —a < —/10 . Hence all solutions approach zero, as  — 0o, as long as a > 1.

42. x =0 is the only singular point. Dividing the ODE by 222, we have p(z) =
3/(2x) and gq(x) = —z72(1 + x)/2. It follows that

liyepfe) = Iy =

- oo+ 1

lim 2%q(z) = lima”—55— =%
so z = 0 is a regular singular point. Let y = ag + a1z + ax® + ...+ apaz”™ + .. ..
Substitution into the ODE results in

22° Z (n+2)(n+1)ap2 2™ + 3 Z (n+ 1Dapp12"” — (1+2) Z apz” =0.
n=0

n=0 n=0
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That is,

oo

2 Z nn— Dayz™ +3 i na,xr" — i apx” — i ap_12" =0

n=2 n=1 n=0 n=1

It follows that

—ap + (2a1 — ag)z + Z 2n(n — Da, + 3na, — ap —an—1]2™ =0.

n=2
Equating the coefficients to zero, we find that ag =0, 2a; —ag =0, and
2n—-1)(n+1a, =apn-1, n=2,3,....

We conclude that all the a,, are equal to zero. Hence y(x) = 0 is the only solution
that can be obtained.

44. Based on Problem 43, the change of variable, x = 1/£, transforms the ODE
into the form

d*y
4 34y _
d§2+§d€+y 0.

Evidently, £ = 0 is a singular point. Now p(§) = 2/¢ and ¢(§) = 1/¢*. Since the
value of limg _, £2¢(€) does not exist, £ =0 (z = 0o) is an irregular singular point.

§

46. Under the transformation z = 1/¢, the ODE becomes

1. d* 3 1 21| dy _
¢! (1—?2)@‘5‘ 2€ (1—?)4'25 R d§+ ala+1)y=0,
that is,
3
(€ -5 +20 % b oo+ 1y =0.
Therefore £ = 0 is a singular point. Note that
2 ala+1)
It follows that 2
lim €p(€) = lim &= =0,
lim €29(6) = lim 22O FD 0 p1).

£—0 £—0 52(52 - 1)

Hence £ =0 (z = o0) is a regular singular point.

48. Under the transformation z = 1/¢, the ODE becomes

d%y dy
g4d£2 [2§3+2§2§] %—F)\y—o
that is,
§4d Y +2(§3+§)—+/\y_0

dez dé
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&)

Therefore £ = 0 is a singular point. Note that

2062 +1 A
p(€) = (553” and q(6) = 5

It immediately follows that the limit lime o & p(€§) does not exist. Hence £ =0
(z = 00) is an irregular singular point.

49. Under the transformation z = 1/¢, the ODE becomes

d%y dy 1
- 4282y =0.
3 izt § rrar
Therefore £ = 0 is a singular point. Note that
2 -1
p(§) = ¢ and ¢(¢) = ra
We find that 5
but

(=D
&

The latter limit does not exist. Hence £ = 0 (z = 00) is an irregular singular point.

lim £%(¢) = lim ¢

1.(a) P(x) =0 when « = 0. Since the three coefficients have no common factors,
z = 0 is a singular point. Near z = 0,

. . 1

2y ep) = e, =5
lim 2%¢(z) = lim 5321 =0.
z—0 z—0 2

Hence z = 0 is a regular singular point.

(b) Let

o0
y=a"(ap + a1z +ar® + ... +az" +...) = Za,&;“‘”.

n=20

Then

y/ — Z(r+n)an$r+71—l
n=0
and

y" = Z (r+n)(r+n—1a,z ™2

n=0
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Substitution into the ODE results in

2 Z (r+n)(r+n—1a,z" " + Z (r+n)a,z™ "t 4 Z anz" T =0.

n=0 n=20 n=0

That is,

227“+n(r+n—1 T+"+Zr+n T+"+§:an—2xr+"=0-

n=20 n=2

It follows that
ap [2r(r — 1) +r]z" +ay [2(r + D)y + 7+ 1] 2"

—I—Z (r+n)(r+n—1a, + (r+n)a, +a, 22" =0.

n=2

Assuming that ag # 0, we obtain the indicial equation 2r%2 —r =0, with roots
r1 =1/2 and ro = 0. It immediately follows that a; = 0. Setting the remaining
coefficients equal to zero, we have

—ap—2

(r+n)2(r+mn)—1]"°

n=23,....

Ay =

(c) For r = 1/2, the recurrence relation becomes

—O0p—2
n(l1+2n)’

Since a; = 0, the odd coefficients are zero. Furthermore, for £k =1,2,...,

=2,3,....

Ay =

—Qgk—2 a2k —4 _ (—=1)kag

2k(1+4k)  (2k —2)(2k)(4k —3)(4k +1)  2Fk!5-9-13 ... (4k+1)°

Az =

(d) For r = 0, the recurrence relation becomes

—anp—2
n = N\ :2,3,... .
“ n(2n —1) "

Since a; = 0, the odd coefficients are zero, and for k =1,2,...,

—Qgk—2 agk—4 _ (=1)*ag

T oKk —1)  (2k —2)2k)(4k —5)@dk —1)  2FKI3.7-11...(4k 1)

The two linearly independent solutions are

( 1)k 2k
yi(z) = Vo 1+ngkt5 9-13...(4k +1)

» (1)k 2k
y2(2) +ngk|3711 (4k —1)°

3.(a) Note that xp(x) = 0 and 2?¢(z) = =, which are both analytic at z = 0.
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(b) Set y = 2"(ap + a1z + a2z® + ... + a,a™ + ...). Substitution into the ODE re-
sults in
r+n)(r+n—1a,x" 7" + anz"™" =0,
1 r+n—1 r+n 0
n=0 n=0

and after multiplying both sides of the equation by x,

Z (r+n)(r+mn—1a,z" ™ + Z an_12" " =0.
n=0 n=1
It follows that
o
ag [r(r —1D]a" + Z [(r+n)(r+n—1a, +a,_1]2" ™™ =0.
n=1

Setting the coefficients equal to zero, the indicial equation is r(r —1) = 0. The
roots are 71 = 1 and ro = 0. Here ry — r9 = 1. The recurrence relation is

—0n-1 1.9
ay = , n=1,2,....
(r+n)(r+n-1)
(¢c) Forr=1,
fnol 1,2
_ n—
n(n+1)’ T
Hence forn > 1,
o = —On-1 Ap—2 _ _ (=D)"a0
"Tan+1) (n—1Dn2(n+1) 7 aln+ 1)

Therefore one solution is

n

B S G Vi
yi(z) == nz::o PICESVE
5.(a) Here xp(x) =2/3 and z%q(z) = x2/3, which are both analytic at z = 0.

(b) Set y = 2"(ap + a1z + a2z® + ... + a,a™ + ...). Substitution into the ODE re-
sults in

3 Z (r+n)(r+n—1a,z" " +2 Z (r+n)a, 2" + Z a2 = 0.

n=0 n=0 n=0

It follows that
ao [3r(r — 1) 4+ 2r) 2" + ay [3(r + 1)r +2(r + 1)] 2"

+ Z B(r+n)(r+mn—1a, +2(r +n)a, +an_2]z" ™ =0.

n=2

Assuming ag # 0, the indicial equation is 3r? — r = 0, with roots r; = 1/3, ro = 0.
Setting the remaining coefficients equal to zero, we have a; =0, and

) B ) 1)

n=23....
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It immediately follows that the odd coefficients are equal to zero.

(c) For r=1/3,

So for k=1,2,...,

g — 022 a2k—4 _ (=1)*aqg
F T ok(6k+ 1) (2k —2)(2k)(6k —5)(6k+1) 2FkI7-13 ... (6k+1)"

(d) For r =10,
—anp—2
n — — 1 = 2, g
“ n(3n —1) " 3
Sofor k=1,2,...,
o — —O2k—2 _ 2k—4 _ (=1)*ag
F T ok(6k — 1) (2k—2)(2k)(6k — 7)(6k — 1) 28 kI5-11 ... (6k—1)

The two linearly independent solutions are

y1(93) :.131/3 14+ i (_l)k (Zj)k
A RIT13 (6 1) 2

-1 i (=1)* 2%
y2(x) = +k:1 k15-11...(6k—1)(5) '

6.(a) Note that xp(z) = 1 and z%q(x) = x — 2, which are both analytic at z = 0.

(b) Set y = 2" (ag + a1 + asx® + ...+ ap,z™ + ...). Substitution into the ODE re-
sults in

Z (r+n)(r+n—1a,z" "+ Z (r+n)a, 2"
n=0 n=20

o o
+ Z anpx it — 92 Z apz™ T =0.
n=0 n=0

After adjusting the indices in the second-to-last series, we obtain

ag [r(r—1)+r—2]a"

+ Z [(T + n)(r +n— ]-)an + (T + n)an - 2(1n + Cl,nfl] {ET+n =0.

n=1

Assuming ag # 0, the indicial equation is r? — 2 = 0, with roots r = =+/2 . Set-
ting the remaining coefficients equal to zero, the recurrence relation is

—Op—1

Note that (r+n)?2 —2=(r+n+v2)(r+n—2).

ap = n=12....
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(c) For r =2,
—0p-1
an = — n:1,2,....
n(n—l—?ﬁ)
It follows that
an = (=1)"ag —1,2,....
a1 42v2)(2+2v2) ... (n+2v2) ] o
(d) For r = —/2,
—Qp—1
= —"=L __ n=12...,
" n(n—2v2)
and therefore
_1)»
(=1)"ao n=12,....

- V)2 - 2v2) .. (n—2v2)

The two linearly independent solutions are

z) =zv2 3 (=)

vi(e) = 1+HZ::1 n!(1+2\/2>)(2+2\/2>)...(n+2\/2>)]
e - (=D a"

be(@) == Hﬂ; n!(l—2ﬁ)(2—2ﬁ)...(n—2ﬁ)]'

7.(a) Here zp(xr) =1 — 2 and 2%q(z) = —x, which are both analytic at z = 0.

(b) Set y = 2"(ap + a1z + azz® + ... + a,a™ + ...). Substitution into the ODE re-
sults in

Z(rJrn)(rJrnf Day, "™ + (r 4 n)a, "1
n=20

n=0
o0 o0

- E (r+mn)a, 2" — E A" =0.
n=0 n=0

After multiplying both sides by =z,

Z (r+n)(r+n—1a,z" "+ Z (r +n)a, 2"
n=0

n=0
o0 o0
- E (r+n)a, 2" — E anpz" T = 0.
n=0 n=0

After adjusting the indices in the last two series, we obtain

ag [r(r—1)+r]a"

+ Z [(r+n)(r+n—1)a, + (r+n)a, — (r+n)a,_1]z" T =0.

n=1
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Assuming ag # 0, the indicial equation is r? = 0, with roots r; = ro = 0. Setting
the remaining coefficients equal to zero, the recurrence relation is

(n—1

= , =1,2,....
=y "
(c) With r =0,
an =L =12,
n
Hence one solution is
2 n
B r x o
y1(l‘)—1+ﬁ+§++ﬁ+—€

8.(a) Note that xp(r) = 3/2 and z%¢(x) = 22 — 1/2, which are both analytic at
z=0.

(b) Set y=a"(ap + a1 + azx® + ...+ a,x™ +...). Substitution into the ODE
results in

2 Z (r+n)(r+n—"1a, 2" + 3 Z (r+n)a, " "

n=0 n=0
oo oo
+2 g anz™ T2 — E apz™t =0.
n=0 n=20

After adjusting the indices in the second-to-last series, we obtain

ap2r(r—1)+3r—1]2" + a1 2(r+1)r+3(r +1) — 1]

o0
+ Z 2(r+n)(r+n—1)a, +3(r+n)a, — an +2a,_2]z" ™" =0.
n=2
Assuming ag # 0, the indicial equation is 212 + 7 — 1 = 0, with roots r; = 1/2 and
ro = —1. Setting the remaining coefficients equal to zero, the recurrence relation

18
_2an72

(r+n+1)[2(r+n)-1]’
Setting the remaining coefficients equal to zero, we have a; = 0, which implies that
all of the odd coefficients are zero.

ap = n=23....

(¢) With r =1/2,
—204”,2
n = o\ :2,3,... .
“ n(2n + 3) "

So for k=1,2,...,

o — —a2k—2 A2k—4 _ (_1)kao
T k(Ak+3)  (k—Dk(4k—5)(4k+3) k'7-11 ... (4k+3)

(d) With r = -1,
_2an—2
n — ) =23,....
“ n(2n — 3) "
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So for k=1,2,...,

o — —agk—2 A2k —4 _ (_1)ka0
T k(k—3) (k- Dk(4k—11)(4k —3)  K'5-9... (dk—3)

The two linearly independent solutions are

! A= nl 711 (4n+3)
y (.’t) -2 111 + i (_1)" 2n
2 L= nl5-9 .. (4n—3)| "

9.(a) Note that zp(x) = —z — 3 and 2%¢(z) = = + 3, which are both analytic at
z =0.

(b) Set y = 2"(ap + a1z + azz® + ... + a,a™ + ...). Substitution into the ODE re-
sults in

o] o0 (o)
Z (r+n)(r+n—1a, 2" — Z (r +n)a, 2" -3 Z (r+n)a, ™"
n=0 n=0 n=0
o0 o0
+ Z apx" T 43 Z az™ T =0.
n=0 n=0

After adjusting the indices in the second-to-last series, we obtain

ag [r(r—1) —3r 4+ 3]a"”
+ Z [(r+n)(r+n—1Da, — (r+n—2)an_1—3(r+n—1a,]2""™ =0.
n=1
Assuming ag # 0, the indicial equation is 72 — 4r 4+ 3 = 0, with roots r; = 3 and
ro = 1. Setting the remaining coeflicients equal to zero, the recurrence relation is

(r+n—2)an—1

n — y =1,2,....
“ (r+n—-1)(r+n-23) "
(c) With r =3,
Day,—
HZM, n=1,2,....
n(n+2)
It follows that for n > 1,
(4 1Dap1 Ap—2 20
" oan+2) (m-1Dn+2) 7 nl(n+2)

Therefore one solution is

yi(z) = z®

—nt(n+2)

10.(a) Here zp(z) =0 and z?q(z) = 22 + 1/4, which are both analytic at z = 0.
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(b) Set y = 2"(ap + a1 + azx® + ... + a,x™ + ...). Substitution into the ODE re-
sults in
oo o0 i 1 oo
r+n)(r+n—Da,z" " + apz" T 4 = apz™ =0.
4
n=20 n=20 n=20

After adjusting the indices in the second series, we obtain

1 1
an [r(r S+ 4} o +a [<r T 4} 2

o0
1
+ Z [(r +n)(r+n—1a, + 14t an_g} 2T =0.
n=2
Assuming ag # 0, the indicial equation is 72 — r + % =0, with roots 1 =1y = 1/2.
Setting the remaining coefficients equal to zero, we find that a; = 0. The recurrence
relation is

_4an—2
n — 5 =2.3,....
= ryoam—12 "
(c) With r =1/2,
—ap—2
ay = 2 , n=23,....

Since a; = 0, the odd coefficients are zero. So for k> 1,

don — —G2k—2 _ a2k—4 _ _ (_1)kao
kT2 2(k—12k2 T 4k(kN2
Therefore one solution is
_ e (71)77,1:277.
yi(z) = Vo |1+ nz::l e
12.(a) Dividing through by the leading coefficient, the ODE can be written as
2
1 z / _
1— 22 + 1— 27 0
Forz =1,
lim (2 — 1)p(x) = lim —— =
= lim (z — x) = lim ==
Po T p z—1 1 + 1 2
2
. _1\2 _ (1 —x)
0=y = () = iy S 0
For x = —1,
— lim (2 + )p(x) = 1 |
po= Jmem e = A e -1 2
2
L 9 .af(x41)
Hence z = —1 and x = 1 are regular singular points. As shown in Example 1, the

indicial equation is given by

r(r—1)+por+q =0.
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In this case, both sets of roots are 7 =1/2 and ro =0.

(b) Let t =2 — 1, and u(t) = y(t + 1). Under this change of variable, the differen-
tial equation becomes

(2 +2t)0u” + (t + Du’ — ®u =0.

Based on part (a), t = 0 is a regular singular point. Set u =3 ""_ a,t""". Sub-
stitution into the ODE results in

oo

S rn)(r+n—Dan ™" +23  (r+n)(r+n—1a,t" !

n=0 n=0

o0 oo oo
+ Z (r+n)a, ™" + Z (r+n)an t™ 7 —a? Z ant™ =0.
n=20

n=0 n=20

Upon inspection, we can also write

oo

o0 o0
1
g (r+n)2antr+”+2g (r+n)(r+n—§)ant’“+nfl—a2 E ant™™ = 0.
n=0

n=0 n=0

After adjusting the indices in the second series, it follows that

aokmr—;ﬂf‘l

c- 1
+ Z {(7" +n)an, +2(r+n+1)(r+n+ §)an+1 — 02@4 e — Q.

n=20

Assuming that ag # 0, the indicial equation is 272 —r = 0, with roots r = 0, 1/2.
The recurrence relation is

1
(r+n)2an—|—2(r+n—|—1)(r—|—n+§)an+1—a2an:0, n=0,1,2,....
With 7 =1/2, we find that for n > 1,

_4a? — (2n—1)? .1 —40%] [9—40?] ... [(2n — 1)? — 40?]

n = n-1= (-1 ’

“ meny =Y 2n(2n + 1)! ao

With r9 =0, we find that forn > 1,

0 — a? —(n—1)2 oy = (1) a(—a)[1-a?] [4—a?]...[(n—1)* — a?] a0
n(2n —1) nl-3-5...(2n—-1)

The two linearly independent solutions of the Chebyshev equation are

yi(x) = |z — 1"/ <1+ DI R— )(9_33(2)54(1()2?_ D7 =200 - 1)")

n=1

—a)(1-a?)(4—a?)...(n—1)2 - a?)
nl-3-5...2n—-1)

pole) =14+ 3 (-1 (- 1)

n=1



172

Chapter 5. Series Solutions of Second Order Linear Equations

13.(a) Here zp(z) = 1 — x and 22g(z) = Az, which are both analytic at = = 0. In
fact,
po= limzp(z) =1and gy = lim 2%q(x) =0.
z—0 z—0

(b) The indicial equation is r(r — 1) + r = 0, with roots r12 =0.

(c) Set
y=ap+ a1z +ax® +...+ax" +....

Substitution into the ODE results in

i n(n — Day z" ' + i na, " — i nay, " + A i anz” =0.
n=2 n=1 n=0 n=0
That is,
i n(n+ Dap41 2™ + i (n+ Dap41 2" — i na, " + A\ i apx™ =0.
n=1 n=0 n=1 n—0

It follows that

a1 +Aag + Z [(n+1)2an+1—(n—)\)an] " =0.

n=1
Setting the coefficients equal to zero, we find that a; = —Aag, and
an = m_n%)\)an,l, n=23,....
That is, for n > 2,
anzwan—l _ (=1 =XN...(n—1-=X) a.

(n!)?

n2

Therefore one solution of the Laguerre equation is

y1(x):1+z (—A)(l—kg...(n—l_)\)mn.

n!)?

n=1

Note that if A =m, a positive integer, then a, =0 for n > m + 1. In that case,
the solution is a polynomial

y1(m):1+z (—A)(l—kg...(n—l_)\)in.

n!)?

n=1
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2.(a) P(z) = 0 only for x = 0. Furthermore, zp(z) = —2 — x and z%q(z) = 2 + 2.
It follows that
po = lim (-2 —2z2) = -2
z—0
go = lim (2 + 2?) = 2
z—0
and therefore x = 0 is a regular singular point.

(b) The indicial equation is given by 7(r — 1) — 2r +2 = 0, thatis, 7> = 3r +2 =0,
with roots 71 =2 and r, = 1.

4. The coefficients P(x), Q(z), and R(x) are analytic for all x € R. Hence there
are no singular points.

5.(a) P(x) =0 only for z = 0. Furthermore, xp(z) = 3sinz/x and 2%q(x) = —2.
It follows that

Po = limSSmx =3
z—0 xT

qo = lim —2= -2
z—0

and therefore x = 0 is a regular singular point.

(b) The indicial equation is given by 7(r — 1) + 3r — 2 = 0, that is, 7 +2r —2 =0,
with roots 7 = =14+ v3 and ro = —1—+3.

6.(a) P(x) =0 for x =0 and z = —2. We note that p(x) = 27 (z +2)71/2, and
q(z) = —(z +2)71/2. For the singularity at z = 0,
I 1 1
=lim —+ =~
Po= o +2) 4

2

lim ——
#50 2(z + 2)

qo =

and therefore x = 0 is a regular singular point.
For the singularity at x = —2,

. . I |
= Jim o+ 2p(e) = i, 7=
— 2
g = lim (z+2)%q(z) = lim —z+2) =0
r——2 r——2 2

and therefore x = —2 is a regular singular point.
(b) For x = 0: the indicial equation is given by r(r — 1) +r/4 = 0, that is, r? —
3r/4 = 0, with roots 71 =3/4 and ro =0.

For z = —2: the indicial equation is given by r(r — 1) —r/4 = 0, that is, 7% —
5r/4 =0, with roots r; =5/4 and 7, = 0.
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7.(a) P(z) = 0 only for z = 0. Furthermore, zp(x) = 1/2 + sinz/ 2z and z%q(x) =
1. It follows that

po = lim ap(xz) =1
z—0
qo = lim z%¢(z) = 1
z—0
and therefore x = 0 is a regular singular point.
(b) The indicial equation is given by
rr—1)+r+1=0,
that is, 72 +1 = 0, with complex conjugate roots r = % 7.

8.(a) Note that P(xz) =0 only for x = —1. We find that p(z) =3(z —1)/(z + 1),
and g(z) = 3/(x + 1)2. It follows that

po= lim (z+1)p(z) = lim 3(z—1)=—6
q = a:l—i>rE1 (z+1)%q(z) = xl_i>r£113 =3
and therefore £ = —1 is a regular singular point.
(b) The indicial equation is given by
r(r—1)—6r+3=0,
that is, 72 — 7r +3 = 0, with roots 71 = (7 ++/37)/2 and ro = (7 —V/37)/2.

10.(a) P(z) =0 for x = 2 and z = —2. We note that p(z) = 2z(x — 2)~?(z +2) 71,
and g(z) = 3(x — 2)"!(x + 2)~L. For the singularity at z = 2,

. . 2x
lim (& — 2)p(z) = lim ——

)

which is undefined. Therefore x = 2 is an irregular singular point. For the singu-
larity at x = —2,

. . 2z 1
po = lim (v +2)p(z) = lim, == =7
. . 3(x+2)
— 2 _ _
%= Jim, (z+2) (@) = lim, =—5==0

and therefore x = —2 is a regular singular point.

(b) The indicial equation is given by r(r — 1) —r/4 =0, that is, r> —5r/4 =0,
with roots 7 =5/4 and ro = 0.
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11.(a) P(x) =0 for x =2 and z = —2. We note that p(z) = 2x/(4 — 2?), and
q(x) = 3/(4 — 2?). For the singularity at = = 2,

. —2x
o =l o~ 2pte) = liy 5 = -1
) 3(2—x)
— _ 9)2 - =
o = Jimy (e = 2al) = iy =y =0
and therefore x = 2 is a regular singular point.
For the singularity at * = -2,
. . 2z
po = xl—I)H—I2 (:E T 2)p(x) B x1—1>H—12 2 — xX =1
) . 3(x+2)
_ 2 _ _
G = lim, (z+2)%q(x) = i, 2—z 0

and therefore x = —2 is a regular singular point.

(b) For z = 2: the indicial equation is given by r(r — 1) — r = 0, that is, 72 — 2r =
0, with roots r1 =2 and r9 =0.

For z = —2: the indicial equation is given by r(r — 1) — r = 0, that is, 72 — 2r =
0, with roots r1 =2 and r =0.

12.(a) P(z) =0 for = 0 and & = —3. We note that p(z) = —22~(z + 3)~!, and
q(x) = —1/(x + 3)2. For the singularity at z = 0,

— lim o p(e) = lim — = >
. 2 . —z?
0= Jim 27q(@) = lim 755 =0

and therefore x = 0 is a regular singular point.
For the singularity at x = —3,

. . -2 2
= fim o+ 9ple) = lim, 5=
T 2 T . _
g = lim (z+3)%(z) = lim (-1)=-1
and therefore x = —3 is a regular singular point.

(b) For z = 0: the indicial equation is given by r(r — 1) — 2r/3 = 0, that is, r? —

5r/3 =0, with roots r1 =5/3 and ro =0.
For x = —3: the indicial equation is given by r(r — 1) +2r/3 — 1 =0, that is,
r? —r/3—1=0, with roots r; = (1 ++/37)/6 and 72 = (1 —+/37)/6.

14.(a) Here z p(z) = 22 and 2?q(x) = 6ze® . Both of these functions are analytic
at x = 0, therefore x = 0 is a regular singular point. Note that py = ¢y =0.

(b) The indicial equation is given by r(r — 1) = 0, that is, 72> —r = 0, with roots
ri=1and ro =0.
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(c) In order to find the solution corresponding to r1 =1, set y =z > ana™.
Upon substitution into the ODE, we have

Z (n+2)(n+ Dapp 2" +2 Z (n+ Da,z"t +6¢° Z anz” Tt =0.
n=0 = n=0

After adjusting the indices in the first two series, and expanding the exponential
function,

Z (n+1)a, z" +2Znan 12" + 6 agz + (6ag + 6a1 )z

n=1

+(6ag + 6a1 + 3ag)x> + (6as + 6ag 4+ 3a1 +ag)z* +... =0.
Equating the coefficients, we obtain the system of equations

2a1 + 2ap 4 6ag =0

6as + 4a1 + 6ag + 6a; =0

12a3 + 6as + 6as + 6a1 + 3ag =0
20a4 + 8as + 6ag + 6as + 3a1 +ag =0

Setting ag = 1, solution of the system results in a; = —4, as = 17/3, a5 = —47/12,

aq = 191/120, .... Therefore one solution is
17 47
=x -4’ + =23 — —t+ ... .
y(z) =x —4a” + 3%~ 3% +

The exponents differ by an integer. So for a second solution, set
() =ay(x) Inz +1+cx+ex®+ ... Fcpx™ + ... .

Substituting into the ODE, we obtain

aLlyi(x)] - Inx+ 2ay,(z) + 2ay;(z) —a@ +L

1+i0nx"] =0

n=1

Since L[y1(z)] =0, it follows that

— y1(z)
1+ Y ena™| = —2ay{(z) —2 :
—|—n:1c T ] ay () ay1(z)+a .

More specifically,

Z n(n+ 1)cpp1z™ + 2 Z ne,x™ +6 + (6 + 6¢1)x
=1

n=1

61 193
+(6cy + 6cy +3)2? + ... = —a + 10ax — gaxQ—i—ﬁa‘r?’—i—... .
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Equating the coefficients, we obtain the system of equations

6=—a
2¢co + 8c1 + 6 = 10a
61
6¢c3 + 10cy + 6¢1 + 3 = 73(1
193
12¢4 + 12¢3 + 62 + 3c1 + 1 = ﬁa
Solving these equations for the coefficients, a = —6. In order to solve the remaining
equations, set ¢; = 0. Then ¢y = —33, ¢3 = 449/6, ¢4 = —1595/24,. ... Therefore

a second solution is

44 1
ya(z) = —6y1(x) In = + 1_33$2+?9x3—%x4

15.(a) Note the p(z) = 6x/(z — 1) and ¢(z) = 3z~ 1(x — 1)~ . Furthermore, z p(x) =
62%/(xz — 1) and 2%q(x) = 3z/(x — 1). It follows that

. 62
poiil—rg)x—lio
. 3x
qo_ilg%)x—l_o

and therefore x = 0 is a regular singular point.

(b) The indicial equation is given by r(r — 1) = 0, that is, 72> —r = 0, with roots
ri1=1and r, =0.

(c) In order to find the solution corresponding to 71 =1, set y=a Y ,a,z".

Upon substitution into the ODE, we have

(oo} (oo}

Y nn+Dana™t =Y a4 Daga™ +6 > (n+Dana™? +3 ) apa™ =0.

n=1 n=1 n=0 n=0

After adjusting the indices, it follows that

Z nn—Dap_12" — Z nn+ Da,z™ +6 Z (n—1ap—22™+3 Z Gp_12" =0.
n=2 n=1 n=2 n=1
That is,

—2a1 + 3ag + Z [—n(n +1ay + (n* —n+3)a,_1 +6(n — 1)(1”,2] " = (.

n=2
Setting the coefficients equal to zero, we have a; = 3a¢/2, and for n > 2,

nn+1a, = (n* —n+3)a,_1 +6(n—1)a,_o.
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If we assign ap = 1, then we obtain a; =3/2, az =9/4, a3 = 51/16, .... Hence
one solution is

3 9 51 111
yl(x):x+§x2+ix3+ﬁx4+mx5+... .

The exponents differ by an integer. So for a second solution, set
o) =ay(x) Inz +1+cx+ea’+.. +cpx™+....
Substituting into the ODE, we obtain

x
2ax y, (z) — 2ayq(z) + 6az y1(x) — ayi(z) + a% +L

n=1

1+ i cnx”] =0,

since L[y (z)] =0. It follows that

L (@)

oo
1+ Z cna:"] =2ay,(z) — 2az y{(z) + ay(x) — baxryi(x) —a

n=1

Now

=34 (—2c2 + 3c1)x + (—6¢3 + Beg + 6¢y )2+
+ (—12¢4 4 9e3 + 12¢0) x> + (—20c5 + 15¢4 4 18¢3)z® + ... .

1+ icnx"

n=1

L

Substituting for y;(x), the right hand side of the ODE is
a—+ Zam + §ax2 + §a:zc?’ - @ax‘l — gaﬁ +
2 4 16 80 10 T

Equating the coefficients, we obtain the system of equations

3=a
7202 + 301 = ;a
3
—603 + 502 + 601 = Za
—12¢4 + 9¢c3 + 12¢5 = %a

We find that a = 3. In order to solve the second equation, set ¢; = 0. Solution
of the remaining equations results in co = —21/4, ¢3 = —19/4, ¢4, = —597/64, . . ..
Hence a second solution is

21 1
212 9 37@364Jr

y2(x) =3y1(x) Inz + |1 — 1 1 ol
16.(a) After multiplying both sides of the ODE by z, we find that x p(z) = 0 and
22q(x) = x. Both of these functions are analytic at x = 0, hence z = 0 is a regular
singular point.

(b) Furthermore, py = go = 0. So the indicial equation is r(r — 1) = 0, with roots
rir=1and ro =0.



5.6

179

(c) In order to find the solution corresponding to 71 =1, set y=x > -,

Upon substitution into the ODE, we have

oo

oo
Z n(n+ 1a, 2" + Z apax™tt =
n=0

That is,

Z (n+1)ap +an—1] 2" =0.

Setting the coefficients equal to zero, we find that for n > 1,

o —OGp—1
Con(n+1)°
It follows that
o — —On-1 Q2 ~ (=D"ag
" nn+l) (n—Dn2n+1) 7 ()2(n+1)°
Hence one solution is
1 1 1 1
()= — -+ —a® — —at 4+ —a ...

2 12 144 2880

The exponents differ by an integer. So for a second solution, set

ya(x) = ayr(x) Inz +1+cz+cx®+...+cpx™+....

Substituting into the ODE, we obtain

aLlyi(x)] -Inx+ 2ay,(z) —

n=1

Since L[y1(z)] =0, it follows that

xT

(oo}
1+ Z Cn x"] = —2ay(z) —|—ay1(x> .

n=1

Now

1—|—ch

n=1

+ (2¢9 4+ ¢1)x + (6c3 4 co)x? + (12¢4 + c3)2®

+(20c5 + c4)x + (30cs + c5)a® 4. .. .
Substituting for y;(z), the right hand side of the ODE is

—a+ 3ax— Ea;v —|—L x3—iax +.
2 12 144 320

1+i0nm"1 =0

anpx”.
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Equating the coefficients, we obtain the system of equations

1=—-a
2c0 +c1 = ga
6c3 + cg = —%a
12¢4 + c3 = 114
Evidently, a = —1. In order to solve the second equation, set ¢; = 0. We then find
that ¢g = —3/4, c3 =7/36, ¢4 = —35/1728 ,.... Therefore a second solution is
y2(z) = —y1(z) In o + - 32 +l B g

4 36 1728

19.(a) After dividing by the leading coeflicient, we find that

L L —(1+a+ Bz
= i) = Jig TR
—afx

1 2 1 _
go = lim a%q(z) = lim ——>= =

Hence x = 0 is a regular singular point. The indicial equation is r(r — 1) +yr =0,
with roots 11 =1—+ and 2 =0.

(b) For z =1,
v+ (1 +a+p)x

po = lim (z — 1)p(x) = lim =l—-v+a+8.
z—1 Tz—1 X
-1
qo = liml(xf 1)2g(x) = lim aflz=1) =0.
z—

r—1 x

Hence z = 1 is a regular singular point. The indicial equation is
2 (y—a—B)r=0,

with roots 1 =y —a— 0 and r, =0.

(c) Given that 1 — 7 is not a positive integer, we can set y = > a,z". Sub-
stitution into the ODE results in
o0 (o)
r(1—x) Y n(n—1Dana" 4+ [y - (1+a+ B Z nape" ' —af Y apa” =
n=2 n=1 n=0

That is,

oo oo

Z nn+ Dap12"™ — Z n(n — Dayz™ + v Z (n+ Dapp12™

n=1 n=2 n=0



5.6

181

n=1

—(1+a+6)2nanm"—aﬁ2anx"20
n=20

Combining the series, we obtain

var —aBag+[(2+27)a2 — (1 +a+ B+ap)a]z+ Y Ayz" =0,

n=2
in which

Ay = (4 1)+ s — o — 1)+ (1 +a+ B)n + Bl an
Note that n(n —1) + (1 +a+ f)n+af = (n+ a)(n + B) . Setting the coefficients
equal to zero, we have ya; — affag =0, and
(n+a)(n+5)

T i )+ )

n

for n > 1. Hence one solution is
af ale+1)BB+1) 5 ala+D)(a+2)B(B+1)(B+2) ;
st T e ) O T Yy + 1) (v +2) - 3! S

Since the nearest other singularity is at = 1, the radius of convergence of y;(z)
will be at least p=1.

yi(z) =1+

d) Given that r; — 7o is not a positive integer, we can set y = x' =7 b,x".
1% ger, Yy n=20
Then substitution into the ODE results in

z(l—x Z n+1-— — Va7

+—101+a+p)x ZnJrlf anT fOzEZa "I = 0.

n=0
That is,
o0 (o)
D (1 =) =)ana”7 = 37 (04 1=7)(n = ana"
n=20 n=0
(o) oo
7 3 (41 =)apa™ T = (1 a+p) > (n+1—7)aa"H
n=20 n=0

o0
—af E A"t = 0.
n=0

After adjusting the indices,

D +1=9)(n=7)aua" T =Y (n=y)(n—1-7)an 12"
n=0 n=1
+72(n+1—7)anw —(1+a+p) Zn Y)an_1z" W—aﬁZan,lx”_"’:O.

n=0 n=1 n=1
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Combining the series, we obtain

Z B,z"77" =0,
n=1
in which
By=nn+1-7b,—[(n=7)(n—v+a+8)+aflb,_1.

Note that (n —y)(n—y+a+8)+aB = (n+a—7)(n+ B —7). Setting B, =0,
it follows that for n > 1,

(n+a—-7y)(n+pB-7)

bn = nn+1-—7) bn1.
Therefore a second solution is
1 - 1 -
yo(x) = 27 {1 + (1+a (27_)(7)_1'_'/6 7)37
(I+a—-72+a—7)0+8-72+8-7) »
+ (2_7)(3_7)2! T +]

(e) Under the transformation z = 1/£, the ODE becomes

da-Lfy, fhely L
55(1 E)d£2+ 2¢ 5(1 ¢

That is,

)—¢&° v—(1+a+ﬁ)§]}§z—a y=0.

. d? d
@5—52)75%[252—752+<—1+a+m§]dig—a/ay:o.

Therefore £ = 0 is a singular point. Note that

2 1 -
o) = EEDEE O g9 = 2
It follows that
po = i €p(€) = Jim (2_”)52(_1”‘““3> —1-a-5,
0 = lim €29(6) = lim = = ap.

Hence £ =0 (z = o) is a regular singular point. The indicial equation is
rr—1)+(1—-a—-B)r+aB=0,
or 2 — (a+ B)r + af = 0. Evidently, the roots are r = a and r = j3.
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o
-q

3. Here xp(z) =1 and 22q(x) = 22, which are both analytic everywhere. We set
y=1a"(ap + a1z + ax® + ... + a,a™ + ...). Substitution into the ODE results in

o0 (o) o0
Z (r4+n)(r4+n—1Da, 2" + Z (r+mn)a, ™" +2 Z apz™ TPl =0.

n=0 n=0 n=0

After adjusting the indices in the last series, we obtain

ao[r(r = 1)+ 72"+ D [(r+n)(r+n—1)an + (r + n)ay +2a,_1]2" " =0,
n=1
Assuming ag # 0, the indicial equation is 72 = 0, with double root » = 0. Setting
the remaining coefficients equal to zero, we have for n > 1,
2
an(r) = BT ap—1(r) .

It follows that

—1)m2n
an(r) = (=1)

[(n+r)(n+r—1)...(14+7r)]

a0, M= 1.
Since r = 0, one solution is given by
o0
) = 2
n=0 :

For a second linearly independent solution, we follow the discussion in Section 5.6.
First note that

al(r) 1 1 1
= -2 + 4+ ...+
an(r) n+r n+r—1 1+
Setting r =0,
, B B (_1)n 2n
Therefore,

4. Here xp(z) =4 and z2¢(z) = 2 + x, which are both analytic everywhere. We
set y = 2" (ap + a1z + asx? + ... + a,a™ + ...). Substitution into the ODE results
in

o0 o0
Z (r4+n)(r+n—1Da, 2" +4 Z (r+mn)a, "
n=0 n=0

0o 0o
+ Z a/nx7-+n+1 + 9 Z anmr_;,_n =0.
n=0 n=0
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After adjusting the indices in the second-to-last series, we obtain

ag [r(r—1)+4r + 2]z

+z r4+n)(r+n—1Da, +4(r+n)a, +2an + an_1] 2" = 0.

n=1
Assuming ag # 0, the indicial equation is 72 4+ 3r +2 = 0, with roots r; = —1 and
ro = —2. Setting the remaining coeflicients equal to zero, we have for n > 1,
1
an(r) = — ap—1(r) .

(n+r+1)(n+r+2)
It follows that

an(’l") — (_l)n

(n+r+Dn+r)...24+7r)][(n+r+2)(n+7r)...(3+7)]

Since r; = —1, one solution is given by

_milz n—|—1 "

For a second linearly independent solution, we follow the discussion in Section 5.6.
Since r1 —ro = N =1, we find that

ap, n>1.

1
(r+2)(r+3)’
with ag = 1. Hence the leading coefficient in the solution is

a= lim (r+2)a(r)=-1.
r——2

ai(r) = —

Further,
(=n"
n+r+2) [(n+r+)n+r)...3+7)
Let A,(r) = (r +2)a,(r). It follows that
Ay 1 N S
An(r) n+r+2 n+r+1 n+r 7 3+7r]’

(r+2)an(r) =

Setting r = 1o = —2,

/
fl:é—;;:_i_Q[nil nig—'—"""l}:—Hn—Hn_l.
Hence
en(=2) = —(Hy + Hyo1) Ap(=2) = —(H, + Hn_l)'(*i
nl(n —1)!
Therefore,
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6. Let y(x) =v(x)/v/x . Then y' =z Y20 —273/2¢/2 and y" =2~ /20"
x73/29’ +3275/2¢y/4. Substitution into the ODE results in

1
[3:3/211”—3:1/211’—&—3%71/211/4} + [m1/21}’ —xil/zv/2} + (2% - Z):lfl/Qv =0.

Simplifying, we find that
v +v=0,

with general solution v(z) = ¢ cos x + ¢o sin . Hence

y(z) = cix Y% cos z+ cox % sin z.

8. The absolute value of the ratio of consecutive terms is

oo #®™ 2| 2P (m 4 )im! |
Ao T2 |$|2m 22m+2(m + 2)!(m + 1)! 4m+2)(m+1) ’
Applying the ratio test,
T CENE Kl B =/ =0
m=oo | Qg 2™ m—oo 4(m +2)(m + 1) ’

Hence the series for Ji(x) converges absolutely for all values of z. Furthermore,
since the series for Jy(z) also converges absolutely for all x, term-by-term differen-
tiation results in

, B o (71)m 2m—1 s m+1 2m+1 B
JO (.CE) - Z 22m—1 m; Z 2m+1 m + )l m!
m=1 m=

e ( ) 2m

x
T2 Z 22m(m 4+ 1)m!
Therefore, Jj(x) = —J1(z).

9.(a) Note that  p(z) = 1 and z?q(x) = 2% — v/, which are both analytic at z = 0.
Thus = = 0 is a regular singular point. Furthermore, py = 1 and ¢y = —v2. Hence
the indicial equation is 72 — 2 = 0, with roots 7 = v and ro = —v.

(b) Set y = a"(ap + a1 + asx® + ...+ a,x™ +...). Substitution into the ODE
results in

oo

Z (r+n)(r+n—1Da, 2" + Z (r+n)a, ™"

n=0 n=20

00 00
4 a xr+n+2 _ V2 a xr+n _
§ n § n
n=0 n=20

After adjusting the indices in the second-to-last series, we obtain

ag [7"(7"—1)+7'—1/2]xr+a1 [(T+1)T+(r+1)_y2]

+ Z [(r+n)(r+n—1)a, + (r+n)a, — v’a, + ap—2] 2" = 0.

n=2
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Setting the coefficients equal to zero, we find that a; = 0, and
-1

ap = —————=Up_2,
n (7"+n)2—l/2 n—2
for n>2. It follows that a3 =as =... = agm+1 = ... =0. Furthermore, with
r=v,
—1
Qp = —————Ap_2 .
" an+2v) "7

So for m=1,2,...,
-1 (=)™
=y Q2m—2 = S5, ap
2m(2m + 2v) 22nml(1+v)24+v)...(m—14+v)(m+v)

a2m

Hence one solution is

y(z) =z

— (_1m Ty2m
T+ Z m!(1+u)(2—|—y)...(m—1+y)(m—|—y)(§)2 ]

m=1

(c) Assuming that r; —ro = 2v is not an integer, simply setting r = —v in the
above results in a second linearly independent solution

= = T\ om
> S C B Sy e e e 1O ]

m=1

-V

ya(z) =2

(d) The absolute value of the ratio of consecutive terms in y;(z) is
a2 2P 22m (1 +v) ... (m +v)
lz|”™ 2242 (m + D1 +v) ... (m+1+v)
LR

T Am+D)(m+1+v)”

A2m42 T
Aam x2m

Applying the ratio test,

2m+2 |x|2

= lim =
m—oo 4(m+1)(m+1+v)

A2m42 T

lim
m— 00

Aam x2m

Hence the series for y;(x) converges absolutely for all values of 2. The same can
be shown for y2(x). Note also, that if v is a positive integer, then the coefficients
in the series for yo(x) are undefined.

10.(a) It suffices to calculate L [Jo(z) In z]. Indeed,

o(z) In 2]’ = JY(x) lnx+%$)
and (@) Jolx)
J(x Jo(x
(@) Ina]” = Ji (@) In @ + 2220 200
Hence

L[Jo(x) In z] = 22J) (z) In 2 + 2z JJ(2) — Jo(x)
+aJy(z) In x+ Jo(z) + 22 Jo(x) In z.
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Since x?Jy(x) + z JJ(z) + 2> Jo(x) = 0,
L[Jo(z) In 2] = 2z J;(z).

(b) Given that L [y2(z)] =0, after adjusting the indices in part (a), we have

bz + 22by 22 + Z (nzbn +by_2)z" = 2z Jo/(z) .

n=3
Using the series representation of Jj(z) in Problem 8,

2n

5 2 N~(2 no_ o~ (=D (2n)x

n=3 n=1
(c) Equating the coefficients on both sides of the equation, we find that
b1 :bgz...:b2m+1 =...=0.
Also, with n = 1, 22b, = 1/(11)?, that is, b, = 1/ [22(1!)?]. Furthermore, for m > 2,

2 _ L, (=1)"(2m)
(2m)“bom + bom—2 = _2W .
More explicitly,

1 1
“Eplty)

1 1 1

= (1+=-4=
224262( +2+3)

by =

be

It can be shown, in general, that

Hp,

o m—+1
b2m - (_1) * 22m(m!)2 :

11. Bessel’s equation of order one is
2y +rxy' + @ -1y=0.

Based on Problem 9, the roots of the indicial equation are ry =1 and ro = —1.
Sety = 2"(ag + a1z + asx? + ... Fax” + .. .). Substitution into the ODE results
in

Z (r+n)(r+n—1a,z" " + Z (r+n)a, 2"
n=0

n=0

oo o
+ g a2 — g apz™ T =0.
n=20 n=0

After adjusting the indices in the second-to-last series, we obtain

agr(r—=1)+r—1a"+a [(r+1)r+(r+1)—1]
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+ Z [(r+n)(r+n—1Da,+ (r+n)a, —a, + an_2]z"™ = 0.

n=2
Setting the coefficients equal to zero, we find that a; =0, and

-1 -1

an(r) = (r+n)2—1 an—2(r) = (n+r+1)n+r—1) an=2(r);
for n > 2. It follows that ag = a5 = ... = agm41 = ... = 0. Solving the recurrence
relation,
agm (1) = (=D~ ag.
2m+r+1D)Cm+r—-12...(r+3)32(r+1)

With r=7r; =1,

_ =
azm(1) = 22m(m 4+ 1)I'm)! @o-

For a second linearly independent solution, we follow the discussion in Section 5.6.

Since 1 —ry = N = 2, we find that
1
as(r) = —————+,
2(r) (r+3)(r+1)
with ag = 1. Hence the leading coefficient in the solution is

1
a= lim (r+1)as(r)=—=.
r—-—1 2

Further,

(-1)" |
@m4+r+1)[2m+r—1)...3+7)
Let A, (r) = (r+1)a,(r). It follows that

Aj(r) 1 1 1
= -2 ot
Ao (1) 2m+r+1 2m+r—1 3+

(r4+1)agm(r) =

Setting r = ro = —1, we calculate
1
CQm(_]-) = _§(Hm + Hmfl)A2m(_]-)

(-~ 1 ("

1
= —= Hm Hm, = Hm Hm, .
g (Hon 1)2m [(2m—2)...2)° g (Hom 1)22’”*1?71!(771*1)!
Note that ag,+1(r) = 0 implies that As,,11(r) =0, so

Comi1(—1) = {dAngrl(r)} =0.

dr _
T=T2
Therefore,
1 = -)m oz
ya(z) = x E ()()27"] In x

T2 (m4+1)!m! "2

m=0
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1
4=
X

Based on the definition of .J;

—~

z),

1
ya(z) = —=J1(z) In x + -

(_1>m(Hm + Hmfl) ($)27r;|
m!(m —1)! 2 '

>

m

1

(-1)™(Hp + Hp—1)

)™ (
m!(m — 1)!

(

X

2

)Zm] )
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The function f(¢) is continuous.
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0.5 4

o

T T "
o 1 2 3
z

The function f(¢) has a jump discontinuity at ¢ = 1, and is thus piecewise contin-
uous.

7. Integration is a linear operation. It follows that

A 1 (A 1 A
/ cosh bt - e 5tdt = = / et et + = / e et =
0 2 Jo 2 /o

L ey, o L[ e
= - 9t + = B RAT
2/0 e +2/0 e

Hence

A s (bis
1 1—€(b s)A 171—e (b+s)A

h bt - e Stdt = = - .

/0 o8 ¢ 2{ s—b }—’—2[ s+b ]

Taking a limit, as A — oo,

o 1 1
hbot-e *'dt = =
/0 cos e 5 [s—b]+

Note that the above is valid for s > |b|.

1 1 - S
2 |s+b| s2-02°

8. Proceeding as in Problem 7,

A — _
11— elb—s)A 11— (b+s)A
/ sinh bt - et = = | —— . :
0 2 s—b 2 s+b

Taking a limit, as A — oo,

e 1 1 1 1 b
inh bt - e *'dt = = - = = .
/0 sinh bt - e”*"dt 3 [s—b} 3 [S‘Fb} 2

The limit exists as long as s > |b].

10. Observe that e®sinh bt = (e(@T0t — e(a=0)t) /9 Tt follows that

A _ _(b—
11— (a+b—s)A 11— (b—a+s)A
/ e sinh bt - e 5tdt = = R I .
0 2] s—a+b 2 s+b—a
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Taking a limit, as A — oo,

> 1 1 1 1 b
“ sinh bt - e Sldt = = | ——— | — = = .
/0 © o ‘ Q{S—G-I-b] Z{S—Fb—a} (s —a)?—b2

The limit exists as long as s —a > |b].

11. Using the linearity of the Laplace transform,
1

1 _ .
L[sin bt] = —£ [e®] — = [e7] .
Since -
/ elatiblte=st gy — _ —
0 s—a—1b

we have

<, 1

/ 6i bt efstdt —_ —

0 s F ib

Therefore

Chinbt) = o =% sy b~ Ere

24

1 [ 1 1 b
The formula holds for s > 0.

12. Using the linearity of the Laplace transform,
1 ; 1 ;
L [cos bt] = 3L [e] + 3£ [e="].

From Problem 11, we have

/ ei ibt e—stdt _ _
0 s F ib

171 1
Cleosbtl =5 15— T v )~

Therefore
s

s2 427

The formula holds for s > 0.

14. Using the linearity of the Laplace transform,
1 ; 1 .
L [eat Ccos bt] = 55 [e(a+lb)t:| + §£ [e(a—zb)t:| )

Based on the integration in Problem 11,

o X 1
/ e(a:ﬁ:zb)tefstdt _ _
0 s—a Fib
Therefore

L [e" cos bt] = 1 ! + ! = i
C2|s—a—ib s—a+ib| (s—a)2+b2’

The above is valid for s > a.



194 Chapter 6. The Laplace Transform

15. Integrating by parts,

A _s
/ te™ e *tdt = e
0 S—a

A A
+ / ——elam9)t g =
0

0 s—a

1— e3¢ A(a — s)eA(@9)
- (s —a)? '

Taking a limit, as A — oo,
o0
1
/ te™ . e Stdt = -
0 (s—a)
Note that the limit exists as long as s > a.

17. Observe that ¢ cosh at = (te® + te~)/2. For any value of ¢,

A —_s)t |A A
/ tet . o=t dt = _te(c Y + / Le(c—S)tdt _
0 s—c | 0 S—¢

1— eA(c—s) + A(C _ S)eA(c—s)
(s —¢) '

Taking a limit, as A — oo,

© 1
/ tect . e7Stdt = -
0 (s—¢)

Note that the limit exists as long as s > |¢|. Therefore,
1 [ 1 1 } B 5?2 +a?

‘h . —st — = .
/0 t cosh at - e *"dt 2 [(5—a) +(s+a)2 (s —a)2(s + a)?

18. Integrating by parts,

A _
[ et - e
0 Ss—a

A A
+ / L tnfle(afs)tdt _
0 o S—a

n,—(s—a)A A
— _u _|_/ Ltnfle(afs)tdt.
0

s—a s—a

Continuing to integrate by parts, it follows that

/A ot | st gy — _Ane(a—s)A nAn—1lela—s)A -
0

s—a  (s—a)?
nlAele—)4 n!(el@==)A4 — 1)
(n—2)Y(s —a)? (s —a)rtt
That is,
A n!
A tret e tdt = p,(A) eI (s ay

in which p, (&) is a polynomial of degree n. For any given polynomial,

lim p,(A)-e” "4 =0,
A—o0
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as long as s > a. Therefore,

* n at std n'
the e tdt = —n-——.
/0 (s —a)"t!
19. First observe that

sinat-e” %t 1
/sinat A f/acos at - e tdt =
s s

sinat-e %' a [ cosat-e %t a ) et
= 4 — | ——————— — ~ [ sinat- e %'dt| .
s s S S

This implies that

/ at - e—5tdt (ssinat + acos at)e™st
sinat - e = — .

52 +a?
Integrating by parts we obtain that

A

A ; —st

t t)e™®

/ t?sinat - e~ S'dt = —t2 (ssinat +acosat)e +
0

2 2
s+ a 0

dt.

4 (ssinat + acosat)e st
+ 2t
0 52 +a?

Taking the limit A — oo and using the results of Problem 16 (from the Student
Solutions Manual), we obtain that

P st 2s 2as 2a  s*—a? 2a(3s? — a?)
t“sinat - e~ *'dt = + - _
o 2+ a2 (s2+a2)? | 52+ a2 (s2+ a2)2 (s2+ a2)3

This is valid for s > 0.

20. Observe that t?sinh at = (t2¢? — t2¢=9%) /2. Using the result in Problem 18,

o 1 2! 2! 2a(3s2 + a?)
t2sinh at - e Stdt = = - = .
/o e 2 [<s—a>3 <s+a>3} (% — a2)?

The above is valid for s > |a].

22. Using the fact that f(¢t) =0 when ¢ > 1 and integration by parts, we obtain

that
o 1 —st 11 1 st
_ —st o _st _ _6 e
E[f(t)]—/o e f(t)dt—/oe tdt_{ , t]0+/0 - dt

_ gl _ _
es+ e st e es+1
s s? ], s 52 52

23. Using the definition of the Laplace transform and Problem 22, we get that

E[f(t)]:/Oooe““f(t)dt:/Ole““tdt—&—/lme_“dtz
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5 e7® 1 e’ e s 1

s 52 52 s 52 52

e

26. Integrating by parts,

A
/ te tdt = —tet
0

Taking a limit, as A — oo,

A A
+ / e tdt=1—e4 — Ae 4.
0

0
o0
/ te tdt = 1.
0

27. Based on a series expansion, note that for ¢t >0, e > 1+t +12/2>t2/2. It
follows that for ¢t > 0, t~2e’ > 1/2. Hence for any finite 4 > 1,

A
A—-1
/ t2etdt > —— .
1 2

It is evident that the limit as A — oo does not exist.

Hence the integral converges .

28. Using the fact that |cos t| <1, and the fact that

(oo}
/ e tdt =1,
0

it follows that the given integral converges.

30.(a) Let p > 0. Integrating by parts,
A

A A A
/ e “aPdr = —e ™ a? +p/ e gl dy = —APe™4 +p/ e xPdr.
0 0 0

0
Taking a limit, as A — oo,

/ efzmpdxzp/ e TP tdx .
0 0

That is, I'(p+1) = pT'(p) .

(b) Setting p =0,

ra) = / e Pdr=1.
0

(c) Let p=n. Using the result in part (a),

P(n+1)=nT(n)
=n(n—1)T'(n-1)

:ﬁ(n—l)(n—2)---2-1-1"(1).
Since T'(1) =1, T'(n+1) =n!.
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(d) Using the result in part (a),
Fp+n)=p+n-1)T(p+n-1)
=(p+n-1)(p+n-2)l'(p+n-2)
=(+n-1p+n-2)---(p+1)plEp).
Hence r
_|_
(1{)(@”) =pp+1)(p+2)---(p+n-1).
Given that I'(1/2) = /7 , it follows that
3. 1.1 &
MRl =5t ="~%
and 11 9 7 5 33 945
rg=5 5 55 Q= e
6-2

1. Write the function as 3 5

3
2+4  2s82+4°

Hence £71[Y(s)] = 3sin2t /2.

3. Using partial fractions,

2 _2) 1 1
$24+3s—4 5 ls—1 s+4]
Hence £71[Y(s)] = 2(et — e~ ) /5.
5. Note that the denominator s 4 2s + 5 is irreducible over the reals. Completing

the square, s> +2s+5=(s+1)2+4. Now convert the function to a rational
function of the variable £ = s+ 1. That is,

2s+2  2(s+1)
s2+2s+5  (s+1)2+4°

1| 2¢
£t [€2+4} =2 cos 2t.
Using the fact that £[e® f(t)] = £ [f(t)]

o1 25+ 2
s2+2s+5

We know that

s—s—a’?

] = 2e ! cos 2t.



198

Chapter 6. The Laplace Transform

6. Using partial fractions,

s2—4 4 s—2+s—|—2

2s—=3 1 { 1 7 ]
Hence £71[Y(s)] = (€' + 7e~2!)/4. Note that we can also write

2s — 3 9 s 3 2

s2—4 $2—4 2824

8. Using partial fractions,

852—484—12_3}_'_5 s 9 2
s(s2+4) s s2+4 s2+4°

Hence £71[Y(s)] =3+ 5 cos 2t — 2 sin 2t.

9. The denominator s?+4s+ 5 is irreducible over the reals. Completing the
square, s> +4s+ 5= (s +2)%2 + 1. Now convert the function to a rational function
of the variable £ = s + 2. That is,

1-25s  5-2(s+2)
s2+4s+5  (s+2)2+1°

We find that

52 +1 - 52 +1
Using the fact that £[e® f(t)] = £ [f(t)]

2
51[ > ¢ }:5sint—2(zost.

s—s—a’

1-2
£71 |:2—i—4j—5:| = 672t(5 sin ¢t — 2 cos t) .
S S

10. Note that the denominator s? + 2s + 10 is irreducible over the reals. Complet-
ing the square, s? + 25+ 10 = (s + 1)? + 9. Now convert the function to a rational
function of the variable £ = s + 1. That is,

2s—3  2(s+1)-5
s24+2s+10 (s+1)2+9°

We find that

1| 2¢ 5
c [§2+9_§2+9

Using the fact that £[e® f(t)] = £ [f(t)]

1 25 -3
52425410

5
]:2cos3t—3sin3t.

s—s—a’?

)
] =e (2 cos 3t — 3 sin 3t) .

12. Taking the Laplace transform of the ODE, we obtain
s?Y () = sy(0) —y'(0) +3[s Y (s) —y(0)] +2Y(s) = 0.
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Applying the initial conditions,
$2Y(s)+3sY(s) +2Y(s) —s—-3=0.

Solving for Y'(s), the transform of the solution is

s+3
Y(s)= ———7——.
() s2+3s+2
Using partial fractions,
s+3 2 1

2+35+2 s+1 s+2
Hence y(t) = L7 [Y(s)] =27t —e 2.

13. Taking the Laplace transform of the ODE, we obtain
7Y (s) —sy(0) —y'(0) — 2[s Y (s) — y(0)] +2Y (s) = 0.
Applying the initial conditions,
s2Y(s) —2sY(s) +2Y(s) —1=0.
Solving for Y'(s), the transform of the solution is

1
Y(S)_52—25+2'

Since the denominator is irreducible, write the transform as a functionof { =s—1.
That is,
1 1

2-25+2 (s—1)2+1"

First note that

Using the fact that £[e® f(¢)] = L[f(t)], . s>
1
—1 — t .
L |:82—28+2:| e sint.

Hence y(t) = e'sin t.

16. Taking the Laplace transform of the ODE, we obtain
s2Y(s) —sy(0) —y'(0) +2[sY(s) —y(0)] +5Y(s) =0.
Applying the initial conditions,
s2Y(s)+2sY(s) +5Y(s) —2s —3=0.
Solving for Y'(s), the transform of the solution is

25+ 3

Y = .
(5) s24+254+5
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Since the denominator is irreducible, write the transform as a function of £ = s+ 1.
That is,
2s+3 2s+1)+1
$2+25+5  (s+1)2+4°

We know that

[ 2¢ 1
£ [52+4+g2+4

Using the fact that £[e® f(t)] = L [f(t)]

1
] :2cos2t+§sin2t.

the solution of the IVP is

s—s—a’

25+ 3

1
= -1 _— | = —t — si
y(t) ==L [52+2s+5} e (2 cos 2t+2 sin 2¢t) .

18. Taking the Laplace transform of the ODE, we obtain
Y (5) - s%y(0) — s27(0) — sy"(0) — y"(0) — Y(5) = 0.
Applying the initial conditions,
Y (s) = Y(s) —s® —5=0.

Solving for the transform of the solution,
s

Y(s):SQ_l.

By inspection, it follows that y(t) = £~ [Y(s)] = cosh t.
19. Taking the Laplace transform of the ODE, we obtain
sV (5) = s%y(0) — s”y'(0) —sy"(0) —y""(0) —4Y(s) =0 .
Applying the initial conditions,
s'Y (s) — 4Y(s) — s* +25 = 0.

Solving for the transform of the solution,

It follows that y(t) = £~ [Y(s)] = cos V2 t.

21. Taking the Laplace transform of both sides of the ODE, we obtain

s7Y (s) = sy(0) —y'(0) = 2[s Y(s) — y(0)] +2Y (s) =

2417
Applying the initial conditions,

Y (s) —25Y(s) +2Y(s) —s+2=

Solving for Y'(s), the transform of the solution is

s n 5—2
(s2—-254+2)(s24+1) s2—2s+2°

Y(s) =
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Using partial fractions on the first term,

s—2 s—4
s24+1 s2—-2s+2]|°

(2 —2s54+2)(s2+1)

1
5

Thus we can write

1 s 2 1 +2 25 — 3
T 58241 58241 5s2—-2s+2°

For the last term, we note that s2 —2s+2 = (s —1)2+ 1. So that

Y (s)

25—3  2(s—1)—1
2—-25+2 (s—1)241°
We know that
£t 2¢ L 2 t —sin t
- — = COSU—sSsIt¢t.
241 &2+1

Based on the translation property of the Laplace transform,
2s —3
,C_l |:52—823—|—2:| = et(2 cos t — sin t)
Combining the above, the solution of the IVP is
1

(t) t— 2 t+2 (2 cos t —sin t)
= —- COS T — — s1In - e COS U — s1n .
YW=5 5 5

23. Taking the Laplace transform of both sides of the ODE, we obtain

4
s*Y(s) = 59(0) —y'(0) +2[s Y (s) —y(0)] + Y(s) = - T
Applying the initial conditions,
4
2y 2sY Y(s)—25s—3= .
s?Y(s)+2sY(s)+ Y(s) —2s pore]
Solving for Y'(s), the transform of the solution is
4 25 +3
Y(s) = .
&= G717 Terie
First write
25+3  2(s+1)4+1 2 1
(s+1)2 (s+1)2  s+1 (s+1)2°
We note that
£t {4+2+1} =287 4+2+1¢
SR '

So based on the translation property of the Laplace transform, the solution of the
IVP is
y(t) =2t%e 4 te 4 2e70
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25. Let f(t) be the forcing function on the right-hand-side. Taking the Laplace
transform of both sides of the ODE, we obtain

s2Y (s) = sy(0) —y'(0) + Y(s) = L[f(t)].-
Applying the initial conditions,
s2Y(s)+ Y(s) = L[f(1)].
Based on the definition of the Laplace transform,

clrol= [ seta= [reta= Lo

Solving for the transform,

1 _s s+1
Yis) = s2(s2+1) - s2(s2+1)°

26. Let f(t) be the forcing function on the right-hand-side. Taking the Laplace
transform of both sides of the ODE, we obtain

7Y (s) = sy(0) —y'(0) +4Y(s) = LLf(1)].
Applying the initial conditions,
s2Y (s)+ 4Y(s) = L[f(1)] .
Based on the definition of the Laplace transform,

1 e s

oo 1 50
el = [ seta= it [Tean Lo

52 s

Solving for the transform,

1 1
Y(s)= e 75— .
() s2(s2 +4) ¢ s2(s2 +4)

29.(a) Assuming that the conditions of Theorem 6.2.1 are satisfied,
d [ hale)
F/ _ = —st — e —st —
=g [ erwa= [ eo]a
:/ [—te ' f(1)] dt:/ e St [—tf(t)]dt.
0 0

(b) Using mathematical induction, suppose that for some k > 1,

F®)(s) = / T ()" f(t)] dt .

0
Differentiating both sides,

P (g) = % /O‘X’ et (=) f(t)] dt

I
c\
8
Pl
=
I
a
&
x>
"\h
—
-
Pt
Q.
~
I
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30. We know that 1

L I:eat:l = E

Based on Problem 29,

L[—te"] = % Lla} :

Therefore,

32. Based on Problem 29,

el = el = 4 3]

Therefore,

1= (0 =

34. Using the translation property of the Laplace transform,

b

at . _
E[e Smbﬂ_i(s—aﬁ—&—bz'

Therefore,

£[te sin bt] = b ]: T 26(s — a)

ds [(s—a)2+b2 s—a)?+02)%

35. Using the translation property of the Laplace transform,

s—a

L le™ cos bt] = ———r .
le ] (s —a)? + b2

Therefore,

_ N2 12
£[te‘”cosbt]——d{ 5—a }— (s—a) b

ds [(s—a)?+67] ~ (s—a2+02)2"

36.(a) Taking the Laplace transform of the given Bessel equation,
Llty"]+Lly'l+L[ty]=0.

Using the differentiation property of the transform,

el ey - Sely]=0.
That is,
d -, , d
LY () = 59(0) =y (0)] + Y (5) = 9(0) — SV (5) = 0.

It follows that
(1+s)Y'(s)+sY(s) =0.
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(b) We obtain a first-order linear ODE in Y (s):
s

mY(S) =0 5

Y'(s) +
with integrating factor
u(s):efs%#lds: s2+1.

The first-order ODE can be written as

with solution
V241

(¢) In order to obtain negative powers of s, first write

1 1 172
s e
Expanding (1 + 1/s?)~/2 in a binomial series,
| , ls 13, 135

VI+(1/s2) 2 2.4 246

valid for s72 < 1. Hence, we can formally express Y (s) as
1 11 1-31 1-3-5 1
Y — - = _ ST
() C[s 2S3+2~485 2-4~6.97+ ]
Assuming that term-by-term inversion is valid,
) =cl1 1t2+1~3t4 1-3~5tﬁ+
VW= T2 T2 a0 246 6l
2! 12 41 ¢4 6! 6
26[1_222!+22~424!_22~42-626!+”}

—6
S +’

It follows that

1, 1 1 — (D",
y(t)c{122t tapt T Eet T :czmt .

n=0

The series is evidently the expansion, about =0, of Jy(¢).

38. By definition of the Laplace transform, given the appropriate conditions,

ﬁ[g(t)]z/ooo et [/Otf(T)dT} dt:/ooo/ote_‘“f(r)drdt.

Assuming that the order of integration can be exchanged,

£lg®)] :/Ooo £(7) UTOO e‘“dt} dT:/OOO £07) {e;ﬁ]dr
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(=)

(Note the region of integration is the area between the lines 7(¢) = ¢ and 7(¢) = 0.)
Hence

clol = [~ frerar = e (500,

1.
39 T—‘
! !
2 } |
\
| !
14 T—
\
\ \
1 1
© i I 3 1 p 3
; \
\
\
\
2 \
\
3 J )
3.
&
2]
5]
o]
N
2]
.
o0 1 2 3 4 5 6
7
5.
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0.5 4

-0.5

|
(

(b) F(t) = 1 — 2uq(t) + 2un(t) — 2us(t) + ua(t).

9.(a)

1.0 -
0.9 :
0.8 :
0.7 :
0.6 :
0.5 :
0.4 :
0.3 :

0.2 4

0.1 4
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0.5 1

(b) f(t) =1+ (2 = )ua(t) + (5 — t)us(t) + (t — Tur(t).
13. Using the Heaviside function, we can write f(t) = (t — 2)? ua(t). The Laplace
transform has the property that £ [u.(t)f(t — ¢)] = e *L[f(¢)]. Hence

2 6725

53

L[(t=2) u(t)] =

15. The function can be expressed as f(t) = (t — 7) [ur(t) — u2.(t)]. Before invok-
ing the translation property of the transform, write the function as

f@) =0t —m)ur(t) — (t — 2m) uar (t) — 7 uax(t).
It follows that

—Ts 672775 7.1.67271'5

LIf)] = - -

52 52 s

16. It follows directly from the translation property of the transform that

e~ 5 6—35 6—45
-6 .
S

LIFB)] = —+2

S
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17. Before invoking the translation property of the transform, write the function
as

f@) = (t = 2)uz(t) — ua(t) — (£ — 3)us(t) —us(t).
It follows that

18. It follows directly from the translation property of the transform that

LU0 = 5 -5
19. Using the fact that £[e® f(t)] = L [f ()], sy
_ 3!
e [ tge| -

22. The inverse transform of the function 2/(s% —4) is f(t) = sinh 2¢. Using the
translation property of the transform,

£ [i;jj — sinh (2(t — 2)) - ua(t).

23. First consider the function

(s —2)
G(s) = ———.
() s2—4s+3
Completing the square in the denominator,
(s—2)
G(s) = ————.
)= G971

It follows that £7! [G(s)] = €% cosh t. Hence

— e~
s = e D),

24. Write the function as

It follows from the translation property of the transform, that

e s + 6725 _ 6735 _ 6745

S

['71

:l = ul(t) + UQ(t) — U3(t) — U4(t) .

25.(a) By definition of the Laplace transform,

L] f(et)] = /0 T et (etdt.
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Making a change of variable, 7 = ¢t, we have

L[f(ct)] = ! /0 e/ f(r)dr = % /0 e~ /T f(7)dr .

c

Hence L[ f(ct)] = (1/c) F(s/c), where s/c > a.

(b) Using the result in part (a),

Hence
LV [F(ks)] = %f <Z) .

(c) From part (b), £7! [F(as)] = (1/a)f(t/a) Note that as + b = a(s + b/a). Using
the fact that £[ef(t)] = L [f(t)]ss_.

L7 [F(as 4+ b)] = e /@ 1f (t) .

a a

26. First write
n!

F(s) = (%)n-s-l .

Let G(s) = n!/s"™1. Based on the results in Problem 25,

L fo(3) -
in which g(t) = t". Hence L7 [F(s)] = 2 (2t)" = 2n+1n,

29. First write

o—4(s—1/2)
F(s) = o1/
Now consider
25
Gls) = =

Using the result in Problem 25(b),

el = 0 (3).
in which g(t) = ua(t). Hence £71[G(25)] = uz2(t/2)/2 = u4(t)/2. Tt follows that

£ [F(s)] = %et/zm(t).

30. By definition of the Laplace transform,
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That is,
1—e

S

L) = / et dt =

31. First write the function as f(t) = uo(t) — ui(t) + wua2(t) — us(t) . It follows that
1 3
LIf®)] = / e Stdt +/ e Stdt.
0 2

1—e¢e 8 6—25 _ 6_35 1—e 5+ 6_25 _ 6—35

S S S

That is,

32. The transform may be computed directly. On the other hand, using the trans-
lation property of the transform,

2n+1 eiks 2n+1 (s 242
T R S Ee [Z (—eﬂ —le o
k=1 k=0

That is,
1— (ef2s)n+l
LIf(t)] = ———"
0= 1 e
35. The given function is periodic, with T' = 2. Using the result of Problem 34,

l:“(t)]—/ze St’(t)dt—/le Stdt
1 e—2s 0 1 e—2s 0 :
That iS,

1—e7° 1

Lf(B)] = s(1 — e2%) - s(I4+e)’

37. The function is periodic, with 7" = 1. Using the result of Problem 34,

:1—6_‘5

1
L[f()] ! /0 te ®dt.

It follows that ) (1
el =S,

38. The function is periodic, with 7" = 7. Using the result of Problem 34,
1 us
L [f(t)] = 1_76_71_5 /O sin t - C_Stdt .

We first calculate

U 1 —TSs
/ sin t- e tdt = L2 )
0 1+s

Hence
1+e 7™

(1—em)(1+s2)

L) =
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39.(a)

We get that

0.8 o

0.6 4

0.4 4

0.2 4

0.8 4

0.6 4

0.4

0.2 4

o 0.5

0.9 ]
0.8 ]
0.7 ]
0.6 ]
0.5 ]
0.4 ]
0.3 ]

0.2 1

0.1 4
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Let G(s) = £][g(t)]. Then
s 1—e* l—e™® (1—e%)?
LIA(] = Gls) — e Gls) = - — e = B
40.(a)
(b) The given function is periodic, with T = 2. Using the result of Problem 34,
1 2
LU0 = s [ ¢ o,
“ e o
Based on the piecewise definition of p(t),
2 1 2 1
/ e S'p(t)dt = / te Stdt +/ (2—t)e "t = (1 —e )%
0 0 1 S
Hence
(1—e™?)
)= 2.
£0)] = S5t
(c) Since p(t) satisfies the hypotheses of Theorem 6.2.1, £ [p’(t)] = s L [p(t)] — p(0).
Using the result of Problem 36 from the Student Solutions Manual,
(1—e?)
Llp't)] = .
PO = S
We note the p(0) = 0, hence
1] (1—e9)
Lp(t) = - .
ol =5 | |

2.(a) Let h(t) be the forcing function on the right-hand-side. Taking the Laplace
transform of both sides of the ODE, we obtain

s2Y () = s5(0) = y'(0) + 2[s Y (s) — y(0)] +2Y(s) = £ [h(1)].
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Applying the initial conditions,
$2Y(s) +2sY(s) +2Y(s) — 1= LI[h(t)].
The forcing function can be written as h(t) = ur(t) — ug,(t). Its transform is

—TSs __ 6727rs

Solving for Y'(s), the transform of the solution is

Y(s) =

1 e~ TS 67271'3

52+28—|—2+s(s2—|—2s—|—2)'

First note that
1 1

2+25+2 (s+1)2+1

Using partial fractions,
1 11 1 (s+1)+1

s(s2+2s+2) 2s 2(s+1)2+1°

Taking the inverse transform, term-by-term,

1 1
Ll——— | =c|———| =etsint.
[s2+2s+2] {(34—1)2—1—1} ¢

Now let 1
G —
() s(s2+25+2)
Then 1
L7G(s)] = 77 3¢ Leost— —etsint

Using Theorem 6.3.1,

1 1

£t [emG(s)] = §uc(t) - 56_“_6) [cos(t — ¢) + sin(t — ¢)] ue(t) .

Hence the solution of the IVP is

y(t) =e'sint+ %uﬂ(t) - %e_(t_”) [cos(t — ) + sin(t — )] ur(t)—

1 1
— e (t) + 56_“_2”) [cos(t — 27) + sin(t — 27)] w2, (1) .

That is,
o 1 | .
y(t) =e 'sint+ 3 [ur(t) — uar(t)] + ¢ [cos t + sin t] u.(t)+

1
+ 5@*“*2”) [cos T + sin t] ugr(t).
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The solution starts out as free oscillation, due to the initial conditions. The am-
plitude increases, as long as the forcing is present. Thereafter, the solution rapidly
decays.

4.(a) Let h(t) be the forcing function on the right-hand-side. Taking the Laplace
transform of both sides of the ODE, we obtain
s7Y (s) = sy(0) —y'(0) +4Y (s) = L[(2)].
Applying the initial conditions,
s2Y(s) +4Y(s) = L[h(1)].

The transform of the forcing function is

1 677‘-5
Lh(t))=——+—5.
W= 527+ 27
Solving for Y'(s), the transform of the solution is
1 6771'5

Y(s) = (82+4)(82+1) T (s? -‘r4)(52 + 1) ’

Using partial fractions,

1 R
(s24+4)(s2+1) 3 |s2+1 s24+4]°

£t ! Ulsint— L sin 2t
— 5 | = = mit— — Sin .
E+a2+n] 3 9 °

Based on Theorem 6.3.1,
e~ s 1 1
L —————| == [sin(t—7) — = sin(2t —2 x(t) .
{(32 T 1)] 3 [sm( ) 5 sin( 71')] Uqr (t)
Hence the solution of the IVP is

It follows that

1 1 1 1
y(t) = 3 {Sin t— 5 sin 2t] ~3 {sin t+ 5 sin Qt} Ur(t).
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0.4

0.8 - 034

0.2
0.6
0.1

0.4 o
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0.2 -
-0.2 4
o T
o 2 a 6 8 10 034
z

Since there is no damping term, the solution follows the forcing function, after
which the response is a steady oscillation about y = 0.

5.(a) Let f(t) be the forcing function on the right-hand-side. Taking the Laplace
transform of both sides of the ODE, we obtain

s2Y (s) = sy(0) —y'(0) +3[sY(s) — y(0)] +2Y (s) = L[f(2)].
Applying the initial conditions,
s2Y(s) +3sY(s)+2Y(s) = L[f(1)].

The transform of the forcing function is

Solving for the transform,

1 6—103
Y(s) = — .
(5) s(s2+3s+2) s(s?+3s+2)

Using partial fractions,
1 141 1 2
243512 2 [ tire T H} '
Hence
5_1[1 ]zl—kﬁ—e_t.
s(s? +3s+2) 2 2
Based on Theorem 6.3.1,
£t [6_105} _1 {1 + e720-10) _ 26_(t_10)} u1o(t) .
s(s?+3s+2) 2
Hence the solution of the IVP is
1 o2t L,

1
yt) =5 —uo®]+ —— -7 =3 [e*@HO) - 2@*“*10@ uio(t) .
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The solution increases to a temporary steady value of y = 1/2. After the forcing
ceases, the response decays exponentially to y = 0.

6.(a) Taking the Laplace transform of both sides of the ODE, we obtain

—2s

S Y (5) = sy(0) — y/(0) +3[s ¥ (s) = y(0)] +2Y () = —

Applying the initial conditions,

s2Y(s)+3sY(s) +2Y(s) — 1=

Solving for the transform,

Y(s) =

Using partial fractions,

1 6725

s2+33+2+s(32+38+2)'

11 1
s24+35+2 s+1 s+2

and

1 L1, 1 2
s(s2+3s+2) 2|s s+2 s+1]°
Taking the inverse transform. term-by-term, the solution of the IVP is

1 1
y(t) =et—e 2 4+ {2 —e (72 ¢ 26_2(t_2)] ux(t) .

0.4
0.8

0.3
0.6

0.2

0.4

0.1 -
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Due to the initial conditions, the response has a transient overshoot, followed by
an exponential convergence to a steady value of ys =1/2.

7.(a) Taking the Laplace transform of both sides of the ODE, we obtain

e—37rs

s2Y (s) = sy(0) —y'(0) + Y (s) = .

Applying the initial conditions,

67371'5
S2Y(s)+ Y(s)—s=
s
Solving for the transform,
s e—37'rs
Y —
(s) 241 s(s?2+1)
Using partial fractions,
1 1 S

Hence

ARCEN (R

s s241
Taking the inverse transform, the solution of the IVP is

y(t) = cos t + [1 — cos(t — 3m)] ug(t) = cos t + [1 + cos t] us.(t).

19 g 39
\
0.8 - }
2
\
0.6 - |
\
\ 1
0.4 - |
\
0.2 ‘
. \
\
I

= AVAAVERVANY

Due to initial conditions, the solution temporarily oscillates about y = 0. After the
forcing is applied, the response is a steady oscillation about y,, = 1.

o

9.(a) Let g(t) be the forcing function on the right-hand-side. Taking the Laplace
transform of both sides of the ODE, we obtain

Y (5) = sy(0) — y'(0) + Y (s) = L[g(t)].
Applying the initial conditions,
S2Y(s) +Y(s)—1=L[g(t)].
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The forcing function can be written as

with Laplace transform

Solving for the transform,

o(t) = £ [ uo(0)] + Bus(t) = £ — 2 (t ~ 6)us(t)
6765
Llo0] = 55— 5
1 1 e~ 0s

Using partial fractions,

S S O I
252(s24+1) 2|82  s241]°

Taking the inverse transform, and using Theorem 6.3.1, the solution of the IVP is

y(t) =sint+ % [t —sin t] — % [(t —6) —sin(t — 6)] ug(t)

1 ) 1 .
3 [t +sin t] — 3 [(t —6) —sin(t — 6)] ug(¢).

o

The solution increases, in response to the ramp input, and thereafter oscillates
about a mean value of v, = 3.

11.(a) Taking the Laplace transform of both sides of the ODE, we obtain

Applying the initial conditions,

Solving for the transform,

—Ts —37s
Y () — s5y(0) —y'(0) +4Y(s) = = s : s
S2Y(s)+4Y(s) = e
S S
—Ts —37s
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Using partial fractions,

1 _ 11 s
s(s2+4) 4|s s2+4]°
Taking the inverse transform, and applying Theorem 6.3.1,
1 1
y(t) = 1 [1 — cos(2t — 2m)| ur(t) — 1 [1 — cos(2t — 6m)] uz.(t)

= 7 (1) — w3 ()] — § o8 20 fun(t) — g (1))

0.5
0.8 0.4+

0.3 o

0.4

I
|
|
[
|
0.6 - |
|
|
[
|
|
|
|
|

o 2 4 6 8 10 12 o 2 4 6 8 10 12
z z

Since there is no damping term, the solution responds immediately to the forcing
input. There is a temporary oscillation about y = 1/4.

12.(a) Taking the Laplace transform of the ODE, we obtain

e~ s 6725
S (5) — $°(0) — 2y'(0) — 55"(0) — y"(0) = Y () = = =
Applying the initial conditions,
—s —2s
4 e e
Y(s)— Y(s) = —
Y (5) = V(s) = - &
Solving for the transform of the solution,
e~ % 6725
Y(s) = — .
() s(st—=1) s(st—1)
Using partial fractions,
;717§+ 1 n 1 n 2s
s(sf—1) 4] s s+1 s—1 s24+1]°
It follows that
1 1
—1 _ -t it
L |:S(S41):|—4|:—4+€ +e +200$t:|.
Based on Theorem 6.3.1, the solution of the IVP is
1
y(t) = —[ur(t) —ua2(t)] + 1 [ef(tfl) + et Y 4+ 2 cos(t — 1)} up(t)—

1!

; {e—(t—2) +et=2) 4 9 cos(t — 2)} uy(t) .



220 Chapter 6. The Laplace Transform

1A
0.8

0.6

0.2

o

\
\
\
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\
\
\
\
\
\
\
\
\
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0.4 - | |
! \
\
\
\
\
\
| \
1 2
:

o 3 4 o 1 2‘ }i A
The solution increases without bound, exponentially.

13.(a) Taking the Laplace transform of the ODE, we obtain
1Y (s) = s°y(0) — s%y"(0) — sy (0) — y""(0)+

1 —TSs
+5[s*Y(s) — sy(0) —y'(0)] +4Y(s) = S ¢ p
Applying the initial conditions,
1 —TSs
s'Y (5) 4+ 55%Y (s) + 4Y (s) = T ¢ .

Solving for the transform of the solution,

1 67775
Y(s) = — .
() s(s*+5s2+4) s(s*+5s2+4)

Using partial fractions,

_ v 1y s 45
s(st+5s24+4) 12 |s s2+4  s24+1]°
It follows that
£t SN S i[3—|—cos 2t — 4 cos
s(st +5s2 4+ 4) 12 '
Based on Theorem 6.3.1, the solution of the IVP is
1 1 1
y(t) = 1 [1—u(t)] + T [cos 2t — 4 cos t] — Tl [cos 2(t — ) — 4 cos(t — )] ux(t).
That is,

1 1
yt) = = [1 —ux(t)] + 1 [cos 2t — 4 cos t] — - [cos 2t + 4 cos t] ur(t).
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After an initial transient, the solution oscillates about y,, =0.

14. The specified function is defined by

0, 0§t<t0
ft)=qEt—ty), to<t<to+k
h, t>to+k

which can conveniently be expressed as

F(E) = 26 to) (1) = 2 (6~ to — K) ey 4(0).

15. The function is defined by

0, 0<t<ty
(0 Bt —to), to<t<to+k
g —Rt—to—2k), to+k<t<to+2k
0, t >ty + 2k
which can also be written as
h 2h h
9(t) = 2t —to) ury (t) = = (t = to = k) e (t) + 2 (t = to — 2k) uto+2x(2).

17. We consider the initial value problem

y" oy = 1= ) ust) — (=5 - B ussa(o)]

with y(0) =y’(0) =0.
(a) The specified function is defined by

0<t<5
(t—5), 5<t<5+k
t>5+k

ft) =

= e O

so k controls the point at which f(¢) reaches 1. When k =5, f(t) = ¢g(¢) in Ex.2.
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0.8 4

0.6 4

0.4 4

0.2 4

N

(b) Taking the Laplace transform of both sides of the ODE, we obtain

—9a8

e 67(5+k)s

s?Y (s) —sy(0) —y'(0) +4Y(s) = o

Applying the initial conditions,
—5s —(5+k)s
9 e e
Solving for the transform,

6755 67(5+k:)s

ks?(s2+4)  ks?(s2+4)

Y(s) =

Using partial fractions,

_ vyt v
s2(s24+4) 4 [s2 s2+4]°
It follows that
il PR [N PR SR
s2(s2+4)| 4 8 ’
Using Theorem 6.3.1, the solution of the IVP is

y(t) = 7 [A(t = 5) us(6) — bt — 5 — K)us (1)

in which h(t) =t/4 —sin 2t /8.

(c) Note that for ¢t > 5+ k, the solution is given by

1 1 1 1 sink
=~ — —sin(2t — 10) + — sin(2t — 10 — 2k) = ~ — 2% —10 — k).
y(t) 175 sin(2¢ — 10) + 2 sin(2t — 10 — 2k) 1 ik cos(2t — 10 — k)
So for ¢ > 5+ k, the solution oscillates about y,, = 1/4, with an amplitude of
= |sin(%)| .

4k
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(a) k= 3/2 (b) k=1 (¢) k=1/2

18.(a) The graph shows fj, for k=2, k=1 and k = 1/2.
19 7—‘

0.6 4

0.4 4

0.2 4

Nt — —

od—— —
~
»

(b) The forcing function can be expressed as

ult) = 51 |

Taking the Laplace transform of both sides of the ODE, we obtain

ug—k(t) — uatr(t)] -

1 e—(4—k)s e—(4+k)s

SY(5) = 59(0) = y'(0) + 5 [sY () = y(O)] +4Y () = —5— — 5

Applying the initial conditions,
e—(4—k)s e—(4+k)s

1
2 —_ = —
s°Y(s) + 33Y(3) +4Y(s) T T

Solving for the transform,
3 e—(4—k)s 3 e—(4+k)s
T 2ks(3s2+s+12)  2ks(3s +s+12)

Y (s)

Using partial fractions,

v 11 148 ]_ 171 L 146lstg)
s(B3s2+s+12) 12 |s 32+s+12] 12 ]s 6(s+ )2+ 8 |°
Let
111 1 1
H(S):[_ 162 143 — 31+26 143]
8kls (s+5)0+3 (5+5)°+ %6
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It follows that

e—t/6

Based on Theorem 6.3.1, the solution of the IVP is
yt) =h(t—4+k)us_r(t) — h(t —4 — k) uaqr(t).

(¢) k=1/2

As the parameter k decreases, the solution remains null for a longer period of
time. Since the magnitude of the impulsive force increases, the initial overshoot of
the response also increases. The duration of the impulse decreases. All solutions
eventually decay to y =0.

21.(a)

(b) Taking the Laplace transform of both sides of the ODE, we obtain

k —kTrS

$*Y (s) —sy(0) —y'(0) + *+ Z

Applying the initial conditions,
Xn: k —kms

k=1

s7Y (s) +

:n\»—t
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Solving for the transform,

1 __1__s
s(s2+1) s s241°
Let
1
ht)=£'|———| =1—cos t.
t)y==°L [5(32+1)] coS

Applying Theorem 6.3.1, term-by-term, the solution of the IVP is

n

y(t) =h(t) + > (~1)Fh(t — kr) e (t).

k=1

Note that

h(t — kr) = uo(t — km) — cos(t — km) = upr(t) — (=1)* cos t.

Hence

y(t) =1—cos t+ Y (=1)" upx(t) — (cos t) Xn: Upere (£) .

k=1 k=1

The ODE has no damping term. Each interval of forcing adds to the energy of the
system, so the amplitude will increase. For n = 15, g(¢t) = 0 when ¢ > 157. There-
fore the oscillation will eventually become steady, with an amplitude depending on

the values of y(157) and y'(157).

(d) As n increases, the interval of forcing also increases. Hence the amplitude of
the transient will increase with n. Eventually, the forcing function will be constant.

In fact, for large values of t,

(1) = 1, neven
=00, nodd
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Further, for ¢t > nm,

1—(=1)

y(t) =1—cost—n cost— )

Hence the steady state solution will oscillate about 0 or 1 , depending on n, with
an amplitude of A =n+ 1. In the limit, as n — oo, the forcing function will be
a periodic function, with period 27 . From Problem 33, in Section 6.3,

1

Llgt)] = s(de )

As n increases, the duration and magnitude of the transient will increase without
bound.

22.(a) Taking the initial conditions into consideration, the transform of the ODE is

1 n -1 k ,—kms
s2Y(s)+01sY(s) +Y(s) =~ + L.

5 = s

Solving for the transform,
1 n (_1)k€7k7rs
Y(8) = w51 -
s(s2+0.1s+1) = s(s2+0.1s+1)
Using partial fractions,
1 1 s+ 0.1

s(s24+01s+1) s s24+01s+1"

Since the denominator in the second term is irreducible, write

s+0.1 B (s40.05) +0.05
s24+01s+1 (s +0.05)2 + (399/400)
Let
h(t) = -1 1 B (s +0.05) B 0.05
B s (s+0.05)2 +(399/400) (s 4+ 0.05)2 4 (399/400)

=1—et/% lcos( 399 L (V30 t)

¢
20 D a5 g

Applying Theorem 6.3.1, term-by-term, the solution of the IVP is

n

y(t) = h(t) + Y (1) h(t — kr) ura(t).

k=1

For odd values of n, the solution approaches y = 0. (On the next figure, n = 5.)
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(b) The solution is a sum of damped sinusoids, each of frequency w = /399 /20 ~ 1.
Each term has an initial amplitude of approximately 1. For any given n, the
solution contains n + 1 such terms. Although the amplitude will increase with n,
the amplitude will also be bounded by n+1.

(c) Suppose that the forcing function is replaced by g¢(t) =sin ¢. Based on the
methods in Chapter 3, the general solution of the differential equation is

V399 )

9
t) + co sin( 50

+ yp<t) :

) = e—t/20
y(t)=e 1 cos( 30

Note that y,(t) = A cost+ Bsint. Using the method of undetermined coeffi-
cients, A =—10 and B = 0. Based on the initial conditions, the solution of the
IVP is

V399 1 . v399
t) + sin( t
20 V399 20

y(t) = 10e~4/20 lcos( )] —10 cos t.

Observe that both solutions have the same frequency, w = 1/399/20 ~ 1.
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23.(a) Taking the initial conditions into consideration, the transform of the ODE is

1 n ( 1)ke—(11k/4)s
2Y(s)+Y(s) == +2 E

S
Solving for the transform,
1 n -1 ke—(llk/4)s
Y(s) = ——5—— +2 %
s(s2+4+1) = s(s2+1)
Using partial fractions,
1 1 S
s(s2+1) s s241°
Let
h(t)=L""! 1 =1-cost
B s(s2+1)] '

Applying Theorem 6.3.1, term-by-term, the solution of the IVP is

y(0) = h(H) +2 3 (DM ) wga(t)
k=1

That is,

L ~ ikl _ 1k
y(t) =1 cost+2k2=:1( 1) [1 cos(t 4) Up1k/4(t) -

(b) On the figure we see the solution for n = 35.
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(c) Based on the plot, the slow period appears to be 88. The fast period appears
to be about 6. These values correspond to a slow frequency of ws = 0.0714 and a
fast frequency wy = 1.0472.

(d) The natural frequency of the system is wg = 1. The forcing function is initially
periodic, with period T'=11/2 = 5.5. Hence the corresponding forcing frequency
is w = 1.1424 . Using the results in Section 3.8, the slow frequency is given by

_ lw — wo

s =0.0712
v 2
and the fast frequency is given by

wy = w — 1.0712.

Based on theses values, the slow period is predicted as 88.247 and the fast period
is given as 5.8656 .

2.(a) Taking the Laplace transform of both sides of the ODE, we obtain
s2Y(s) — sy(0) —y'(0) + 4Y (s) = e ™ — e~ 275,
Applying the initial conditions,
s2Y (5) +4Y(s) = e ™ — e~ 27,
Solving for the transform,

—TSs __ 672775 e~ TS 6727rs

Y = = — .
(5) s24+4 s24+4 s244

Applying Theorem 6.3.1, the solution of the IVP is

y(t) = %sin(Qt —2m)ur(t) — %sin(?t —Am)ug,(t) = %sin(?t) [un(t) —uor(t)] .
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0.4 +

0.2 4

-0.2 A

~0.4 -

4.(a) Taking the Laplace transform of both sides of the ODE, we obtain
s2Y (s) — sy(0) —y'(0) — Y (s) = —20e .
Applying the initial conditions,
2Y(s) = Y(s) —s=—20e 3.
Solving for the transform,

s 2073
s2—1 s2-1°

Using a table of transforms, and Theorem 6.3.1, the solution of the IVP is

Y(s) =

y(t) = cosh ¢t — 20 sinh(t — 3)us(t) .

40 o
30 o
20 o

10 o

6.(a) Taking the initial conditions into consideration, the transform of the ODE is

s2Y(s) +4Y(s) — 5/2 = e 4™,

Solving for the transform,
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Using a table of transforms, and Theorem 6.3.1, the solution of the IVP is

1 1 1 1
y(t) = 5 cos 2t + 3 sin(2t — 8m)ug, (t) = 5 cos 2t + 3 Sin(2t) ugr (t) .

0.6 A

AL
cRTAIAY

-0.6

8.(a) Taking the Laplace transform of both sides of the ODE, we obtain
s2Y (s) — sy(0) — y'(0) + 4Y (s) = 2~ (/Ds,
Applying the initial conditions,
s2Y (s) +4Y (s) = 2~ (7/Ds,

Solving for the transform,
9e—(m/4)s

Yi(s) =
(s) 5244

Applying Theorem 6.3.1, the solution of the IVP is

y(t) = sin(2t — g)uﬂ Ja(t) = — cos(2t) g a(t) .

0.5 4

—0.5 -
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9.(a) Taking the initial conditions into consideration, the transform of the ODE is

—(7/2)s —27s
Y (s) +Y () = ——— +3e (/D 2

s
Solving for the transform,

v ) e—(Tr/Q)s N 36—(37r/2)s e—27rs
() = s(s?2+1) s2+1 s(s2+1)°

Using partial fractions,
1 1 S

s(2+1) 5 241
Hence
e—(7/2)s  go—(x/2)s  3,—(3m/2)s  ,—2ms g ,—2ms
s s2+1 + 241 s +52+1'
Based on Theorem 6.3.1, the solution of the IVP is

S) =

3
Y(t) = uro(t) — cos(t — g)uﬂ/g(t) + 3 sin(t — ?ﬂ-)ugﬂm(t) — Ugr (t) 4 cos(t — 2m)ug. ().
That is,

y(t) = [1 = sin(t)] wrya(t) + 3 cos(t) ugn/2(t) — [L — cos(t)] uan(t) -

(b)

~ oA

10.(a) Taking the transform of both sides of the ODE,
e 1
25%Y (s) + sY (s) +4Y (s) = / e ot — %) sin tdt = 3 e~ (m/6)s,
0

Solving for the transform,
—(m/6)s
e
Y($)=—s—.
() 2(2s%2 4+ s+ 4)

First write

1 1
_ 1
20252 +s+4)  (s+1)2+

‘oa
ol=

1
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It follows that

1 31
ﬁe_(t_ﬂ/ﬁ)/zl : sing(t - %)uﬂ/e(t)-

0.12
0.10 o
0.08 +

0.06 —

0.04
0.02
o /\ ]
1 10 15
-0.02 o z

-0.04 A

—-0.06

11.(a) Taking the initial conditions into consideration, the transform of the ODE is

$2Y(s)+2sY(s) +2Y(s) = 4o (®/2s,

s24+1

Solving for the transform,

Y(s) =

Using partial fractions,

s e—(Tr/Q)s

(s24+1)(s?+2s+2) +32+25+2'

s 1 s n 2 s+4
(s2+1)(s2+25+2) 5 [s2+1 s2+1 s2+25+2]°

We can also write

s+4  (s+1)+3
$2+254+2 (s+1)2+1°
Let s
R A P T sy
Then

1 2 1
L7 Yi(s)] = £ costJrg sintfge*t [cos ¢ + 3 sin t].

Applying Theorem 6.3.1,
—(w/2)s
1 € _(t=T) . 71'
£ [w} =8 sin (1 5 ) wepa(t).
Hence the solution of the IVP is

1 2 1 x
y(t) = £ cos t+ E sin t — 3 e t[cos t + 3 sin t] — e %) cos(t) Ur (1) -
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12.(a) Taking the initial conditions into consideration, the transform of the ODE is
s'Y(s) = Y(s) = e .
Solving for the transform,

Y(s) = a1

Using partial fractions,

11 1 1
-1 2|s2—-1 s2+1|°

It follows that

1 1 1
£t {54—1} zisinht—isint.

Applying Theorem 6.3.1, the solution of the IVP is

y(t) = % fsinh(t — 1) — sin(t — 1)] ur (£).

~
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14.(a) The Laplace transform of the ODE is
2 1 s
s*Y(s) + 25 Y(s)+ Y(s)=¢e".

Solving for the transform of the solution,

67«5‘

V()= — o
(s) $24+s/2+1

First write
1 1

s24+5/2+1  (s+5)2+17

Taking the inverse transform and applying both shifting theorems,

4 1
= —(=D/4 gin ?(t —Duy(t).

y(t) = ﬁe

0.6 H
0.4 4

0.2 4

~0.2 4

(b) As shown on the graph, the maximum is attained at some ¢; > 2. Note that
for t > 2,

4 1
y(t) = —e~ =D/ gin g(t -1).

V15

Setting y'(t) =0, we find that ¢; ~ 2.3613. The maximum value is calculated as
y(2.3613) ~ 0.71153.

(c) Setting v =1/4, the transform of the solution is

—S

e

Yol = a1

Following the same steps, it follows that

8 s YT 1
W =57 =D 0).
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0.6 H

0.4 +

-0.2 4

~0.4 -

Once again, the maximum is attained at some t; > 2. Setting y'(¢t) = 0, we find
that ¢, &~ 2.4569, with y(¢1) ~ 0.8335.

(d) Now suppose that 0 < v < 1. Then the transform of the solution is

Y(s§) = ———.
() s2+ys+1
First write

1 1

Zrys+1  (s+7/22+(1—12/4)

It follows that

h(t) =7t { ! ] = 42 = eM’t/Zsin(\/l —2/4 - t).

$24+ys+1 —

Hence the solution is
y(t) = h(t =D (t).
The solution is nonzero only if ¢ > 1, in which case y(t) = h(t — 1). Setting y'(t) =

0, we obtain
1
tan {\/1 —2/4 - (t— 1)} = —\/4—72,
Y

that is,

tan [m.g_l)} 5
J1-7%/4 v

As v — 0, we obtain the formal equation tan(t — 1) = oo. Hence t; — 1+ 7. Set-
ting t = 7/2 in h(t), and letting v — 0, we find that y; — 1. These conclusions
agree with the case v = 0, for which it is easy to show that the solution is

y(t) = sin(t — 1) uy(t) .

15.(a) See Problem 14. It follows that the solution of the IVP is

4k e . V15
y(t) = ﬁe (=174 gin T(t —Du(t).
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This function is a multiple of the answer in Problem 14(a). Hence the peak value
occurs at t; = 2.3613. The maximum value is calculated as y(2.3613) ~ 0.71153 k.
We find that the appropriate value of k is k; = 2/0.71153 ~ 2.8108.

(b) Based on Problem 14(c), the solution is

8k 3V7
t) = ——e /B gin X2t — 1wy (t).
Since this function is a multiple of the solution in Problem 14(c), we have that
t1 &~ 2.4569, with y(t1) ~ 0.8335k. The solution attains a value of y =2 when
k1 = 2/0.8335, that is, ki ~ 2.3995.

(¢) Similar to Problem 14(d), for 0 < v < 1, the solution is

y(t) = h(t —1)w(t),
in which

h(t) = \/% e " 2sin(\/1—~2/4 - t).

It follows that t; — 1 — 7/2. Setting ¢t = w/2 in h(t), and letting v — 0, we find
that y3 — k. Requiring that the peak value remains at y = 2, the limiting value
of k is ky = 2. These conclusions agree with the case v = 0, for which it is easy
to show that the solution is

y(t) =k sin(t — 1) uy(t).

16.(a) Taking the initial conditions into consideration, the transformation of the
ODE is
1 —(4—k)s —(4+k)s
Y (s) + Y(s)zzk[e . }

S S

Solving for the transform of the solution,

1 —(4—k)s —(4+k)s
Y(s)= — | = - .
2k |s(s2+1) s(s2+1)
Using partial fractions,
s
s(s2+1) s s241°
Now let
1
h(t) =Lt |—5—=| =1—cost.
W [8(82 - 1)] “

Applying Theorem 6.3.1, the solution is

gi)(t s k) = % [h(t -4+ k) u4,k(t) - h(t —4 - k) u4+k(t)] .
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That is,
Bt ) = 5 [ua (t) = wasn(t)] -
- i [cos(t — 4+ k) ug_g(t) — cos(t — 4 — k) ugy(t)] .

(b) Consider various values of t. For any fixed t < 4, ¢(¢,k) = 0, aslongas4 — k > t.
Ift >4, then for 44+ k < t,

(;S(t,k):—%[cos(t—él—i-k)—cos(t—4—k)].

It follows that

t—4+k)—cos(t —4—k
lim (¢, k) = lim — S =4 F k) — cos( )
k—0 k—0 2k

=sin(t — 4).

Hence

khino o(t, k) =sin(t — 4) uq(t).

(¢) The Laplace transform of the differential equation
y"+y=6(t—4),
with y(0) =y’(0) =0, is
S2Y(s) + Y(s) = e %5,
Solving for the transform of the solution,

6745

Y(s)=——.
() s24+1

It follows that the solution is ¢g(t) = sin(t — 4) u4(t) , and this means that

lim 6(t, k) = o(t).

(d) We can see the convergence on the graphs.

19

0.5 4

-0.5
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18.(b) The transform of the ODE (given the specified initial conditions) is
20
s2Y(s)+ Y(s) = Z (—1)kFte=hkms,
k=1
Solving for the transform of the solution,
20

1
Y _ -1 k+1 —kﬂ'S.
0= 7 LV

Applying Theorem 6.3.1, term-by-term,

20 20

y(t) =Y (D sin(t — k) upe(t) = —sin(t) - Y upe(t).

k=1 k=1

o Vovf\f\/)[\, LU
ki

~10 4

(¢) For t > 207, y(t) = —20sin .

19.(b) Taking the initial conditions into consideration, the transform of the ODE
is

20
82 Y(S) + Y(S) _ Z e—(kﬂ'/2)s.
k=1

Solving for the transform of the solution,
20

V()= gy et

2
s +1 =

Applying Theorem 6.3.1, term-by-term,

20 ke
y(t) = Z sin(t — 7) Uk /2(t) -

k=1
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0.8

0.6 4

0.4 4

0.2 4

(c) For t > 107, y(t) = 0.

20.(b) The transform of the ODE (given the specified initial conditions) is

20
52 Y(S) + Y(S) — Z(il)k+1€7(kw/2)s'
k=1

Solving for the transform of the solution,

Applying Theorem 6.3.1, term-by-term,

y(t) = Z (=1)* L sin(t — I%T) Uk /2(t) -

0.5

-0.5

(c) For ¢t > 107, y(t) = 0.

22.(b) Taking the initial conditions into consideration, the transform of the ODE
is
40
32 Y(S) + Y(S) — Z (_1)k+167(11k/4)s.
k=1
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Solving for the transform of the solution,

40 (11k/4)s

Y(s)= S (-1

2
= s4+1

Applying Theorem 6.3.1, term-by-term,

40

y(0) = D2 (1R sint — ) urnalh)
k=1

A

(c) For ¢ > 110,

40
11k
y(t) => (=1)*sin (t - 4) ~ —5.13887 cos(56.375 — t).
k=1

23.(b) The transform of the ODE (given the specified initial conditions) is

20
s2Y (s) +0.1sY(s) + Y(s) = Z (—1)k+lemkms,
k=1
Solving for the transform of the solution,
20 eflwrs
Y(s) =
®) ,;1824-015—1—1
First write
1 _ 1
s24+01s+1 (54.%)2_’_% .

It follows that

£t ! _ 2 e~ t/20 Sin(i399 t)
$240.1s+1 v/399 20 7
Applying Theorem 6.3.1, term-by-term,

20

y(t) = 3 (DMt — k) wen (1),

k=1
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in which
h(t) = ie_t/zo sin(ﬁ t).
V399 20

J\M ! M/\/\/\
Uv ) VWWV

(c¢) For t > 20m, each term in the sum for y(¢) will contain a decaying exponential
term multiplied by a bounded term. Thus y(¢) — 0.

24.(b) Taking the initial conditions into consideration, the transform of the ODE
is
15

s2Y(s) +0.1sY (s) + Y(s) = Z o—(2k—1)ms
k=1

Solving for the transform of the solution,

15 2k—1)7s

—~

e

Y(s) = B
(s) ; 2+01s+1

As shown in Problem 23,

o { 2+011 +J = e gy
S 1s

7595 i (Tot)

Applying Theorem 6.3.1, term-by-term,

15
y(t) =D bt — 2k = D)7 ugar-1)=(1),
k=1

in which
h(t) = 20 -0 sm(igg t)
V399 20 7
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o
o

(c) For t > 297, each term in the sum for y(¢) will contain a decaying exponential
term multiplied by a bounded term. Thus y(t) — 0.

2. Let f(t) = e'. Then
t t
(f * 1)(t)=/ et_T-ldT:et/ e Tdr =e' — 1.
0 0
3. It follows directly that

t 1 st 1

(f =)= / sin(t — 7) sin(7) dr = 3 / [cos(t — 27) — cos(t)]dT = §(Sint —tcost).
0 0

The range of the resulting function is R .

5. We have £[e~!] =1/(s+ 1) and £ [sint] = 1/(s*> + 1). Based on Theorem 6.6.1,

t 1 1 1
—(t—7) o = . =
£ Uo e Teinlr) dT} s+l @+1 (s+1)(s2+1)

6. Let g(t) =t and h(t) = e'. Then f(t) = (g * h) (t). Applying Theorem 6.6.1,

e[ 3 e g

7. We have f(t) = (g * h) (t), in which g¢(¢) =sin ¢t and h(t) = cos t. The trans-
form of the convolution integral is

. [/Otg(tT)h(T)dT] - 3211 ' 5211 - (s2i1)2'

9. It is easy to see that

E_l{ ! }:e_t and E_l{

s
s+1 244

} = cos 2t.
s
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Applying Theorem 6.6.1,

t
1 S _ —(t—7) 5 9
L {(s 12 _’_4)} /0 e cos 27 dT .

10. We first note that

1 1 1
£t [} =te ! and 7! { } = —sin 2¢.

(s+1)2 s2+4 2
Based on the convolution theorem,
1 [t
LY e—m———————| == t—1)e” " gin 27 d
[(3—!—1)2(52—!—4)} 2/0( T)e sin 27 dr
1

t
zf/ Te Tsin(2t — 27)dr.
2 Jo

11. Let g(t) = £7[G(s)]. Since £7*[1/(s* 4+ 1)] = sin ¢, the inverse transform of
the product is

! Lf(j)l} :Atg(t—T) sin 7 dr = /Otsin(t—T)g(T) dr.

12.(a) By definition,
t
f*g:/ (t—7)"r"dr.
0

Set 7 =t —tu, dr = —tdu, so that
t 0 1
/ (t—r)"r"dr = —/ (tu)™(t — tu)™ t du = t™ " T! / u™(1—u)" du.
0 1 0

(b) The Convolution Theorem states that £[f x g] = £[f] - £ [g]. Noting that

k!

it follows that

I n! nt ot
m.on :(m+n+ ) / u™ (1 —u)" du.
0

Sm—i—l sm—i—l Sm+n+2
Therefore )
In!
/ u"™ (1 —u)"du = _ment
0 (m+n+1)!
(c) If k is not an integer, we can write
I'k+1)
it = =

and

sm+1 SnJrl - sm+n+2

I'(m+1) T(n+1) T(m+1) /1 (1 — )" du,
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SO

L n gy~ Lm+ 10 +1)
/Ou (1—w)"du= Tm+nt2)

13. Taking the initial conditions into consideration, the transform of the ODE is
s2Y(s) — 1+ w?Y(s) = G(s).

Solving for the transform of the solution,

1 G(s)
24 w? 2+ w?

As shown in a related situation, Problem 11,

o {G(S)} - 1/0t sin(w(t — 7)) g(7) dr .

Y(s) =

52 + w? w

Hence the solution of the IVP is

y(t) = % sin(wt) + é /o sin(w(t — 7)) g(r)dr.

15. The transform of the ODE (given the specified initial conditions) is
45?Y (s) +4sY (s) + 17Y (s) = G(s).
Solving for the transform of the solution,
G(s)
Y(s)= ——————.
)= rastm
First write
1
1 _ 1
42 +4s4+ 17 (s+3)2+4"

Based on the elementary properties of the Laplace transform,
1 1
Ll —————— | = e /?sin 2t.
{432—1—43—1— 17] gt W
Applying the convolution theorem, the solution of the IVP is

1

¢
y(t) = g/ e~ /2 gin 2(t — 1) g(7) dr .
0

17. Taking the initial conditions into consideration, the transform of the ODE is
$2Y(s) =25+ 3+4[sY(s) = 2] +4Y(s) = G(s).
Solving for the transform of the solution,

2545 Gls)
YO =52 T e

We can write
2s+5 2 1

(s+2)2 st2 " (s+2)2°
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It follows that

2 1
-1 -2t -1 _ =2t
L |:S—|—2:| = 2e and L |:(5—i—2)2:| =te .

Based on the convolution theorem, the solution of the IVP is

t
y(t) =2e 2 4 te 2 4 / (t —7)e 2=g(7) dr .
0

19. The transform of the ODE (given the specified initial conditions) is
'Y (s) — Y(s) = G(s).

Solving for the transform of the solution,

First write

1 1] 1 1
st—1 2(s2—-1 s2+41
It follows that

1 1
£1{ _1] 2[Slnht—s1nt]

Based on the convolution theorem, the solution of the IVP is
1 t
y(t) = 3 / [sinh(¢t — 7) — sin(t — 7)] g(7) d7 .
0

20. Taking the initial conditions into consideration, the transform of the ODE is
s'Y (s) — 8% +552Y (s) — 5s +4Y(s) = G(s).

Solving for the transform of the solution,

s34+ 5s G(s)
(s24+1)(s2+4)  (s24+1)(s2+4)
Using partial fractions, we find that

s34+ bs _ 1] 4 s
(s2+1)(s2+4) 3 [s2+1 s2+4

Y(s) =

and

1 1 1 B 1
(s2+1)(s2+4) 3 [s2+1 s2+4]°
It follows that

5) 1
El[( 5(5° + Obt—*COSQt,

s2+1) 32—1—4]
and
* [eomeo) -
(s

fsmt—fsm%
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Based on the convolution theorem, the solution of the IVP is

4 1 I :

y(t)=-cost— - cos 2t+ = [ [2sin(t —7) —sin 2(t — 7)] g(7) dT .

3 3 6 Jo

22.(a) Taking the Laplace transform of the integral equation, with ®(s) = £ [4(t)],
1 2
P — - ®(s) = ——.
() + 5 2 = 5

Note that the convolution theorem was applied. Solving for the transform ®(s),

252
P(8)= —5+——.
)= E D@9
Using partial fractions, we can write
252 2 4 1
(s2+1)(s2+4) 3 [s2+4 s2+1]°

Therefore the solution of the integral equation is

4 2
gf)(t):g sin Qtfg sin ¢ .

(b) Differentiate both sides of the equation, we get

t
P (t) + (t —t)p(t) + / P(€)dE = 2 cos 2t.
0
Clearly, t —t = 0, so differentiating this equation again we obtain
¢ (t) + ¢(t) = —4sin 2t.
Plugging ¢ = 0 into the original equation gives us ¢(0) = 0. Also, t = 0 in the first
equation here in part (b) gives ¢'(0) = 2.
(c) Taking the Laplace transform of the ODE, with ®(s) = £ [¢(t)],

8

2 —

Solving for the transform of the solution,

D(s) =

252
CESICEEE
This is identical to the Laplace transform we obtained in part (a), so the solution

will be the same.

23.(a) Taking the Laplace transform of both sides of the integral equation (using
the Convolution Theorem)

It follows that
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and
s

o(t) =L~ L‘2+1

]cost.

(b) Differentiating both sides of the equation twice, we get

o(1) + /0 6(€) de = 0,

and then ¢”(t) + ¢(¢t) = 0. Plugging ¢ = 0 into the original equation and the first
equation above gives ¢(0) = 1 and ¢’(0) = 0.

(¢) The function ¢(t) = cost clearly solves the initial value problem in part (b).

25.(a) The Laplace transform of both sides of the integral equation (using the
Convolution Theorem) is

2s 1
(I) —_ @ =
(8) + 57260 =517
Solving for ®(s):
s2+1
)= Groe
Rewriting,
s+1)2—2(s+1)+2 1 2 2
b CTV st 12 |
(s+1)3 s+1 (s+1) (s+1)3
The solution of the integral equation is
1 2 2

(b(t):ﬁ_l[ } =e ' —2te 4127,

s+1 (s+1)2+(s+1)3

(b) Differentiating both sides of the equation twice, we get

t
#(0)+20(0) ~ 2 [ sinlt - 0(6) ds =~
0
and then
t
8(6)+20(0) 2 [ coslt — )o(e)de e,
0
Using the original equation, we can convert the second equation to

¢ (t) +2¢'(t) + B(t) = 27",

Plugging ¢ = 0 into the original equation and the first equation above gives ¢(0) = 1
and ¢'(0) = —3.

(c) It is easily confirmed that the function ¢(t) = e~t — 2te=t +t2e~* solves the
initial value problem in part (b).
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27.(a) Taking the Laplace transform of both sides of the integro-differential equation
1

52

s@(s)flfsisq)(s) =

Solving for ®(s):

s
(b =
(s) s24+1
Taking the inverse Laplace transform,
¢(t) = cos t.

(b) Differentiating both sides of the equation three times, we get

6 (t%/o (t— ©)¢(€)de = 1,
then ,
b (t)_/o o(6) de = 0,

and then ¢*(t) — ¢(t) = 0. Plugging ¢t = 0 into the original equation and the first
two equations above gives ¢’'(0) =0, ¢”'(0) = —1 and ¢"”(0) = 0.

(c) It is easily confirmed that the function ¢(t) = cost solves the initial value prob-
lem in part (b).

28.(a) The Laplace transform of both sides of the integro-differential equation is

1
O(s) =1+ P(s) = 5—— P(s) .
$0(s) — 1+ B(s) = 5 B()
Solving for ®(s):
s? 41 1 1
s(s24+s+1) s (s2+s+1)
Note further that

1 1 2 V3 /2

(2+s+1) (5+1/22+3/4 3 (s+1/22+3/4°

Taking the inverse Laplace transform,

o(t)=1- %e‘t/z sin(? t).

(b) Differentiating both sides of the equation twice, we get

&(6) + & (1) — /O cos(t — €)$(€) dé =0,
and then .
(1) + ¢ (1) — O(t) + / sin(t — €)6(¢€) dé = 0.
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Using the original equation, we can convert the second equation to
¢"(t) + ¢"(t) + ¢'(t) = 0.

Plugging t = 0 into the original equation and the first equation above gives ¢’(0) =
—1 and ¢”(0) = 1.

(c) Tt is easily confirmed that the function ¢(t) = 1 — (2/v/3)e~*/?sin(v/3t/2) solves
the initial value problem in part (b).

29.(a) First note that

b
f) ( 1 >
——=—dy=|—= * f) (D).
/0 Vb—y VY
Take the Laplace transformation of both sides of the equation. Using the convolu-
tion theorem, with F(s) = L[f(y)],

To 1 [ 1 ]
—=—F(s)-L|—]|.
s~ gt 7y
It was shown in Problem 31(c), Section 6.1, that
’ {1} _ =
va s

Hence

and

Taking the inverse transform, we obtain

Ty [2g

f() V7

(b) Combining equations (i) and (iv),

2978 _ |, (d ?
2y dy)

Solving for the derivative dz/dy,

dr  [2a—y
dy y

in which o = gT¢/n2.

(¢) Consider the change of variable y = 2« sin?(#/2). Using the chain rule,

dy . do
e 2 sin(0/2) cos(6/2) - e
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and
dr _ 1 s
dy  2asin(6/2)cos(0/2) db -
It follows that
d 2(0/2
CTZ = 2 sin(0/2) cos(6/2) M =2a cos?(0/2) = a+ a cos 6.
Direct integration results in
z(0) =af+ asin+C.
Since the curve passes through the origin, we require y(0) = x2(0) =0. Hence

C=0,and z(f) = af + « sin . We also have
y(0) = 2a sin?(0/2) = a — av cos 6.
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CHAPTER

7

Systems of First Order Linear

Equations

1. Introduce the variables 1 = u and zo = u’. It follows that x{ = xo and
zy=u"=—-2u—0.5u".

In terms of the new variables, we obtain the system of two first order ODEs

)

:x2

i
1
x2’ =—2x1 —0.525.

3. First divide both sides of the equation by t2, and write
1 1

" li
=——u' —(1— —)u.
U LU ( 4t2)u
Set 1 =wu and zo = u’. It follows that x{ = zo and
1 1
I " /
—u’=—~u' —(1-—)u.
Ty =1u LU ( pre Ju
We obtain the system of equations
] =1
1 1
[
Ty = —(1 — E)‘Tl — ;xQ.

253
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5. Let 1 = u and zo = u'; then u” = 2. In terms of the new variables, we have
xh +0.2525 + 421 =2 cos 3t

with the initial conditions z1(0) =1 and x2(0) = —2. The equivalent first order
system is

) =19

xh = —4x1 —0.2525 + 2 cos 3t

with the above initial conditions.

7.(a) Solving the first equation for xs, we have xs = x{ + 2x; . Substitution into
the second equation results in (z{ + 2x1)" = 21 — 2(x{ + 2x1). That is, x{ + 4| +
321 = 0. The resulting equation is a second order differential equation with con-
stant coefficients. The general solution is z1(t) = cre”t + coe 3t With zo given

in terms of 7, it follows that x5(t) = cie™! — coe 3.

(b) Imposing the specified initial conditions, we obtain
Cl+62:2, 01—02:3,

with solution ¢; =5/2 and ¢g = —1/2. Hence

5 5 1
z1(t) = ie*t — 567375 and zo(t) = 5671‘/ + 567375.
()

10.(a) Solving the first equation for x2, we obtain z3 = (z1 — x{)/2. Substitution
into the second equation results in (21 — 21)'/2 = 321 — 2(x1 — z{). Rearranging
the terms, the single differential equation for z; is #{' +3x{ + 2z, = 0.

(b) The general solution is z1(t) = cie™* + cpe™2!. With x5 given in terms of z,
it follows that xo(t) = cie ™ + 3cae ™2t /2. Invoking the specified initial conditions,
¢y = —7 and ¢ = 6. Hence

z(t) = —Te ' +6e 2 and xo(t) = —Te ' +9e 2.
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a2

11.(a) Solving the first equation for x2, we have xo = {/2. Substitution into the
second equation results in z{'/2 = —2 ;. The resulting equation is x{' + 4z, = 0.

(b) The general solution is z1(t) = ¢1 cos 2t + cosin 2¢. With xo given in terms
of z1, it follows that x5(t) = —cy sin 2t + ¢2 cos 2¢t. Imposing the specified initial
conditions, we obtain ¢; =3 and ¢y = 4. Hence

21(t) = 3 cos 2t + 4sin 2¢ and zo(t) = —3sin 2t + 4 cos 2t .

()

13. Solving the first equation for V', we obtain V = L -I’. Substitution into the
second equation results in

1 L
L-I"=———-—T".
C RC
Rearranging the terms, the single differential equation for [ is

LRC-1"+L-I'"+R-1=0.

15. Let @ = c121(t) + cawa(t) and y = c1y1 () + cay(t). Then
' = 12 (t) + comh(t)

Y = 1y (t) + cays(t).
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Since x1(t), y1(t) and z2(t), ya2(t) are solutions for the original system,
2’ = er(prian () + piayi (1) + c2(pr1z2(t) + praye(t))
Y = ci(paz1(t) + paayi(t)) + ca(parz2(t) 4 paoya(t)).
Rearranging terms gives
x' = pr(arxi(t) 4+ caa(t)) + prz(ciyi (t) + caya(t))
Y = par(c1z1(t) + coma(t)) + paalcryn (t) + caya(t)),

and so =z and y solve the original system.

16. Based on the hypothesis,
21 (t) = pr(t)a1(t) +pr2(Oyi(t) + g1(t)
z5(t) = pu1(t)w2(t) + pr2(t)y2(t) + g1(t) .
Subtracting the two equations,
w1 (t) — 23(t) = p11(t) [21(t) — 23 ()] + pr2(t) [y{ (t) — y2(8)] -
Similarly,
Y1(t) — ya(t) = p21(t) [21(t) — 23(8)] + p22(t) [y1 (t) — 3 ()] -

Hence the difference of the two solutions satisfies the homogeneous ODE.

17. For rectilinear motion in one dimension, Newton’s second law can be stated as

ZF:mm”.

The resisting force exerted by a linear spring is given by Fs = kd, in which ¢ is
the displacement of the end of a spring from its equilibrium configuration. Hence,
with 0 < x1 < xo, the first two springs are in tension, and the last spring is in
compression. The sum of the spring forces on my is

F‘1 = —kil.l‘l - kQ(IQ — 371) .

S

The total force on m; is
ZFl = —kix1 + kQ(!L‘Q — .’)31) + Fl(t) .
Similarly, the total force on my is

ZFz = —kz(.’EQ — xl) — k31’2 + Fz(t) .

18. One of the ways to transform the system is to assign the variables
Y1 = 21, Yz = X2, 2/3:»”5/1, y4:x2'.

Before proceeding, note that

1
el = o [~ (k1 + ko)1 + kowa + Fi(t)]

1
Ty = P (koxy — (ko + k3)xo + Fa(t)]
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Differentiating the new variables, we obtain the system of four first order equations

Yl =ys
Ys = Ya
1
yé = mi(—(/{il —+ kz)yl + k2y2 + Fl(t))
1
1
yi = mf(k‘gilh - (k'2 + k3)y2 + FQ(t)) :

2
19.(a) Taking a clockwise loop around each of the paths, it is easy to see that
voltage drops are given by Vi — Vo =0, and Vo — V3 =0.

(b) Consider the right node. The current in is given by I1 + I5. The current leaving
the node is —I5. Hence the current passing through the node is (I1 + Iz) — (—1I3).
Based on Kirchhoff’s first law, Iy + Io + I3 = 0.

(¢) In the capacitor,

cvy =1.
In the resistor,

Vo=RI,.
In the inductor,

LIJ=1Vj.

(d) Based on part (a), V3 = Vo = V;. Based on part (b),
, 1
= Is=0.
CVl + R‘/2+ 3

It follows that 1
CVllz—Evl—Ig, and LIP,/:Vi

21. Let I, I, I3,and I be the current through the resistors, inductor, and capac-
itor, respectively. Assign Vi, Vs, V3,and V; as the respective voltage drops. Based
on Kirchhoff’s second law, the net voltage drops, around each loop, satisfy

Vi+Va+Vy=0, Vi+Va+Ve=0 and Vy—-Vo=0.

Applying Kirchhoff’s first law to the upper-right node,
Is— (Ia+1,)=0.
Likewise, in the remaining nodes,
I, —I3=0 and ILb+1I,—1;=0.

That is,

Voi—Vo=0, Vi+V3+V,=0 and I+ 14,—I3=0.
Using the current-voltage relations,

Vi=RiI, Va=Ryl,, LIJ=Vs, CV/=1.
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Combining these equations,

v
RiI3+LIJ+Vy=0 and C’V4’:[37R74.
2
Now set Is =1 and V4 =V, to obtain the system of equations
LI'"=—-RiI—-V and CV’:],K.
Ry

23.(a)

Let Q1(t) and Q2(t) be the amount of salt in the respective tanks at time ¢. Note
that the volume of each tank remains constant. Based on conservation of mass, the
rate of increase of salt, in any given tank, is given by

rate of increase = rate in — rate out.

The rate of salt flowing into Tank 1 is

0z gal Q2 oz gal Q2 oz
in = — — —— | |1== = —_— .
" {(h gal} {3111111] + [100 gal] [ mln} 31+ 100 min
The rate at which salt flows out of Tank 1 is
@1 oz gal Q1 oz
Tout = | Z7 — 5 4= = —=——.
60 gal min 15 min

Hence

Qi _, @ O

a0 15
Similarly, for Tank 2,

a7 30 100

The process is modeled by the system of equations

Qs _ Qi 30

o 91, Q@
Qi="75 T g0 T30
Q1 3Q

/—7_7
R T

The initial conditions are Q1(0) = Q% and Q2(0) = Q9.
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(b) The equilibrium values are obtained by solving the system

Q1 Q2

2 R 2 A P
15 100 700
Q1 3Q2 B
30 100 "2 7Y

Its solution leads to Q¥ =54¢; +6¢2 and QF =60¢; +40¢5 .

(c¢) The question refers to a possible solution of the system

54q1 +6g2 =60
60q; +40¢g2 = 50.

It is possible to formally solve the system of equations, but the unique solution

gives
7 oz 1 oz

d @=--—
@ and 2 =—5 0,

=6 al
which is not physically possible.

(d) We can write

E
QZ:_QCH"‘%
3 QF
Q2__2q1+407

which are the equations of two lines in the ¢;-go-plane:

72 3

1
o 1 2 3
a7

The intercepts of the first line are Q¥ /54 and Q¥ /6. The intercepts of the second
line are Q¥ /60 and Q¥ /40. Therefore the system will have a unique solution, in
the first quadrant, as long as Q¥ /54 < Q¥ /60 or Q¥ /40 < Q¥ /6. That is,

E
W _QF 20
9 ~QF ~ 3
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n
N

2.(a)
C(14i-2 —142-6) _ [ 1—i —T+2
A2B<3+2i—4 2—i+4i)<—1+2z’ 2+3i>'
(b)
_(3+3i+i —346i+3\ _ (3+4i 6
3A+B<9+6i+2 6—32’—2@')(11—1—62’ 6—5i)'
(c)
AB — (I4d)i+2(—-1+2¢) 3(1+14)+ (=14 2i)(—29)
(B+2i)i+2(2—14)  3(3+2i)+ (2 —14)(—2i)
_ (3450 T+5i
“\2+d T42i)°
(d)
BA — [ (1+1)i+3(3+20) (=14 2i)i +3(2 — i)
T\2(149) + (—20)(3+20) 2(—1+2i)+ (—2i)(2—1)
(84T 4—di
“\6-4i -4 )
3.(c,d)
-2 1 2 1 3 -2
AT+B" =1 0 -1]+(2 -1 1
2 -3 1 3 -1 0
-1 4 0
=3 -1 0l=A+B)7".
5 —4 1
4.(b)

— (342 1-—i
A<2+i —2—32')'
(c) By definition,

i (A e

1—i —2-3i
5.

5 3 —2 10 6 —4

2A+B)=2[0 2 5 |=[0 4 10

2 2 3 4 4 6

7. Let A= (a;;) and B= (b;;). The given operations in (a)-(d) are performed
elementwise. That is,

(a) a5 + bij = bij + aij .
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(b) as; + (bij + cij) = (aij + bij) + cij -

(c) alai; +bij) = aay + ab;.

(d) (a+pB)ai; =aa; + Bai;.

In the following, let A= (a;;), B= (b;;) and C= (c;;) .

(e) Calculating the generic element,

C)” = Zblk Ckj -
k=1

Therefore

Zazr Zbrk ck)j Zzazr rk Ckj = Z(Z Qe brk) Ckj-
r=1

r=1k=1 k=1 r=1

The inner summation is recognized as

Z A brk’ = (AB)zk 5

r=1

which is the ¢k-th element of the matrix AB. Thus [A(BC)]U = [(AB)C]U.

(f) Likewise,

[A(B+C)] Z ain(brj + Crj) Z ik bij + Zazk crj = (AB);; + (AC),;
k=1

8.(a) xTy=2(—1+1) +2(3i) + (1 — i) (3 — i) = 4i.

(b) yTy=(-1+i)2+22+(3—-i)2 =12 -8i.

(€) (x%,y) =2(=1—4) +2(30) + (1 — i) (3 +i) = 2 + 2i.
(d) (y,y) = (—-1+i)(-1—i)+22+ (3—4)(3+14) = 16.
9. Tndeed,

5+3i=x"y =) ay =y"x,
j=1

and

n
3—5i= ijyj Z@j% Zijj_ y, X
j=1
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11. First augment the given matrix by the identity matrix:

Am=(G 5 )

Divide the first row by 3, to obtain

1 -1/3 1/3 0
6 2 0o 1)°
Adding —6 times the first row to the second row results in
1 -1/3 1/3 0
0 4 -2 1)
Divide the second row by 4, to obtain
1 -1/3 1/3 0
0o 1 -1/2 1/4)°

Finally, adding 1/3 times the second row to the first row results in

(1 0 1/6 1/12>.

01 —1/2 1/4

3 -1\ _1/2 1
6 2) ~12\-6 3)

13. The augmented matrix is

Hence

11 -1 1 0 O
2 -1 1 010
1 1 2 0 01

Combining the elements of the first row with the elements of the second and third
rows results in

11 -1 1

0 -3 3 -2

-1

o = O

0
0
1

Divide the elements of the second row by —3, and the elements of the third row
by 3 . Now subtracting the new second row from the first row yields

0 1/3 1/3 0

10
01 -1 2/3 —-1/3 0
00 1 -1/3 0 1/3

Finally, combine the third row with the second row to obtain
1 0 0 1/3 1/3 0
o010 1/3 -1/3 1/3
0 0 1 —-1/3 0 1/3
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Hence
11 -1\ ! Lf1 10
2 —1 1 =z(1 11
1 1 2 -1 0 1

15. Elementary row operations yield

/2 0 1/2 0 0

1 12 0 1/2 0 |—

o 1 0 0 1/2

~1/4 1/2 -1/4 0 1 0 —-1/4 1/2 —1/4 0
o 0 1/2 -1/4]=>1l0o 1 0o 0 1/2 -1/4
1 0 0 1/2 00 1 0 0 1/2

01 00 1
101 0]—=1{0
2 0 01 0

OO = OOoON
O R O O N

Finally, combining the first and third rows results in

1 00 1/2 —-1/4 1/8 /2 -1/4 1/8
010 0 1/2 —1/4],s0A4 =|0 1/2 -1/4
001 0 0 1/2 0 0 1/2

16. Elementary row operations yield

1 -1 -1 1.0 0 1 -1 -1 1 00
2 1 0 01 0|=1]0 3 2 —210|=

3 -2 1 00 1 0 1 4 -3 0 1

10 -1/3 1/3 1/3 0 10 0 1/10 3/10 1/10
01 2/3 -2/3 1/3 0|—=[(0o 1 0o =-1/5 2/5 -1/5
0 0 10/3 —-7/3 —-1/3 1 0 0 10/3 -7/3 —1/3 1

Finally, normalizing the last row results in

10 0 1/10 3/10 1/10 1/10  3/10 1/10
010 —1/5 2/5 —1/5],s0A'=|-1/5 2/5 —1/5
0 0 1 —7/10 —1/10 3/10 ~7/10 —1/10 3/10

17. Elementary row operations on the augmented matrix yield the row-reduced
form of the augmented matrix

1 0 —-1/7 0 17 2/7
0 1 3/7 0 4/7 1/7
00 0 1 -2 -1

The left submatrix cannot be converted to the identity matrix. Hence the given
matrix is singular.
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18. Elementary row operations on the augmented matrix yield

1 o 0 -1 1 0 00 1 0 0 -1 1 00 0
0o -1 1 0 01 0O _ 0 -1 1 0 01 0 0 .
-1 0 1 0 0 01 0 0 0 1 -11 010
0 1 -1 1 0 0 01 0o 1 -1 1 00 01
10 0 -1 1 0 0O 100 01 1 01
01 -1 0 0 -1 0 0 . 0100 1011
00 1 -1 1 0 10 0 01 01111}’
0 0 1 0 1 01 00010101
SO
11 0 1
1 1 01 1
AT = 11 11
01 01
19. Elementary row operations on the augmented matrix yield
1 -1 2 0 1 0 0 O 1 -1 2 0 1 0 0 0
-1 2 -4 2 01 00 . o 1 -2 2 1 100 .
1 0 1 3 00 10 o 1 -1 3 -1 010
-2 2 0 -1 0 0 01 o 0 4 -1 2 001
1 0 0 2 2 1 00 10 0 2 2 1 0 0
01 -2 2 1 1 0 0 . 010 4 -3 -1 2 0
0 0 1 1 -2 -1 1 0 o001 1 -2 -1 1 0
00 4 -1 2 0 01 0 00 -5 10 4 -4 1

Normalizing the last row and combining it with the others results in

1002 2 1 0 0 1000 6 13/5 —8/5 2/5
0104 -3 -1 2 0 | fo100 5 11/5 —6/5 4/
0011 -2 -1 1 0 0010 0 —-1/5 1/5 1/5 |
000 1 —2 —4/5 4/5 —1/5 000 1 -2 —4/5 4/5 -1/5

6 13/5 —8/5 2/5
5 11/5 —6/5 4/5
0 -1/5 1/5 1/5
—2 —4/5 4/5 —1/5

20. Suppose that there exist matrices B and C, such that AB =1 and CA =1.
Then CAB = 1B = B, also, CAB = CI = C. This shows that B = C.

23. First note that

;o (1Y 1\, o (3et+2tet
X —<0>e +2(1>(e +te') = 9! +9tel )
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N
w

We also have

(&2 =) )

=) ) e
G 2=

It follows that

th

-1 1 0o -1 1 —4
—6
= 8 |et+ e?t
4 —4
26. Differentiation, elementwise, results in
et —2e%
U = | —4et 22

—et 272

On the other hand,

1 -1 4 1 -1 4
3 2 —-1]1¥v =13 2 -1
2 1 -1 2 1 -1

et —2e~2

= | —det  2e72

—et 2e%

4. The augmented matrix is

2 -1 2
3 -2 2
(2t +2tet
T \3et +2tet

3et + 2t et
2et +2tet |-

—6e~t
Re~t 4 4e?t
det — 42

3e3t
663t
363t

3e3t

(te')

)

3t

2¢53t
3t
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Adding —2 times the first row to the second row and subtracting the first row from
the third row results in

1 2 -1 10
0 -3 3 | O
0 -3 3 | O
Adding the negative of the second row to the third row results in
1 2 -1 1] 0
0 -3 3 | O
0 0 0 | 0
We evidently end up with an equivalent system of equations
1+ 29 —23=0

—r94+2x3=0.

Since there is no unique solution, let x3 = o, where « is arbitrary. It follows that

r9o = a, and x1 = —a. Hence all solutions have the form
-1
r=a| 1
1

5. The augmented matrix is

1 0 -1 ] 0
3 1 1 | 0
11 2 |0

Adding —3 times the first row to the second row and adding the first row to the
last row yields

10 -1 | 0
01 3 | 0
01 1 | 0

Now add the negative of the second row to the third row to obtain

10 -1 | 0
01 3 |0
00 -2 1] 0

We end up with an equivalent linear system
Tr1 — T3 = 0
ro+323=0
T3 = 0.

Hence the unique solution of the given system of equations is 1 = zo =23 =0.

6. The augmented matrix is
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Adding 2 times the first row to the second row and subtracting 2 times the first
row from the third row results in

12 -1 | -2
00 0 | 0
00 0 0

We evidently end up with an equivalent system of equations
xr1 + 21‘2 — X3 = —2.

Since there is no unique solution, let o = «, and x3 = [, where «, 8 are arbitrary.

It follows that 1 = —2 — 2 + 8. Hence all solutions have the form
—2—-2a+8
X = @
B
8. Write the given vectors as columns of the matrix
2 0 -1
X=1|11 2
0 0 O

Tt is evident that det(X) = 0. Hence the vectors are linearly dependent. In order
to find a linear relationship between them, write x4 x4+ C3x(3) = 0. The
latter equation is equivalent to

2 0 -1 c1 0
11 2 ca]l =10
0 0 O c3 0

Performing elementary row operations,

2 0 -1 ] 0 10 —-1/2 | 0
11 2 | 0)—=10 1 5/2 | 0
00 0 | O 0 0 0 | 0
We obtain the system of equations
C1—C3/2:0
Cg+503/2:0.

Setting c3 = 2, it follows that ¢; =1 and c¢3 = —5. Hence

xM —5x? 4 2xB) = 0.

10. The matrix containing the given vectors as columns is
1 2 -1 3

0 -1

-1 1 2 1

2 3

We find that det(X) = —70. Hence the given vectors are linearly independent.
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11. Write the given vectors as columns of the matrix

1 3 2 4
X=12 1 -1 3
-2 0 1 =2

The four vectors are necessarily linearly dependent. Hence there are nonzero scalars
such that c;x™ + CQX(Q) +¢3x®) 4+ ¢,x® = 0. The latter equation is equivalent
to

1 3 2 4 0
2 1 -1 3 |[%|=]o
20 1 -2)|% 0
Cq
Performing elementary row operations,
1 3 2 4 |0 1001 | O
2 1 -1 3 | 0]—=(0 10110
-2 0 1 =210 0010 | O
We end up with an equivalent linear system
61+C4:0
ca+cys=0
03:0.

Let ¢4 = —1. Then ¢; =1 and cg = 1. Therefore we find that
x4+ x@ _x® =9,

12. The matrix containing the given vectors as columns, X, is of size n x m . Since
n < m, we can augment the matrix with m — n rows of zeros. The resulting matrix,
X, is of size m x m. Since X is a square matrix, with at least one row of zeros,
it follows that det(X) = 0. Hence the column vectors of X are linearly dependent.
That is, there is a nonzero vector, ¢, such that Xc= 0,1 . If we write only the first
n rows of the latter equation, we have Xc= 0,,x1 . Therefore the column vectors of
X are linearly dependent.

13. By inspection, we find that
1 2 —e !
xM (1) —2x@ (1) = ( 0 ) .
Hence 3x(M(t) — 6x3 (t)4x®)(t) = 0, and the vectors are linearly dependent.
17. The eigenvalues \ and eigenvectors x satisfy the equation
3—-A -2 I o 0
4 —1-X)\z/)  \0)
For a nonzero solution, we must have (3 — A)(—1 —\) +8 =0, that is,

A2 22 +5=0.
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The eigenvalues are Ay =1 —2¢ and Ay =1+ 2¢. The components of the eigen-
vector x(1) are solutions of the system

(5 ) ()= ()

The two equations reduce to (14 i)z = x5 . Hence x(!) = (1,1 +14)7. Now setting
A=Ay =1+2i, we have

2-2i -2 z1\ _ (0
4 —-2-2i) \azy)  \0O)’
with solution given by x(?) = (1,1 —4)7.

18. The eigenvalues A and eigenvectors x satisfy the equation
—2-x 1 21\ (0
For a nonzero solution, we must have (-2 — \)(—=2— ) —1 =0, that is,

A2 4+40+3=0.

The eigenvalues are A\; = —3 and Ao = —1. For A\; = —3, the system of equations

becomes
1 1 I - 0
1 1 To B 0/’

which reduces to x1 +z3 = 0. A solution vector is given by x(!) = (1, —1)T. Sub-
stituting A = Ay = —1, we have

—1 1 I o 0
1 —1 To —\o/
The equations reduce to z; = x5 . Hence a solution vector is given by x(®) = (1,1)7.

20. The eigensystem is obtained from analysis of the equation

1-X V3 z1y (0
V3 —1-X) \zp)  \0)
For a nonzero solution, the determinant of the coefficient matrix must be zero.

That is,
A2 —4=0.

Hence the eigenvalues are Ay = —2 and Ay = 2. Substituting the first eigenvalue,

A= -2, yields
(s ) () -0)

The system is equivalent to the equation /3 z; + 25 = 0. A solution vector is
given by x(1) = (1, —v/3)T. Substitution of A = 2 results in

(v %) G)=6)
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which reduces to 21 = V3 z5. A corresponding solution vector is x(2) = (ﬁ, l)T.

21. The eigenvalues A and eigenvectors x satisfy the equation
-3-) 3/4 z1\ _ (0
-5 1—A To - 0/
For a nonzero solution, we must have (—3 —X)(1 — \) 4+ 15/4 = 0, that is,

A +20+3/4=0.

Hence the eigenvalues are Ay = —3/2 and A2 = —1/2. In order to determine the
eigenvector corresponding to A, set A = —3/2. The system of equations becomes

(35 ) ()= )

which reduces to —2x; + 22 = 0. A solution vector is given by x() = (1,2)T.
Substitution of A = Ay = —1/2 results in

-5/2 3/4\ (z1\ (O
-5 3/2) \as) \0)’
which reduces to 10z, = 3z2. A corresponding solution vector is x(2) = (3,10)7.

23. The eigensystem is obtained from analysis of the equation

3-\ 2 2 1 0
1 4-) 1 2o | = |0
2 4 —1-)) \ay 0

The characteristic equation of the coefficient matrix is A3 —6A2+11A—6 =0,
with roots A\; =1, Ay =2 and A3 = 3. Setting A = A1 =1, we have

2 2 2 T1 0
1 3 1 ZTo =10
-2 —4 —-2) \z3 0

This system is reduces to the equations
1 +x3=0
T = 0.

A corresponding solution vector is given by x(1) = (1,0,-1)T. Setting A = Xy = 2,
the reduced system of equations is

x1+2x9=0
IL’3:0.

A corresponding solution vector is given by x(?) = (—=2,1,0)”. Finally, setting
A = A3 = 3, the reduced system of equations is

SC1:0
To+x3=0.

A corresponding solution vector is given by x(3) = (0,1, —1)7.
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24. For computational purposes, note that if A is an eigenvalue of B, then cA\ is
an eigenvalue of the matrix A= c¢B . Eigenvectors are unaffected, since they are
only determined up to a scalar multiple. So with

11 -2 8
B=[|-2 2 10],
8§ 10 5
the associated characteristic equation is u3 — 1812 — 81 + 1458 = 0, with roots
11 =-9, uo =9 and p3z = 18. Hence the eigenvalues of the given matrix, A, are
A =-1,x=1 and A3 =2. Setting A = A\; = —1, (which corresponds to using
p1 = —9 in the modified problem) the reduced system of equations is
2 1 + Tr3 = 0
o +x3=0.

A corresponding solution vector is given by x(") = (1,2, -2)7. Setting A= \o =1,
the reduced system of equations is

r1+2x3=0
x2—2x3:0.

A corresponding solution vector is given by x(?) = (2, -2, —1)7. Finally, setting
A= Ay =1, the reduced system of equations is

1’1—1’3:0

21’271‘3:0.

A corresponding solution vector is given by x®) = (2,1,2)7.
26.(b) By definition,

n n n
(AX,Y)ZZAX iYi = Z Zaijxjﬁ-
i=0 —0j=0

Let b;; = @j;, so that a;; = b;; . Now interchanging the order or summation,

(Ax,y) = Zx]Zaljyl—ZxJZbﬂyz.

7=0 =0 7=0 =0
Now note that
n n
Z b‘]ZT - bjl Yi = (A*y)j
=0 1=0

Therefore

(¢) By definition of a Hermitian matrix, A=A*.
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27. Suppose that Ax= 0, but that x# 0. Let A= (a;;). Using elementary row
operations, it is possible to transform the matrix into one that is not upper trian-
gular. If it were upper triangular, backsubstitution would imply that x= 0. Hence
a linear combination of all the rows results in a row containing only zeros. That
is, there are n scalars, f3;, one for each row and not all zero, such that for each for

column 7,
Z Biai; =0.

i=1

Now consider A* = (b;;). By definition, b;; = @j;, or a;; = b;; . It follows that for

each j,
Zﬁi@: Z bjk B = Z bk Br = 0.
i=1

Let y= (B1, B2, - , Bn)T. Hence we have a nonzero vector, y, such that A*y=0.

29. By linearity,
A +0g)=AxY a0 AE=b+0=D.

30. Let ¢;; = @j; . By the hypothesis, there is a nonzero vector, y, such that

n n
Z Cijyjzz@yjzo,isz,...’n_

i=1 i=1

Taking the conjugate of both sides, and interchanging the indices, we have

This implies that a linear combination of each row of A is equal to zero. Now
consider the augmented matrix [A |B]. Replace the last row by

n n
Z Yi [aﬂ,aig,--~ ,am,bi] =10,0,--- ,O,Z ;i b;
i=1 i=1
We find that if (B,y) = 0, then the last row of the augmented matrix contains only
zeros. Hence there are n — 1 remaining equations. We can now set x,, = «, some
parameter, and solve for the other variables in terms of « . Therefore the system
of equations Ax=b has a solution.

31. If A =0 is an eigenvalue of A, then there is a nonzero vector, x, such that

Ax=)Ax=0.

That is, Ax= 0 has a nonzero solution. This implies that the mapping defined
by A is not 1-to-1, and hence not invertible. On the other hand, if A is singular,
then det(A) = 0. Thus, Ax= 0 has a nonzero solution. The latter equation can
be written as Ax= 0x.
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32.(a) Based on Problem 26, (Ax,x) = (x, Ax).

(b) Let x be an eigenvector corresponding to an eigenvalue A. It then follows that
(Ax,x) = (\x,x) and (x,Ax) = (x,)x). Based on the properties of the inner
product, (Ax,x) = A(x,x) and (x,Ax) = A(x,x). Then from part (a),

Ax,x) = A(x,x).

(c) From part (b), B
(A=XN)(x,x)=0.

Based on the definition of an eigenvector, (x,x) = ||x||* > 0. Hence we must have

A — A =0, which implies that X is real.

33. From Problem 26(c),
(AxM x@) = (x1 Ax?).

Hence
A (), x @) = X5 (x® x@) = Ay (x), xD),

since the eigenvalues are real. Therefore
(A1 = A)(xD) x®) =0.

Given that \; # Ay, we must have (x(1) x(?) =0.

3. Equation (14) states that the Wronskian satisfies the first order linear ODE
aw
dt
The general solution of this is given by Equation (15):

= (p11 +p22+ -+ pon) W.

)

W(t) =C ef(PllJr;DQer---ernn)dt

in which C' is an arbitrary constant. Let X; and X, be matrices representing two
sets of fundamental solutions. It follows that

det(Xl) =W (t) = C’lef(Pllerzer-..+pnn)dt
det(Xy) = Wa(t) = Cyel (Pritpaattpan)dt

Hence det(X;)/det(X3) = Cy/Cs. Note that Cs # 0.

4. First note that pi1 + paa = —p(t). As shown in Problem 3,

W [Xu) 7X<2>} — ce— Pt
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For second order linear ODE, the Wronskian (as defined in Chapter 3) satisfies the
first order differential equation W' + p(t)W = 0. It follows that

1174 {yu) 7y<2>] e 0L
Alternatively, based on the hypothesis,

1
y( ) = Q11 11 + Q12 T12

Y(Q) = Q21 T11 + Q22 T12 -
Direct calculation shows that
W {yu) ’y<2>} —

i /
= (a11a22 - 04120421)33113312 - (a110é22 - 04120421)56123311

= (11022 — @12021)T11T22 — (11022 — Q120021 )T 12221 -

Q11 T11 + Q1212 Q21 T11 + Q22 T12
/ ! ! /
Q11217 Q1215 Q1 Tq] + Q22 X9

Here we used the fact that x} = x5 . Hence

w {y(l) 7y(2):| = (11022 — arpao))W [X(l) 7){(2)] .

5. The particular solution satisfies the ODE (x(P) =P(#)x()+g(t). Now let x
be any solution of the homogeneous equation, x’ =P(t)x . We know that x=x(¢),
in which x(® is a linear combination of some fundamental solution. By linearity
of the differential equation, it follows that x =x® +x(°) is a solution of the ODE.
Based on the uniqueness theorem, all solutions must have this form.

7.(a) By definition,
t
| = (2 = 2t)et.

2
1) (@] _|t7 e
w [X X ] ‘215 e

(b) The Wronskian vanishes at tp =0 and to = 2. Hence the vectors are linearly
independent on D = (—o00,0) U (0,2) U (2,00).

(c) It follows from Theorem 7.4.3 that one or more of the coefficients of the ODE
must be discontinuous at tg =0 and tg=2. If not, the Wronskian would not

vanish.

(d) Let

Then
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On the other hand,

tQ t

P11 P12 X = ¢ P11 P12 + ¢y P11 P12 €

P21 P22 D21 P22 2t P21 D22 et
_ <C1 [p11t% + 2p1at] + c2 [p11 + p12) €t>

c1 [pa1t? 4 2past] + c2 [pa1 + pao) €

Comparing coefficients, we find that

pit? + 2piot = 2t

pi1+pi2 =1
part? + 2paot = 2
p21 +p22=1.

Solution of this system of equations results in

2 -2t 2 -2
p1i(t) . p12(t) o p2a(t) 2 _op pa2(t) 2 _ 9

Hence the vectors are solutions of the ODE
oo 1 0 t2-2t N
T2 \2-2t 2-2 )

8. Suppose that the solutions x| x(2) ... x(™) are linearly dependent at t = t .

Then there are constants ¢ ,c¢a,- -, ¢y, (n0t all zero) such that

m)

erxW (ko) + caxP (ko) + -+ + emx™(tg) = 0.

Now let z(t) = c;x(M (t) + coxP (t) 4+ - - + ¢, x™)(t) . Then clearly, z(t) is a solu-
tion of x’ =P(¢)x, with z(tp) = 0. Furthermore, y(¢) = 0 is also a solution, with
y(to) = 0. By the uniqueness theorem, z(t) =y(¢) = 0. Hence

erxM () + exxP () + -+ erx™ () = 0

on the entire interval o < t < . Going in the other direction is trivial.

9.(a) Let y(¢) be any solution of x’ =P(¢)x. It follows that
2(t) + y(t) = exxV () + cox (1) + -+ eax™ (1) + ¥ (1)
is also a solution. Now let ¢ty € (o, 8). Then the collection of vectors
xM(to),xH(to), . .., x"" (to), ¥ (to)

constitutes n + 1 vectors, each with n components. Based on the assertion in
Problem 12, Section 7.3, these vectors are necessarily linearly dependent. That is,
there are n + 1 constants by, ba,..., by, byt1 (not all zero) such that

bixM (to) + boxP (tg) + -+ + byx™ (to) + bpt1y(to) = 0.
From Problem 8, we have

bixM () 4+ box@ (t) 4 -+ + by x ™ (t) + byy1 y(£) = 0
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-

forallt € (a, 8). Now by,41 # 0, otherwise that would contradict the fact that the
first n vectors are linearly independent. Hence

(b1 (£) + box@ () + - - + b x™ (1)),

y(t) = —
n+1

and the assertion is true.

(b) Consider z(t) = c;xM (t) +co xP(t) + - + ¢, x™(¢), and suppose that we
also have
z(t) = kixW () + kox® () 4 - - - + knx™(t) .

Based on the assumption,
(k1 = e0)x M (#) + (ko = e)x®(t) + - + (ko — a)x"(1) = 0.
The collection of vectors
xW ), x@(t),...,.x"M ()

is linearly independent on o < t < . It follows that k; —¢; =0,for ¢ =1,2,--- ,n.

2.(a) Setting x= €e™, and substituting into the ODE, we obtain the algebraic

equations
1—r -2 & _ 0
3 —4—-r)\&/)  \o)’

For a nonzero solution, we must have det(A — rI) =72 + 3r + 2 = 0. The roots of
the characteristic equation are 1y = —1 and ro = —2. For » = —1, the two equations
reduce to &1 = . The corresponding eigenvector is 5(1) = (1,1)T. Substitution of
r = —2 results in the single equation 3§; = 2£>. A corresponding eigenvector is
£ = (2,3)T. Since the eigenvalues are distinct, the general solution is

A A A Py
£ 4 4 o4 s -
4 4 44 e am
A A A —
A A A xR
4 4 4 4 ~R % ¢
4 A A A r et
A rrrr
L4 o4 A 77 77
v /o b4 Lz
sr 7 77
7 r 7
27 r 7
Vs 77
Vs 77
Vs 77
yy
Vs Vs
Vs Vs
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3.(a) Setting x= € " results in the algebraic equations

(5 2t (@) -6)

For a nonzero solution, we must have det(A — rI) = r? — 1 = 0. The roots of the
characteristic equation are r; = 1 and ro = —1. For r = 1, the system of equations
reduces to & = &;. The corresponding eigenvector is 5(1) = (1,1)T. Substitution
of r = —1 results in the single equation 3§; = &. A corresponding eigenvector is
5(2) = (1,3)T. Since the eigenvalues are distinct, the general solution is

1 , N .,
x:clleJchSe.

LA AL A A A A
LA A A AL LA
L LA AL
LA AL v
R
N A AN
LA LA A AP Sy
ey & A S
NN LY S A A
NN & 2 A
PAFAPEFSy Gy A
v S S AR A A
N IAD AAAA A
v L i p A r AR
< S Cr 22227z
AAAA AR
L o AAAA AR
A AAPAL A
= AAAAAAL
AAAA AR
The system has an unstable eigendirection along € = (1,1)7. Unless ¢; = 0, all

solutions will diverge.

4.(a) Solution of the ODE requires analysis of the algebraic equations

(27 =R (e)=6)

For a nonzero solution, we must have det(A —rI) =72 +r—6 =0. The roots

of the characteristic equation are r; = 2 and ro = —3. For r = 2, the system of
equations reduces to & = &». The corresponding eigenvector is & = (1,1)". Sub-
stitution of r = —3 results in the single equation 4&; + & = 0. A corresponding

eigenvector is !;“(2) = (1,—4)T. Since the eigenvalues are distinct, the general solu-

tion is ) )
X=0C <1) e 4 ¢y (_4) e 3t
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(b)
R IR N Tee— 7
T v
IR R IR g4
R IR 7
I R I 27
R I 27
v 4L d LY r 7
AR E r7
VIR A I .‘ 7
L4 434 4 Jd 4 FEf E 3
444 4 ¥ v Tt 1 [x7 1 7
Y s A\ttt A
4 4 4 s T tt t 1
Ry AW trttrtrt
¥ ¥ f & N\ 1 ttt 11
v S AN G RS
S AN N\
LY bt e NN R\ T 11
D e e S S AN R0 AL U T O S B
The system has an unstable eigendirection along 5(1) = (1,1)T. Unless ¢; = 0, all

solutions will diverge.

8.(a) Setting x= € e"* results in the algebraic equations

3—r 6 SANEAY
-1 -2—-r)\&)  \o)
For a nonzero solution, we must have det(A —7I) = r? —r = 0. The roots of the
characteristic equation are r; = 1 and ro = 0. With r = 1, the system of equations
reduces to & + 3¢5 = 0. The corresponding eigenvector is E(l) = (3,—1)T. For the

case r = 0, the system is equivalent to the equation & + 2§ = 0. An eigenvector
is £ = (2, —1)T. Since the eigenvalues are distinct, the general solution is

3N . 2
X =1 1 e + co 1)

The entire line along the eigendirection 5(2) = (2,—1)T consists of equilibrium
points. All other solutions diverge. The direction field changes across the line
1 + 229 = 0. Eliminating the exponential terms in the solution, the trajectories
are given by x1 + 312 = —cso.
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10. The characteristic equation is given by

2 - T 2 + Z 2 . .
1 _i_lTT 1—-dr—i=0.
The equation has complex roots r; = 1 and ro = —i. For r = 1, the components of
the solution vector must satisfy & + (2 +4)&&2 = 0. Thus the corresponding eigen-
vector is 5(1) = (2+1i,—1)T. Substitution of r = —i results in the single equation

& + & = 0. A corresponding eigenvector is 5(2) = (1,—-1)T. Since the eigenvalues
are distinct, the general solution is

241 1 )
X =0 ( —i_ll) et + ¢y (1) e,

11. Setting x= £ e" results in the algebraic equations

1—r 1 2 & 0
1 2—r 1 &l=1(0
2 1 1-r) \& 0

:7"3—4T2—7‘+4:O- The

For a nonzero solution, we must have det(A — rI)
=1 and r3 = —1. Setting r =4,

roots of the characteristic equation are r; = 4, rg
we have

—_
|
[\
=
I
¥
I

o O O

This system is reduces to the equations
& —8&=0
§2—& =0.

A corresponding solution vector is given by E(l) = (1,1,1)T. Setting A =1, the
reduced system of equations is

& —&=0
§2+2&=0.
A corresponding solution vector is given by 5(2) = (1,-2,1)T. Finally, setting
A = —1, the reduced system of equations is
&1+&=0
§=0.

A corresponding solution vector is given by &€ = (1,0, —1)7. Since the eigenval-
ues are distinct, the general solution is

1 1 1
x=c |1 e4t—|—02 —2|et+e5| 0 | et
1 1 -1
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12. The eigensystem is obtained from analysis of the equation

3 —Tr 2 4 51 0
2 -r 2 52 =10
4 2 3—-r &3 0
The characteristic equation of the coefficient matrix is 73 — 6r2 — 15r — 8 = 0, with
roots 1, =8, 1o = —1 and r3 = —1. Setting r =r; = 8, we have
-5 2 4 & 0
2 -8 2 &1 =10
4 2 =5 &3 0
This system is reduced to the equations
§1—-86=0
286 —63=0.

A corresponding solution vector is given by e = (2,1,2)7. Setting r = —1, the
system of equations is reduced to the single equation

261 +8&+2863=0.
Two independent solutions are obtained as
¢? =(1,-2,07 and ¢® =(0,-2,1)T.

Hence the general solution is

2 1 0
x=c |1 St + o | —2)et+es| -2t
2 0 1

13. Setting x= £ e results in the algebraic equations

1—r 1 1 3 0
2 1-r -1 =10
-8 -5 -3-r) \& 0

For a nonzero solution, we must have det(A —rI) =73 +7r% —4r —4=0. The
roots of the characteristic equation are r1 =2, ro = —2 and r3 = —1. Setting
r =2, we have

-1 1 1 &

2 -1 -1 &H ) =

-8 -5 —5b &3

oS O O

This system is reduces to the equations
&=0
§2+&3=0.
A corresponding solution vector is given by e = (0,1,-1)T. Setting A\ = —1,
the reduced system of equations is
26 +3& =0
& —2&=0.
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A corresponding solution vector is given by 6(2) = (3,-4,-2)T. Finally, setting

A = —2, the reduced system of equations is
76 +48 =0
Té —5&3=0.

A corresponding solution vector is given by 5(3) = (4,-5,-7)T. Since the eigen-
values are distinct, the general solution is

0 3 4
x=c1 | 1 |e®+e|—4])et+es|—5]e 2.
-1 -2 -7

15. Setting x= £ €™ results in the algebraic equations

(3" 2 (E)= o)

For a nonzero solution, we must have det(A —7I) =72 —6r +8 = 0. The roots
of the characteristic equation are 71 =4 and ro =2. With r =4, the system of
equations reduces to & — & = 0. The corresponding eigenvector is 5(1) =(1,1)7.
For the case r = 2, the system is equivalent to the equation 3& — & =0. An
eigenvector is & 2 = (1,3)T. Since the eigenvalues are distinct, the general solution

1S
1 1
X =C (1) et + Co (3) et

Invoking the initial conditions, we obtain the system of equations

c1+co =2
Cl+302:—1.

Hence ¢; =7/2 and ¢p = —3/2, and the solution of the IVP is

TN 3(1
X_2<1)e 2(3)6'

17. Setting x= £ " results in the algebraic equations

1—r 1 2 & 0
0 2—-r 2 &Hl=1o0
—1 1 3-r) \& 0

For a nonzero solution, we must have det(A — rI) =3 — 672 + 11r — 6 = 0. The
roots of the characteristic equation are 11 =1, r, =2 and r3 = 3. Setting r =1,
we have

0 1 2 & 0
0 1 2 &1 =10
—1 1 2/ \g 0
This system reduces to the equations
§&=0

§2+25=0.
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A corresponding solution vector is given by 5(1) =(0,-2,1)T. Setting A\ =2, the
reduced system of equations is

§1—6&=0

é3=0.

A corresponding solution vector is given by & @ = (1,1,0)T. Finally, upon setting
A = 3, the reduced system of equations is

§1—28=0

& —2&=0.

A corresponding solution vector is given by & () = (2,2,1)T. Since the eigenvalues
are distinct, the general solution is

0 1 2
x=c1 | -2|e+e |1 et + c3 |2 e3t.
1 0 1

Invoking the initial conditions, the coefficients must satisfy the equations

co+2c3 =2
—2c1+co+2c3=0
Cl+03:1.

It follows that ¢; =1, co =2 and ¢3 = 0. Hence the solution of the IVP is

0 1
x=|-2]e+2(1]¢*.
1 0

18. The eigensystem is obtained from analysis of the equation

-r 0 -1 61 0
2 -r 0 fg =10
-1 2 4-r & 0
The characteristic equation of the coefficient matrix is r3 — 472 —r +4 =0, with
roots 1, = —1, 79 =1 and r3 =4. Setting r =r; = —1, we have
-1 0 -1 & 0
2 -1 0 &1 =10
-1 2 3 &3 0

This system is reduced to the equations
&1—&=0
§2+28=0.
A corresponding solution vector is given by 5(1) = (1,-2,1)T. Setting r =1, the
system reduces to the equations
&1 +&=0
§2+28=0.
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The corresponding eigenvector is 5(2) = (1,2,—1)T. Finally, upon setting r =4,
the system is equivalent to the equations

46 +& =0

88 + & =0.

The corresponding eigenvector is 5(3) =(2,1,—8)T. Hence the general solution is

1 1 2
x=c1 [-2]et+e| 2 |et+es| 1 | e
1 -1 -8

Invoking the initial conditions,
c1+ca+2c3="7
7261 +262+03 = 5
81—62—863:5.
It follows that ¢; =3, co =6 and c3 = —1. Hence the solution of the IVP is

1 1
x=3[-2]et+6| 2 |- 1 | e*.
1 -1 -8

19. Set x= £t". Substitution into the system of differential equations results in
t-rttlE = A€,

which upon simplification yields is, A € — r€ = 0. Hence the vector € and constant
r must satisfy (A —rI)é =0.

21. Setting x= £t" results in the algebraic equations

(2" 2 (E)= )

For a nonzero solution, we must have det(A —rI) =r% — 6r +8 = 0. The roots
of the characteristic equation are r1 =4 and ro = 2. With r =4, the system of
equations reduces to & — & = 0. The corresponding eigenvector is 5(1) = (1,1)T.
For the case r = 2, the system is equivalent to the equation 3&§; — £&, =0. An
eigenvector is € = (1,3)7. It follows that

1 1
x(D = <1>t4 and x® = (3)752.

The Wronskian of this solution set is W [x(1)7x(2)] = 2t5. Thus the solutions are
linearly independent for ¢ > 0. Hence the general solution is

1 1
X=c <1) tt+ Co (3> 2.

22. As shown in Problem 19, solution of the ODE requires analysis of the equations

(57 ) (@)=()
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For a nonzero solution, we must have det(A —7I) =72+ 2r =0. The roots of

the characteristic equation are 71 =0 and r, = —2. For r =0, the system of
equations reduces to 4&; = 3£, . The corresponding eigenvector is € = (3,4)7.
Setting r = —2 results in the single equation 2&; — & = 0. A corresponding eigen-

vector is €2 = (1,2)7. Tt follows that

1
x(D = (2) and x?) = (2)1,‘_2.

The Wronskian of this solution set is W [x(l),x@)} = 2¢72. These solutions are
linearly independent for ¢ > 0. Hence the general solution is

3 1\ o
X=cC 4 + co 2t .

23. Setting x= £t" results in the algebraic equations

(7 2@ =)

For a nonzero solution, we must have det(A —rI) =r? —r —2 = 0. The roots of
the characteristic equation are r; =2 and ro = —1. Setting r = 2, the system of
equations reduces to &1 — 2§, = 0. The corresponding eigenvector is E(l) = (2,17,
With r = —1, the system is equivalent to the equation 2¢; — £ = 0. An eigenvector
is £€® = (1,2)T. 1t follows that

2 1
x(D = (1)t2 and x? = (2)t_1.

The Wronskian of this solution set is W [x(l),x@)] = 3t. Thus the solutions are
linearly independent for ¢t > 0. Hence the general solution is

2 1
X =cC1 <1)t2 +co <2) L.

24.(a) The general solution is

— N\ \ v 4 gl 4 & L L
———a~a N\ \ I Y ¥ & &
—————a~a N N R e s
e e S S\ WIS A S
—= == NN\\N YA A A S
»»»»» = W\ 3 4 o S
— T \ i A A L A i
PSSR\ \} | V. S A o e
o v _v_v_»—>—aQlf , Pay's o o o &
Bl el | VB P D
AL I P IR
PPl ol ol g S e e o o o
o~ o 7 A 1 *\ ~ e e o o
P A LY N
Rl R 7 7 NS
Ao A AR NN S
A //’//‘/‘f,;f‘?\ NS T
SRR Ay A S D VN Ak
AR Vo & Tt t R R e hahes
VAR 7Pt 1 AR R N N T
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26.(a) The general solution is

NN RN RN N S Tl d— 44—
AN SR O S N LNl S S e et et e e o
NN ffq/./fd/a/«/.}a/t!nl;lslbla\n\»\
A N R R A e

N NS NN o

RN AN N R g z

/v KR KNAR, R e /

N\ \\N‘ﬂ
3

LR YVZ OO AL

SN O

f

! S5 ST W
/ e = A S SO

7 AR~ S e S NN N

X bbb —d—D—>

Db —>—b—d—D—>—D~b

P> —>—>—D—>—D—D—DD

G e

BB BB NN N N

o0

R R Y NS
AR S S NN

R Y YN RN
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130:
100:
l40:
120 1
100:
80:
60 -
40:

20

28.(a) We note that (A —r;1)é® =0, for i =1,2.
(b) Tt follows that (A — roI)€M) =A €M — @ = p @ — e

(c) Suppose that 5(1) and 5(2) are linearly dependent. Then there exist constants
c1 and co, not both zero, such that 015(1) + 025(2) = 0. Assume that ¢; #0. It
is clear that (A — roI)(c1€W + ¢, £®) = 0. On the other hand,

(A —rI)(c1€W) + 2 €)= ¢ (11 — 12)€W + 0 = 1 (ry —12)€W.

Since 71 # ro, we must have ¢; = 0, which leads to a contradiction.
(d) Note that (A — 1 D)E® = (ry — r1)E@.

(e) Let n = 3, with 1 # r2 # 3. Suppose that 5(1), !;“(2) and 5(3) are indeed linearly
dependent. Then there exist constants ¢y, co and cs, not all zero, such that
Clé(l) + 026(2) + 036(3) =0.

Assume that ¢; #0. It is clear that (A — rgl)(clf(l) + ¢y 5(2) + c3§(3)) =0. On
the other hand,

(A —roI)(c1€M + 2 €@ + ¢36®)) = ¢1 (11 — r2)€W + e3(r5 — 1))
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It follows that c¢;(rq; — rg)é'(l) +es(rs — r2)£(3) = 0. Based on the result of part
(a), which is actually not dependent on the value of n, the vectors & Mand 13 ®) are
linearly independent. Hence we must have c¢;(r; —re) = c3(rs — r2) = 0, which
leads to a contradiction.

29.(a) Let 21 =y and x5 = y'. Tt follows that x{ = 25 and

"

1
vy =y" = ——(cy+by’).
In terms of the new variables, we obtain the system of two first order ODEs

!/
Jj1:$2

1
x5 = —E(cxl +bxy).

(b) The coefficient matrix is given by

A <_Oc _1b> .

Setting x= € " results in the algebraic equations

T 1 51 . O
-t le) =)
For a nonzero solution, we must have
9 b c
det(A —rI) =14+ —-r+—-=0.
a a
Multiplying both sides of the equation by a, we obtain ar? +br +c=0.
30.(a) Solution of the ODE requires analysis of the algebraic equations
~1/10—r  3/40 &\ (0
1/10 -1/5—-r)\&)  \o/)’
For a nonzero solution, we must have det(A — rI) = 0. The characteristic equation
is 8072 4247+ 1 =0, with roots r; = —1/4 and r, = —1/20. With r = —1/4,
the system of equations reduces to 2&; + €2 = 0. The corresponding eigenvector is

¢ = (1,-2)T. Substitution of 7 = —1/20 results in the equation 2& — 3& = 0.
A corresponding eigenvector is 5(2) = (3,2)T. Since the eigenvalues are distinct,

the general solution is
1 3
X=C (2) et/ +co (2> e t/20,

Invoking the initial conditions, we obtain the system of equations

C1 +3C2 =17
—261+262 —21.
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Hence ¢; =29/8 and ¢y = —55/8, and the solution of the IVP is

29/ 1N\ Ly 553\ im0
x_S(Q)e 8(2)e |

(c) Both functions are monotone increasing. It is easy to show that —0.5 < z1(¢) <0
and —0.5 < xz3(¢t) < 0 provided that t > T ~ 74.39.

32.(a) The system of differential equations is

ilv) - (' ) ()

Solution of the system requires analysis of the eigenvalue problem

(o -ai2) (@)= ()

The characteristic equation is 72 4+ 3r +2 = 0, with roots r, = —1 and 7, = —2.
With r = —1, the equations reduce to & — & = 0. A corresponding eigenvector
is given by €M = (1, DT, Setting r = —2, the system reduces to the equation
361 — & = 0. An eigenvector is £ = (1,3)7. Hence the general solution is

0ol

(b) The eigenvalues are distinct and both negative. We find that the equilibrium
point (0,0) is a stable node. Hence all solutions converge to (0, 0).

33.(a) Solution of the ODE requires analysis of the algebraic equations

B _ 1 &\ (0
% =) (8)-0)

The characteristic equation is

L+ CRiR,

R +R
2 1 2
"+ (" Iem,

It Tem, O
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The eigenvectors are real and distinct, provided that the discriminant is positive.
That is,

L+CRiRy Ry + Ry
i Sk R T Gt S k]
“Ier, ) Cew, 170
which simplifies to the condition
1 Ry, 4
- —) == >0.
Cm 1) "¢’

(b) The parameters in the ODE are all positive. Observe that the sum of the roots
is
L
_LACRiRy
LCR,
Also, the product of the roots is
R+ Ry
LCR;

It follows that both roots are negative. Hence the equilibrium solution I =0, V =0
represents a stable node, which attracts all solutions.

>0.

(c) If the condition in part (a) is not satisfied, that is,

( 1 Ry
CRy L

then the real part of the eigenvalues is

L+ CRiRy
2LCRy

As long as the parameters are all positive, then the solutions will still converge to
the equilibrium point (0,0).

RG(TLQ) = —

2.(a) Setting x= € " results in the algebraic equations

7 ) E)-6)

For a nonzero solution, we require that det(A — rI) = r%2 +2r +5 = 0. The roots
of the characteristic equation are r = —1 4 2¢. Substituting » = —1 — 2¢, the two
equations reduce to & + 2i&; = 0. The two eigenvectors are e = (—2i,1)T and
e® = (2i,1)T. Hence one of the complex-valued solutions is given by

_9; 4 —9
x(M) = < ) Z) e (120t — < ) Z) e *(cos 2t — i sin 2t) =

et —2 sin 2t et —2 cos 2t
B cos 2t —sin 2t )’
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Based on the real and imaginary parts of this solution, the general solution is

X — et —2 sin 2t feyet 2 cos 2t
- cos 2t E sin 2t )’

o o el l e b e a2

e > > > > > 4w > v v v v _w v _v T _T

3.(a) Solution of the ODEs is based on the analysis of the algebraic equations

(v 2 @)=

For a nonzero solution, we require that det(A — rI) = r2 + 1 = 0. The roots of the
characteristic equation are r = +i. Setting r = i, the equations are equivalent to
& — (24 i) = 0. The eigenvectors are €V = (2+4,1)T and €@ = (2—i,1)7T.
Hence one of the complex-valued solutions is given by

24143\ . 2414
X(l):< Tz)e”:< _1|—Z>(cost—|—isint)=

2cost—sint fcost+2sint
= +1 . .
cos t sin t

Therefore the general solution is

2cost—sint cost+2sint
X =C + co . .
cos t sin t

The solution may also be written as

5 cost n 5 sin t
X=c c .
! 2cost+sint 2 —cost+2sint
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4.(a) Setting x= £ " results in the algebraic equations

(o 37 () =0)

For a nonzero solution, we require that det(A —rI) =r? —r+ 2 = 0. The roots
of the characteristic equation are r = (1 £ 3¢)/2. With r = (1 + 34)/2, the equa-
tions reduce to the single equation (3 —3i)§; — 5& = 0. The corresponding eigen-
vector is given by E(l) = (5,3 —3i)T . Hence one of the complex-valued solutions

is
) ; 2414 3 3

1 _ (143i)t/2 _ t/2 O Oy

x —(3_3i>e —( 1 )e (cos 2t—|—zsm 275)—

2 (2 cos 3t —sin 2t) et (COb St + 2 sin 2t).

cos 2t sin 2t

The general solution is

3 ;3 3 .3
x:clet/Q 2 cos 5t —sin 5t +Cg€t/2 cos 5t + 2 sin 5t .
cos %t sin %t

The solution may also be written as

5 cos 3t 5 sin 3¢
x:cletm( 5 2 3>+626t/2( 5 2 3>.
3 cos St+ 3sin St —3 cos St+ 3sin St
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o o o e T T o a o o
o7 o o T aT a a e e

5.(a) Setting x= £t" results in the algebraic equations

1—r -1 &\ (0
5 -3—-r)\&/) \o)’
The characteristic equation is 72 + 27 + 2 = 0, with roots 7 = —1 + i. Substitut-
ing r = —1 — 4 reduces the system of equations to (2 + i)&; — & = 0. The eigenvec-

tors are 5(1) = (1,2414)7 and 5(2) = (1,2 —14)T. Hence one of the complex-valued
solutions is given by

1 ; 1
(1) _ (it _ sy
x <2+i)e (2—1—1')6 (cos t — i sin t)

—t cos t — —sint
=e . + e . .
2cost+sint cost—2sint

The general solution is

X = et cos t teset sin ¢
- 2 cost—+sint 2 —cost+2sint)

T T T T

T T S

e T T T T e T S S
P T T T e T T B RS
N NN W
T T T T T T R S

e b b e S e e e
AR BB Db DD —D—D—P P
S S b e e S S
e b e O S

PEPEP IR IR IR R
TR RS
P AP IR IR I
N &t
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6.(a) Solution of the ODEs is based on the analysis of the algebraic equations

(5 -2 E)-6)

For a nonzero solution, we require that det(A — rI) = r? + 9 = 0. The roots of the
characteristic equation are r = £34¢. Setting r = 3¢, the two equations reduce
to (1—3i)€ +2& =0. The corresponding eigenvector is &€V = (2,1 —3i)T.
Hence one of the complex-valued solutions is given by

-2 ) —2
<1 — <1 ~ 32) 3t = <1 B 32_) (cos 3t + i sin 3t) =

_ —2 cos 3t Y —2 sin 3t
"~ \cos 3t + 3 sin 3t —3cos 3t +sin 3t /)"

The general solution is

e —2 cos 3t Lo 2 sin 3t
= "'\ cos 3t + 3 sin 3t 2\ 3cos 3t —sin 3t)°

rrz NN
Pz - NN
tr? - NN
tr NN
111 7 NN
11t 7 NN
11 A v
111 ! N
11118 1 VA
118 3

- 3

R RN PRV L
SRR AN PRV
RN LRV
AN AN Ipiid
RN IR
R Jiidd
NAARINAN Jddd
TANINAN AR
AN N N N Y LA A

8. The eigensystem is obtained from analysis of the equation

—3—r 0 2 & 0
1 —1—r 0 52 =10
-2 -1 —r) \& 0

The characteristic equation of the coefficient matrix is 73 + 472 + 7r +6 = 0, with
roots 1 = —2, 79 = —1—+/2i and r3 = —14 /2 4. Setting r = —2, the equa-
tions reduce to
—§1+2& =0

&1+&=0.
The corresponding eigenvector is 6(1) =(2,-2,1)T. With r=-1- V2'i, the
system of equations is equivalent to

(2-iV2)6 —2&3 =0
&+ Zﬁfg =0.
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An eigenvector is given by 5(2) = (=iv/2,1,—1 —iy/2)T. Hence one of the complex-
valued solutions is given by

—iv2 —iv2
1 e~ (1FiV2)t _ 1
—1—iV2 —1—iV2

—/2 sin V2t —/2 cos V2t
=et cos V2t + et —sin V2t
—cos V2t —+/2 sin V2t —/2 cos V2t + sin V2t

@ —

e (cos V2t — i sin V2t) =

The other complex-valued solution is x(®) = 5(2) e™t. The general solution is

2
X =c | -2]e %+
1

V2 sin V2t V2 cos V2t
+eget —cos V2t + cqe? sin V2t
cos V2t + /2 sin V2t V2 cos V2t — sin /2t

It is easy to see that all solutions converge to the equilibrium point (0,0,0).

10. Solution of the system of ODEs requires that

(5 ) @)= 6)

The characteristic equation is 72 +4r 4+ 5 =0, with roots » = —2 £ i. Substi-
tuting r = —2 + ¢, the equations are equivalent to & — (1 —¢){3 = 0. The corre-
sponding eigenvector is 5(1) = (1 —14,1)T. One of the complex-valued solutions is

given by
1—i . 1—i
<) — ( ) Z) e(=2+0t _ ( ) Z) e (cos t +isint) =

_otfcost+sint . _9;f—cost+sint
=e + e . .
cos t sin t

Hence the general solution is

cost+sint —cost+sint
X =C e 2 + +co e 2t . * .
cos t sin t

Invoking the initial conditions, we obtain the system of equations
C1 — Cy = 1
Cc1 = —2.

Solving for the coefficients, the solution of the initial value problem is

cost—+sint —cost—+sint
— _2 —2t _ 3 —2t
x ¢ ( cos ¢ ) c sin ¢

_ 2 cost—5sint
N —2cost—3sint/)’
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The solution converges to (0,0) as t — oco.

12. Solution of the ODEs is based on the analysis of the algebraic equations

(57 2=

The characteristic equation is 2572 — 107 + 26 = 0, with roots r = 1/5 £ i. Set-
ting r = 1/5 + ¢, the two equations reduce to & — (1 —i)€; = 0. The correspond-
ing eigenvector is 5(1) = (1 —1i,1)T. One of the complex-valued solutions is given

by
<0 _ <1 - Z)e(éﬂ')t - (1 . z) ¢/ (cos ¢ + i sin t) =

_ s cos t+sint 4 ietls —cos.t—&—sint .
cos t sin t

Hence the general solution is

X = ¢!/ cos t+sint +epethd — cos .t +sin ¢ -
cos t sin ¢

(b) Let x(0) = (29 ,29)”. The solution of the initial value problem is

t+sint - t+sint
x = af et/s(COS + sin >+($g_$?)et/5( cos —i—sm)

cos t sin ¢
0 t 2 0 _ .0V t
_ s cost+ (2x5 —af)sin
=e .
x9 cos t + () — 29)sin ¢

With x(0) = (1,2)7, the solution is

¢/5(cost+3sint
xX=e . .
2cost+sint

15 9

10

2

' ' / /7 ' ' '
-15 -10 -5 0 5 10, 15
EY4
-1
=1

5
5

/
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13.(a) The characteristic equation is r? — 2ar + 1 + o2 = 0, with roots r = a + i.

(b) When a <0 and « > 0, the equilibrium point (0,0) is a stable spiral and an
unstable spiral, respectively. The equilibrium point is a center when o« = 0.

NN AAA T2

N N S

DN NN A A
el AR RN U 2 2SR N
st ~ N N 7 A7 AR
A NN WW\ Y rf2)7 7 7 AR
7 NN Y 1 A e N N
a /7 N\ V) ) f r oty R N \
A A Wiy ttn - N N NN N
7 7 I \ R { y Y )
—la 3 3 i -\ 3 -2 I " s )
O =y AN\ X NI AR N IR
AR B K i 4 RN NN NN ¥/ (e
Y AR Iy NN R, P AR AE) ¥
XA\ s NN O WS e L 'y,
NX P NONN SN e LA A
NAN ol R e e e S = S
XORN Fa g g TN N I =T R 7 S
wORR et o o o o o AN N S et s ol W S
LN N . A N S S T

(b) a=1/8
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2

14.(a) The roots of the characteristic equation, r* —ar+5 =0, are

« 1
==+ =Va2-2.
1,2 9 B « 0

(b) Note that the roots are complex when —v/20 < @ < v/20 . For the case when
a € (=20 ,0), the equilibrium point (0,0) is a stable spiral. On the other hand,
when a € (0,+/20), the equilibrium point is an unstable spiral. For the case o = 0,
the roots are purely imaginary, so the equilibrium point is a center. When a? > 20,
the roots are real and distinct. The equilibrium point becomes a node, with its
stability dependent on the sign of o . Finally, the case o = 20 marks the transition
from spirals to nodes.

17. The characteristic equation of the coefficient matrix is 72 +2r+1+a =0,
with roots given formally as r; o2 = —1 + /—a . The roots are real provided that
a < 0. First note that the sum of the roots is —2 and the product of the roots is
1+ «. For negative values of a, the roots are distinct, with one always negative.
When a < —1, the roots have opposite signs. Hence the equilibrium point is a
saddle. For the case —1 < a < 0, the roots are both negative, and the equilibrium
point is a stable node. « = —1 represents a transition from saddle to node. When
a = 0, both roots are equal. For the case a > 0, the roots are complex conjugates,
with negative real part. Hence the equilibrium point is a stable spiral.
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19. The characteristic equation for the system is given by

r? 4+ (4 —a)r +10 — 4a = 0.

r1¢2=—2+% + Va? +8a—24.

First note that the roots are complex when —4 — 2v/10 < a < —4 + 2v/10. We also
find that when —4 —2v/10 < o < —4 + 2/10, the equilibrium point is a stable
spiral. For a > —4 + 2v/10, the roots are real. When a > 2.5, the roots have
opposite signs, with the equilibrium point being a saddle. For the case —4 +
2V/10 < a < 2.5, the roots are both negative, and the equilibrium point is a stable
node. Finally, when oo < —4 — 21/10 , both roots are negative, with the equilibrium
point being a stable node.

The roots are

20. The characteristic equation is 72 4+ 27 — (24 + 8a) = 0, with roots
T2 = -1 £+ vV25+8a .

The roots are complex when a < —25/8. Since the real part is negative, the origin
is a stable spiral. Otherwise the roots are real. When —25/8 < o < —3, both roots
are negative, and hence the equilibrium point is a stable node. For a > —3, the
roots are of opposite sign and the origin is a saddle.
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7.6

ANNNSNSSSSN
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OO
SOOI
SOOI
SOOI
SOOI

0. A cor-

£ 1" results in

(m@)

(mﬂ)

sin(Int)

sin(In ¢)
(0,0,1)T. Setting r = —1/4 — i,

cos(Int) + 2 sin

&1
3
) [cos(Int) + 4 sin(Int)]
cos(Int) + 2 sin
17
160
(1) _
0
0.

)

The characteristic equation for the system is 72 +1 =0, with roots rys = +i.

With r = i, the equations reduce to the single equation & — (2 + )&
3

-5

24
L8

80"

—2—r
(m0>+@(

Other combinations are also possible.
§1—1&

(2+1i,1)T. One complex-valued solution is

x( = (2 + Z> tt.
1

241\ ,
X(l) _ ( —1+_Z>ez Int

(b) a = —3.05
(In t)) N Z<

57”

1
1) _
rd 4+

2—r
cos(Int)

(

cos(Int)

2 cos(Int) — sin
2 cos(Int) — sin

(

Therefore the general solution is

C1 (
with eigenvalues r; = 1/10, and ro 3 = —1/4 £ 4. For r = 1/10, simple calculations

24.(a) The characteristic equation of the system is
reveal that a corresponding eigenvector is &

we obtain the system of equations

22. Based on the method in Problem 19 of Section 7.5, setting x
We can write t* = e*™*. Hence

the algebraic equations
responding eigenvector is &
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A corresponding eigenvector is 5(2) = (i,1,0)T. Hence one solution is

0
x( = [ 0] /10,

1

Another solution, which is complex-valued, is given by

x@ = [1]|e Gt = |1 e_t/4(cos t—isint) =
0 0
sin ¢ cos t
—e | cost | +ie V| —sint
0 0

Using the real and imaginary parts of x(?), the general solution is constructed as

0 sin ¢ cos t
x=c |0 et/10 4 Co et cost | + c3 et/ [ —gsint
1 0 0

(b) Let x(0) = (29,29 ,29). The solution can be written as

0 29 sin t + 29 cos t
X = 0 + et/ x cos t — 29 sin ¢
z9 et/10 0

With x(0) = (1,1, 1), the solution of the initial value problem is

0 sin ¢t + cos t
X = 0 +e 4 | cost —sint
et/lO 0

(a) x1 — x2 (b) 21 — 3 (¢) z2 —x3
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25.(a) Based on Problems 19-21 of Section 7.1, the system of differential equations

LD DO-G D0

since Ry = Ry =4 ohms, C = 1/2 farads and L = 8 henrys.

(b) The eigenvalue problem is

(5" )=l

The characteristic equation of the system is 72 + r + % = 0, with eigenvalues
L + 1
rio=—= 1 —i.
D R

Setting r = —1/2 4 i/2, the algebraic equations reduce to 4i&; + & = 0. It follows
that € = (1, —44)T. Hence one complex-valued solution is

(Q " (14@‘)6(_1“)”2 - (14)/ [cos(t/2) +i sin(t/2)] =

=) v ()

Therefore the general solution is

(v) = (i) + o (emien)

(¢) Imposing the initial conditions, we arrive at the equations ¢; =2 and ¢y =

—3/4, and .
()= (Gomtere) 4 ot

(d) Since the eigenvalues have negative real parts, all solutions converge to the
origin.
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26.(a) The characteristic equation of the system is

1 1
1ﬂ+ﬁ6r+azzo,

with eigenvalues

1 1 4R2C

"2 = "opc Fare\ T L
The eigenvalues are real and different provided that
2
1-— AR >0.

The eigenvalues are complex conjugates as long as

4R?2C

1 <0.

(b) With the specified values, the eigenvalues are r;2 = —1 £ 4. The eigenvec-
tor corresponding to r = —1-+14 is e = (1,—44)T. Hence one complex-valued
solution is

(1)
I 1 . 1
(V) - (—1 +i> = (—1 +z‘)€_t(cos Etésint) =

—t cos t - sin ¢
=e A + 1€ A .
—cost— sint cost—sin t

Therefore the general solution is

I ¢ cos t 4ot sin ¢
= cie coe .
Vv ! —cost— sint 2 cost—sin t

(¢) Imposing the initial conditions, we arrive at the equations
C1 = 2
—catce=1,

with ¢; =2 and ¢y = 3. Therefore the solution of the IVP is
1 _ ot 2cost+3sint
V) cost— Hsint )’

(d) Since Re(r1,2) = —1, all solutions converge to the origin.

27.(a) Suppose that cia+cob= 0. Since a and b are the real and imaginary parts
of the vector 5(1) , respectively, a= (5(1) + 5(1))/2 and b= (5(1) — 5(1))/22'. Hence

cr(€V +61) —ies(eV — €)= 0,

which leads to -
(Cl — iC2)€(1) + (C1 + iCQ)S(l) =0.
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(b) Now since 5(1) and @ are linearly independent, we must have
c1 —icg =0
c1+1ico =0.
It follows that ¢ =c9 =0.
(c) Recall that
u(t) = e*(a cos ut — b sin put)
v(t) = e (a cos ut + b sin put).
Consider the equation ciu(ty) + cov(tg) = 0, for some t3. We can then write
creMo(a cos pto — b sin pty) + coe(a cos utg + b sin ptg) = 0. (*)
Rearranging the terms, and dividing by the exponential,
(c1 + ¢a)cos putpa + (c2 —¢1)sin utgb =0.
From part (b), since a and b are linearly independent, it follows that
(c1 + ¢2) cos ptg = (co — ¢1) sin utg =0.

Without loss of generality, assume that the trigonometric factors are nonzero. Oth-
erwise proceed again from Equation (x), above. We then conclude that

c1+c=0and cg—c; =0,

which leads to ¢; = ¢ = 0. Thus u(ty) and v(to) are linearly independent for some
to, and hence the functions are linearly independent at every point.

28.(a) Let 1 = u and zp = u’. It follows that x{ = z2 and

r_ k
Ty=U =——1u.
m

In terms of the new variables, we obtain the system of two first order ODEs

Xr41 = T2

, k
Ty =——2T1.
2 m

=~

(b) The associated eigenvalue problem is

=T 1 fl - 0
—k/m —r)\&)  \0)°
The characteristic equation is 7% + k/m = 0, with roots 712 = £i\/k/m .

(c) Since the eigenvalues are purely imaginary, the origin is a center. Hence the
phase curves are ellipses, with a clockwise flow. For computational purposes, let
k=1 andm=2.
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(c) 1,22 vs t

(d) The general solution of the second order equation is

k . k
u(t) =crcos /| —t—+casin [ —t.
m m
The general solution of the system of ODEs is given by
4 osin %t o cos %t
S o R g
cos % t —sin % t

It is evident that the natural frequency of the system is equal to |ri| = |ra].

29.(a) Set x = (21,22 )7. We can rewrite Equation (22) in the form
6o ()= ) ()
. = 7 .
0 9/4) \ Lz 3 =2 )\,
Multiplying both sides of this equation by the inverse of the diagonal matrix, we
obtain
£)-(5 %) ()
s /3 =3) \a,
(b) Substituting x= & e,

()= B

which can be written as

(A-rD)¢E=0.

(c) The eigenvalues are r? = —1 and r2 = —4, with corresponding eigenvectors

wm_ (3 @ _ (3
= (o= (%)

(d) The linearly independent solutions are

x = C’l <§> et and x?) = éQ <_34> et
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in which C; and Cy are arbitrary complex coefficients. In scalar form,
x1 = 3¢y cos t + 3casin t 4 3cg cos 2t + 3cy sin 2t
To = 2c1 oS t + 2¢osin t — 4cg cos 2t — 4ey sin 2t

(e) Differentiating the above expressions,

xl’ = —3cysin t 4+ 3co cos t — Geg sin 2t + 6¢4 cos 2t

xy = —2c1 sin t + 2¢5 cos t + 8cg sin 2t — 8¢y cos 2t

It is evident that y= (21,29, 7{,24)T as in Equation (31).

31.(a) The second order system is given by

d*z
dtz1 = —221 + 22
dZ’JJQ
W =T — 21'2
Let y1 = 1, Y2 = 22, y3 = 21 and y4 = x4. In terms of the new variables, we have
yf =Y3
3/2/ =Ya
y:): = —2y1 + 2
Ys =1 — 292
hence the coefficient matrix is
0 0 1 0
0 0 0 1
A= -2 1 0 0
1 -2 0 0

(b) The eigenvalues and corresponding eigenvectors of A are:
ro=i, &€V =(1,1,4,4)7
ro = —i, €% =(1,1,—i,—)7
rs=v3i, €¥=(01,-1,v34,-v34)T
ra=—V3i, €% =(1,-1,-v3i,v3i)T

(c) Note that

eWeit = (cos t+ i sin t)

S S =

and
1
. 1
@ eV3it — J3i (cos V3t 4 i sin V/31).
—V3i
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Hence the general solution is

cos t sin t cos V3t sin V3t
cos t sin t —cos V3t —sin V3¢
—sint T cos t tes —ﬁsin J?Tt T+ ﬁcos ﬁt
—sin t cos t V3 sin V3¢ —V/3 cos V3t

(d) The two modes have natural frequencies of w; = 1 rad/sec and wy = /3 rad/sec.

. v \

(e) For the initial condition y(0) = (—1,3,0,0)7, it is necessary that

y=a

~1 1 0 1 0

3 1 0 ~1 0

o | = ol T2l o | T v3 |°
0 0 1 0 -3

resulting in the coefficients ¢; =1, co =0, c3 = —2 and ¢4 = 0.

3 3

AW (WA
YA A

_3d _3d

The solutions are not periodic, since the two natural frequencies are incommensu-
rate.
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1.(a) The eigenvalues and eigenvectors were found in Problem 1, Section 7.5.

1 2
r = —17 5(1) = (2) ; ro = 2’ 5(2) = (1>

The general solution is
et 2¢e?t
X = Cl(ZBt) +02( o2t )

Hence a fundamental matrix is given by
et 2e%
U(t) = (2 et o2t |-
(b) We now have

@(0) = (; f) and W1(0) = 3 <‘21 _21) ,

_ 1/ —et 442t 2e7t — 2%
‘I’(t) = ‘I’(t)‘I’ 1(0) = g (2€t 4 2e2t et — o2t

So that

3.(a) The eigenvalues and eigenvectors were found in Problem 3, Section 7.5. The

general solution of the system is

B et N et
X =C ot Co Je—t .

Hence a fundamental matrix is given by
et et
‘Il(t) - (et 3€t> .

(b) Given the initial conditions x(0) =e"), we solve the equations

cpt+co=1
c1 + 302 = 0,
to obtain ¢; = 3/2, ¢ = —1/2. The corresponding solution is

Bpt _ Lot
_ (2 2
X =17 : .
3t _ 3ot
2 2

Given the initial conditions x(0) =e(?), we solve the equations

Cl+62:O
c1+3co=1,
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to obtain ¢; = —1/2, ¢ = 1/2. The corresponding solution is

1t 1,—t
—5€e + 5e
= ( 2 T2 t).
756 + 56
Therefore the fundamental matrix is
1 /3t —et —ettet
o(t) = 2 (Set —3e7t —et+3e7t)"
5.(a) The general solution, found in Problem 3, Section 7.6, is given by

5 cost 5sint
X =0C . + co . .
2cost+sint —cost+2sint

Hence a fundamental matrix is given by

\I'(t):( 5 cost Hsint >

2cost+sint —cost+2sint

(b) Given the initial conditions x(0) =e(!), we solve the equations

56121
201—0220,

resulting in ¢; = 1/5, ¢c; = 2/5. The corresponding solution is

(cos t+ 2 sin t)
X = . )
sin t

Given the initial conditions x(0) =e(?), we solve the equations

561 =0

261 — C2 = 1 s
resulting in ¢; =0, cg = —1. The corresponding solution is
—5Hsin ¢t
X = ) .
cost—2sint

Therefore the fundamental matrix is
_ [cost+2sint —5sint
o(t) = < sin t cos t — 2 sin t> '
7.(a) The general solution, found in Problem 15, Section 7.5, is given by
o2t odt
X=0C (362t) + c2 <e4t) .

Hence a fundamental matrix is given by

o2t it
P(t) = (36226 6426) .
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(b) Given the initial conditions x(0) =e(!), we solve the equations

c1+co=1
3c1+c2=0,
resulting in ¢; = —1/2, ¢a = 3/2. The corresponding solution is

1 _6215 + 3e4t
X = .
2\ —3e?t + 3ett

The initial conditions x(0) =e(® require that

c1+c=0
301 +co = 1 y
resulting in ¢; = 1/2, ¢ = —1/2. The corresponding solution is

1 e2t _ 64t
) <3th — 64’5)'
Therefore the fundamental matrix is

1 [ —e2t 1 3e4t 2t _ oAt
®(t) = 3 <_362t L 3eMt ge2t _ oAt )

8.(a) The general solution, found in Problem 5, Section 7.6, is given by

X — et cos t 4 et sin ¢
- 2 cost+sint 2 —cost+2sint)’

Hence a fundamental matrix is given by
—t t —t & t
W(t) = , e cosit . B e 'sin n .
2¢e tcost+etsint —e fcost+2e sint

(b) The specific solution corresponding to the initial conditions x(0) =e() is

_;fcost+2sint
X=e . .
5sin t

For the initial conditions x(0) =e(?), the solution is

—t —sin ¢
X=e . .
cost—2sint

Therefore the fundamental matrix is

4 fcost+2sint —sin t
o(t)=e ( 5sin t cost—2sint) "’

9.(a) The general solution, found in Problem 13, Section 7.5, is given by

4e~2t 3e~t 0
x=c1 [ =Be 2| +eo | —de7 | 45| e
_76—2t —2€_t _62t



310 Chapter 7. Systems of First Order Linear Equations

Hence a fundamental matrix is given by

4e”2t et 0
U(t)= [ —be 2t —4et e
72 9ot g2

(b) Given the initial conditions x(0) =e("), we solve the equations
4cy +3c0 =1
—5¢c1 —4ca +c3=0
—Tc1 —2¢c9g —c3 =0,
resulting in ¢; = —1/2, co = 1, ¢3 = 3/2. The corresponding solution is
—2¢72 4 37t

x = [5e721/2 — et + 3e2t)/2
Te 2t/2 — 2e~t — 3%t /2

The initial conditions x(0) =e(?), we solve the equations
4c1 +3c2 =0
—5c1 —4ecs +c3=1
—Tc1 —2¢c9 —c3 =0,
resulting in ¢; = —1/4, ¢3 =1/3, ¢3 = 13/12. The corresponding solution is
e 4 et
x = [5e 2 /4 —4e7t/3 + 132! /12
Te 2t/4 —2e7t/3 — 132! /12
The initial conditions x(0) =e®), we solve the equations
4e1 + 3¢9 =0
—5¢1 —4ca +c3=0
—Tc1 —2c9 —c3 =1,
resulting in ¢; = —1/4, ¢3 =1/3, ¢3 = 1/12. The corresponding solution is
—e~2t 4ot
x = |be /4 —det/3 + ¥ /12
Te 21 /4 —2e71/3 — €2 /12
Therefore the fundamental matrix is

] —24e~2t 4 36e~¢ —12¢72t 4 12¢~¢ —12¢7% 4 12¢~¢
®(t) = D 30e72t —48e™t +18e?!  15e72! — 16e~! + 132 15e72! — 16e~! + e*
42¢72% — 24e7t — 18e%t  2le 2t — 8¢t — 13e2t  2le % — 8¢t — 2

12. The solution of the initial value problem is given by

x = B(1)x(0) = (e‘tcos 2t  —2e~tsin 2t> (3> _

%e‘tsin 2t e tcos 2t 1

4 (3 cos 2t — 2sin 2t)

% sin 2t + cos 2t
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13. Let
ORI ()
U(t) = : :
P () M (¢)
It follows that
wV(te) o 2 (ko)
W(ty) = : :
2D (to) - 2 (to)

is a scalar matrix, which is invertible, since the solutions are linearly independent.
Let ¥~ '(to) = (ci;). Then

./L'gl) (t) e :L-gn) (t) C11 ce- Clp
THE ()= | : : :
xg)(t) - x%n)(t) Cnl "' Cnn

The j-th column of the product matrix is
[T (t0)]Y = > ey x®,
k=1

which is a solution vector, since it is a linear combination of solutions. Furthermore,
the columns are all linearly independent, since the vectors x(*) are. Hence the
product is a fundamental matrix. Finally, setting t = to, ¥ (to)® ' (to) =I. This
is precisely the definition of ®(t).

14. The fundamental matrix ®(t) for the system

, (11
X—41X

1 /263 427t 3t —et
o(t) = 4 <4e3t —4et 2e3t 4 2e7?

is given by

Direct multiplication results in

1 26325 + 2671& 63t _ 67t 2633 + 2675 635 _ 675
(I’(t)(}(s) - E <4€3t _ 4€7t 263t + 26715 4635 — 4e—5 2635 + 2¢~5
B 1 8(63t+33 + e—t—s) 4(e3t+3s _ e—t—s)
- 16 16(63t+3s _ eftfs) 8(63t+3s + eftfs)
Hence

1 263(t+s) 4 26—(t+s) 63(t+s) _ e—(t+s)
@(t)q)(s) = Z <463(t+s) _ 46—(t+s) 263(t+5) 4 26—(t+s) = (I)(t + S)'
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15.(a) Let s be arbitrary, but fixed, and t variable. Similar to the argument in
Problem 13, the columns of the matrix ®(¢)®(s) are linear combinations of funda-
mental solutions. Hence the columns of ®(¢)®(s) are also solution of the system of
equations. Further, setting ¢ =0, ®(0)®(s) =I®(s) = ®(s). That is, ®(t)P(s)
is a solution of the initial value problem Z' =AZ, with Z(0) = ®(s). Now consider
the change of variable 7 =t+s. Let W(7) =Z(7 — s). The given initial value
problem can be reformulated as

diw = AW , with W (s) = ®(s).
-

Since ®(t) is a fundamental matrix satisfying ®' =A® , with ®(0) =I, it follows
that
W(r) = [®8(r)® ' (s)] ®(s) = B(7).

That is, ®(t + s) = ®(1) =W (1) =Z(t) = ®(t)D(s).
(b) Based on part (a), ®(t)®(—t) = ®(t + (—t)) = ®(0) =L Hence ®(—t) = &' (t).
(c¢) Tt also follows that ®(t —s) = ®(t + (—s)) = B(t)P(—5) = &(t)P ' (s).

16. Let A be a diagonal matrix, with A= [ale(l),age(z), e ,ane(”)]. Note that
for any positive integer k,

AF = [abe® ake® ... ok e(n)} ,

It follows, from basic matrix algebra, that

kk
210 12' 0 ) 0
tk 0 moaklo.. 0
I+ZA’“ R=0T2 R
0 0 e Y oab

It can be shown that the partial sums on the left hand side converge for all t.
Taking the limit as m — oo on both sides of the equation, we obtain

et 0 ... 0

0 emt ... 0
oAt _

0 0 .- eont

Alternatively, consider the system x’ =Ax . Since the ODEs are uncoupled, the
vectors xU) = e%tel) j=1,2,--.n, are a set of linearly independent solutions.

Hence the matrix
X = [ealte<1>7ea2te<2>7... ,eantem)}

is a fundamental matrix. Finally, since X(0) =I, it follows that

{ealteu)’eazte(z)’ - 7eante<n>] — (1) = At
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17.(a) Let 21 = u and x5 = u’; then u” = x5 . In terms of the new variables, we
have

z) +wir; =0

with the initial conditions z1(0) = ug and 22(0) = vo. The equivalent first order

system is

/

x1:x2

I _ 2
Ty = —wW" T

which can be expressed in the form

() = (2 ) () (26)-():

(b) Setting

it is easy to show that
A? = 0?1, A® = —w? A and A* =L

It follows inductively that
A% = (Z1)h?t

and
AL = (C1)k2k A
Hence
o0 2k 42k 2k 12k+1
At pwt pwt
= 1) —TI+(-1) —- A
¢ kz::o [< e T OY G ]
o0 2k §2k 1 [& W2k $2k+1
= e I+~ k-
S e

and therefore

1
et = cos witl + = sin wtA.
w

(¢) From Equation (28),
1
(ml) = {cos wtl 4+ — sin th] <u0>
L2 w Vo
1
cos wt (u()) + —sinwt < UQO > .
Vo w —W” Up

18.(a) Assuming that x= ¢(t) is a solution, then ¢’ =A¢, with ¢(0) =x. Integrate
both sides of the equation to obtain

p(t) — ¢(0) = /0 Ad(s)ds .
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Hence .
o(t) =x° +/ Ap(s)ds.
0
(b) Proceed with the iteration
t
(1) = x° —|—/ A (s)ds.
0
With ¢(©)(t) =x°, and noting that A is a constant matrix,
t
oMW () =x" + / Ax%ds = x" + Ax"t.
0
That is, ¢(M(¢) = (14 At)x°.
(c) We then have
t t2 t2
pP(t) =x" + / AT+ At)x%ds = x° + Ax"t + A2x05 = (I+ At + A%)XO.
0
Now suppose that
t2 t"
O(1) = T+ At + A% 4o A",

It follows that

n

t 2
t t
/ A(I+At+A2§ +o+ AT )xds =
0

n!

t2 2t3 tn+1 0

=At+A—+A"— 4+ - -+ A"——
(It + 2+ 3!+ + (n+1)!)x

t2 3 tn

_ 2" 3t n+1l \ 0

= (At + AP+ A% AT

Therefore ) L

S (1) = (T+ At + A2 .o A e )x°.

2 (n+1)!

By induction, the asserted form of ¢(™(t) is valid for all n > 0.

(d) Define ¢(°°)(t) = lim,, ;oo (™ (). It can be shown that the limit does exist. In
fact,
¢ (t) = eAx".

Term-by-term differentiation results in

d¢<°°>(t) d(I+At+A2t2+ +anl oy )x°
— = — J— e J— e )X
dt dt 2 n!

n—1
P 2 DY ni ... O
—(A+A%+.. A I )X

tn—l
(n—1)!

2
:A(IJrAtJrAQ%+---+A”‘1 + )"
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N

That is,
d
— () = Ag™ (1).
7?7 (1) = AeU(t)

Furthermore, ¢(°>)(0) =x°. Based on uniqueness of solutions, ¢(t) = ¢(>)(t).

s
s
4
s
s
s
4
s
s
4
s
s
s
4
s
s
4
4

AR SN RN NN N NN NN NN
AN NN NN NN\ (AN N NN N NN NN
A NN NN NN RSN N NN
PR YRR N LNN WSS RSN N NN
AN YA Y YR NS N YN
NN N N N N N N RN N N N W N N N N

O R §

(b) All of the points on the line 29 = 2x; are equilibrium points. Solutions starting
at all other points become unbounded.

(c) Setting x= £t" results in the algebraic equations

(57 2)@)-6)

The characteristic equation is 72 = 0, with the single root r = 0. Substituting r» = 0
reduces the system of equations to 2¢; — & = 0. Therefore the only eigenvector is

&= (1,2)". One solution is
1
1) —
<= ()

which is a constant vector. In order to generate a second linearly independent
solution, we must search for a generalized eigenvector. This leads to the system of

equations
4 =2 my (1

This system also reduces to a single equation, 21, —ny = 1/2. Setting 71 =k,
some arbitrary constant, we obtain 7o = 2k — 1/2. A second solution is

@< (s () (e ()2
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Note that the last term is a multiple of x(!) and may be dropped. Hence

= (o) ()

The general solution is

o
s
o
o o
-
-~
o
e
A
.
rg
s
-
-
-
-
-
-
-
-

(b) All trajectories converge to the origin.

(c) Solution of the ODE requires analysis of the algebraic equations

(5722 (0)-6)

For a nonzero solution, we must have det(A —rI) =72 +r+1/4=0. The only
root is r = —1/2, which is an eigenvalue of multiplicity two. Setting r = —1/2
is the coefficient matrix reduces the system to the single equation —&; + & =0.
Hence the corresponding eigenvector is € = (1,1)7. One solution is

1
xM = <1> e 2,
In order to obtain a second linearly independent solution, we find a solution of the
system
-5/2 5/2\ (m\ _ (1
=5/2 5/2) \n,) \1)°

There equations reduce to —57m; + 512 = 2. Set 1 = k, some arbitrary constant.
Then 1o = k+2/5. A second solution is

1 k 1 0 1
@ _ —t/2 —t/2 _ —t/2 —t/2 —t/2
X (1>te +(k+2/5>€ (1)te +(2/5>e —l—k(l)e .

Dropping the last term, the general solution is

I gy I — 0\ —¢2
X—Cl<1>€ +co [(1>te + 2/5 e .
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6. The eigensystem is obtained from analysis of the equation

-r 1 1 51 0
1 =T 1 52 =1{0
1 1 -r 53 0
The characteristic equation of the coefficient matrix is 73 — 3r — 2 = 0, with roots
r1 =2 and ry3 = —1. Setting r = 2, we have
-2 1 1 & 0
1 -2 1 &Ll =10
1 1 =2 &3 0

This system is reduced to the equations
& -8 =0
& —&=0.

A corresponding eigenvector is given by E(l) =(1,1,1D)T. Setting r = —1, the
system of equations is reduced to the single equation

§1+8&+86=0.
An eigenvector vector is given by 5(2) =(1,0,—1)T. Since the last equation has two
free variables, a third linearly independent eigenvector (associated with r = —1) is
® = (0,1,—1)T. Therefore the general solution may be written as
1 1 0
x=c |[1]e®+e| 0 e t+es| 1 e
1 -1 -1

7.(a) Solution of the ODE requires analysis of the algebraic equations

(2 ) -6)

For a nonzero solution, we must have det(A —rI) =72 +6r+9 =0. The only
root is 7 = —3, which is an eigenvalue of multiplicity two. Substituting r = —3
into the coefficient matrix, the system reduces to the single equation & — & =0.
Hence the corresponding eigenvector is & = (1,1)”. One solution is

x( = <1) e 3t
1

For a second linearly independent solution, we search for a generalized eigenvector.

Its components satisfy
4 -4\ (m\ (1
4 —4 72 “\1)’

that is, 4 —4ne = 1. Let 1o = k, some arbitrary constant. Then 17, = k+ 1/4.
It follows that a second solution is given by

1\ _ kE+1/4\ _ 1\ _ 1/4\ _ 1\ _
(2 _ 3t 3t _ 3t 3t 3t
X <1>te +( 1 )e (1>te +( 0 )e +k<1)e .
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Dropping the last term, the general solution is

X=c G) e 3+ ey Ki)te?’t + <1é4> e3t] :

Imposing the initial conditions, we require that ¢; 4+ ¢o/4 = 3, ¢ = 2, which results
in ¢; =2 and ¢y = 4. Therefore the solution of the IVP is

. 4 .
X = (2) e 3t + <4> te 3.

x/

|
L
~

8.(a) Solution of the ODEs is based on the analysis of the algebraic equations

(7420 ()-6)

The characteristic equation is 72 4+ 27 + 1 = 0, with a single root 7 = —1. Setting
r = —1, the two equations reduce to —¢; + &2 = 0. The corresponding eigenvector

is € = (1,1)T. One solution is
x) = <1)et.
1

A second linearly independent solution is obtained by solving the system

(e 5) (e =)

The equations reduce to the single equation —3n; + 312 = 2. Let 51 = k. We obtain
72 = 2/3 + k, and a second linearly independent solution is

x? = G)tet + (2/3k+ k) et = G)tet + (233) et + k(i) et

Dropping the last term, the general solution is

cma)ere e (2]
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Imposing the initial conditions, we find that ¢; = 3, ¢; + 2¢2/3 = —1, sothat ¢; =3
and ¢y = —6. Therefore the solution of the IVP is

() (G

x/

10.(a) The eigensystem is obtained from analysis of the equation

(o Sm)e)=6)

The characteristic equation is r? = 0, with a single root r =0. Setting r =0,
the two equations reduce to & + 362 = 0. The corresponding eigenvector is & =
(—3,1)”. Hence one solution is
-3
o-(3)
1

which is a constant vector. A second linearly independent solution is obtained from

the system
3 9 my (-3

The equations reduce to the single equation 77 + 312 = —1. Let 172 = k. We obtain
m = —1 — 3k, and a second linearly independent solution is

-3 —1-3k -3 -1 -3
<= () (C07) = (D) () ++(F)
Dropping the last term, the general solution is
X=c -3 +c -3 t+ -1
— M\ 1\ 0]

Imposing the initial conditions, we require that —3c; — ¢ = 2, ¢; = 4, which results
in ¢ =4 and ¢p = —14. Therefore the solution of the IVP is

<= (1) ()
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60

13. Setting x= £ t" results in the algebraic equations

() @)-6)

The characteristic equation is % — 2r + 1 = 0, with a single root of r1 » = 1. With
r = 1, the system reduces to a single equation &, — 2 &, = 0. An eigenvector is given
by &€ = (2,1)T. Hence one solution is

x) = <2> t.
1

In order to find a second linearly independent solution, we search for a generalized
eigenvector whose components satisfy

(=) G)-0)

These equations reduce to 1y —2m2 = 1. Let 72 =k, some arbitrary constant.
Then n; =14 2k. (Before proceeding, note that if we set u = Int, the original
equation is transformed into a constant coefficient equation with independent vari-
able u. Recall that a second solution is obtained by multiplication of the first
solution by the factor w. This implies that we must multiply first solution by a
factor of Int.) Hence a second linearly independent solution is

2 1+ 2k 2 1 2
(2 — —
X (l)tlnt+< 1 >t <1>t1nt+(0>t+k<1)t.

Dropping the last term, the general solution is

e (e e ()]

16.(a) Using the result in Problem 15, the eigenvalues are
1 Y L2 —4R?CL
2RC 2RCL '

The discriminant vanishes when L = 4R2C.

T12 = —
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(b) The system of differential equations is
d(ry_[(o 3 I
dt\v) \-1 —1)\v /)’

The associated eigenvalue problem is

—r % & _ 0
1 —1-7)\g 0)

The characteristic equation is 72 +r +1/4 = 0, with a single root of ry 5 = —1/2.
Setting r = —1/2, the algebraic equations reduce to 2¢; + & = 0. An eigenvector
is given by & = (1, —2)7. Hence one solution is

0" ()

A second solution is obtained from a generalized eigenvector whose components

satisfy
1
GG -)
-1 —=35) \nmp -2

It follows that 7, = k and 1y = 4 — 2k . A second linearly independent solution is

nN® /1 . k 1 0 1
_ —t/2 —t/2 _ —t/2 —t/2 —t/2
(V) (_2>te +<4_2k)e (_2)te +<4)e —|—k<_2>e .

Dropping the last term, the general solution is

(v) =G (e (D]

Imposing the initial conditions, we require that ¢; = 1, —2¢; + 4¢o = 2, which re-
sults in ¢; =1 and ¢y = 1. Therefore the solution of the IVP is

(-

19.(a) The eigensystem is obtained from analysis of the equation

5—-r -3 -2\ /& 0
8 —5-r -4 |[&]=10
—4 3 3-1r) \& 0

The characteristic equation of the coefficient matrix is 7% — 3r2 4 3r — 1 = 0, with
a single root of multiplicity three, » = 1. Setting r = 1, we have

4 -3 -2\ /& 0
8 —6 —4|[&] =10
-4 3 2] \g 0

The system of algebraic equations reduces to a single equation

461 — 38 — 263 =0.
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An eigenvector vector is given by 5(1) = (1,0,2)T. Since the last equation has two
free variables, a second linearly independent eigenvector (associated with r = 1) is
£ = (0,2, —-3)T. Therefore two solutions are obtained as

1 0
xD = [0]ef andx® = 2 | €.
2 -3

(b) It follows directly that x’ = &tet + et + met. Hence the coefficient vectors
must satisfy &te? + €ef + net =Ate’+Ane’. Rearranging the terms, we have

ge! = (A —TI)&te' + (A —T)ne.
Given an eigenvector £, it follows that (A —I1)6 =0 and (A —I)n=¢.

(c) Clearly, (A —1)’n=(A -I)(A-I)n=(A-1)¢ =0. Also,

4 -3 =2 4 -3 =2 0 0 0
8§ —6 —4 8§ —6 —4]1=10 0 0
-4 3 2 -4 3 2 0 0 0
(d) We get that
4 -3 =2 0 —2
E=A-I)'n=|(8 -6 —4 0]l=1-4
-4 3 2 1 2
This is an eigenvector:
5 -3 -2 -2 -2
8§ -5 —4 —4|=|-4
-4 3 3 2 2

(e) Given the three linearly independent solutions, a fundamental matrix is given
by
et 0 —2tet
Uty=[ 0 2 —4t et
2¢t —3et 2tef et

(f) We construct the transformation matrix

1 -2 0
T=|0 -4 0],
2 2 1
with inverse
1 —1/2 0
T'=10 -1/4 0
-2 3/2 1

The Jordan form of the matrix A is

1 00
J=T'AT=(0 1 1
0 0 1
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21.(a) Direct multiplication results in

X0 0 Moo oo Moo oo
J2=10 X 22,3 =0 X 3X2],J¢ =0 At 4\
0 0 A2 0 0 X 0 0 A

(b) Suppose that

A" 0 0
J'=10 M piv!
0 0 A"
Then
A"0 0 A0 O AN 0 0
Jl=1( 0 X ni! 0 X 1= 0 A-A" A" 4 nh - AL
0 0 A" 0 0 X 0 0 A A"

Hence the result follows by mathematical induction.

(c) Note that J is block diagonal. Hence each block may be exponentiated. Using
the result in Problem 20,

er 0 0
eJt _ 0 eAt te)\t
0 0 eM

(d) Setting A = 1, and using the transformation matrix T in Problem 19,

1 2 0 et 0 0 et 2 2t et
T =0 4 0 0 e tet| =0 4 4t et
2 -2 -1 0 0 €t 2et —2e! —2tel —et

Based on the form of J, e7* is the fundamental matrix associated with the solutions
y(l) — 5(1)et7y(2) — (25(1) + 26(2))615 and y(3) — (25(1) + 25(2))tet + n@t~

Hence the resulting matrix is the fundamental matrix associated with the solution
set

{€Wet (26 4 26@)et, (260 + 26D )te’ + e},
as opposed to the solution set in Problem 19, given by

{€Wet €@et, (26 + 26te’ +me'}.

22.(a) Direct multiplication results in
A22) 1 A3 3A% 0 3A AL 4N3 62
=0 A 2x],F=[0 A 33|, J=[0 MM 43
0 0 ) 0 0 A 0 0 A



324

Chapter 7. Systems of First Order Linear Equations

N

(b) Suppose that
— 71,(71—1) n—2
A" pAnTl A"

J'=10 A” nAn—1
0 0 A”
Then
A7 n)\nfl n(n;l) >\n72 A1 0
Jn+1 — 0 AT n/\n—l 0 XN 1
0 0 A" 0 0 A
XA AT AL AnTl gl g )y e
= 0 A-A" A" )AL
0 0 A"

The result follows by noting that

nin —1)
2

nA" 4 AT = [n—l— _ ——— "L

(c) We first observe that

oo t"
Z A = e/\t
n=0 Tl'
oo t oo tn—l
n—1 _ n—1 _ At
Z")‘ nu_tz)‘ (n—1)! t
n=20 n=1
i ’I’L(’I’L 1) n—2ﬁ_ t2 i n—2 tn72 t2 At
Y —_9 9
= 2 nl 2 = (n—2) 2
Therefore
M et t2€)\t
eJt — 0 et teMt
0 0 eM

(d) Setting A = 2, and using the transformation matrix T in Problem 18,

0 1 2 e Ta— %6% 0 e2t t2€2t + 2¢%
Te''=| 1 1 0) [0 e e | =€ te*+e* Le+te?
-1 0 3 0 0 et —e2t —te2t —%ezt + 3e%t

5. As shown in Problem 2, Section 7.8, the general solution of the homogeneous

equation is
1 n t
X, =¢C c .
o) "7\ -1
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An associated fundamental matrix is

) = G ztt— ;) '

The inverse of the fundamental matrix is easily determined as

Lo (4—3 —2t+2
)= <8t—8 —4t+5)'

We can now compute

T (1)g(t) 1 (2t2+4t— 1)7

B3\ —2t—4
and _ )
_ —=t7*+ 4t —2Int
7 = 2 :
[ wema = (7,00
Finally,
v(t) = w(o) [ W 0g(t)at,
where

1
v (t) = —iﬂ +2t7t —21Int -2, vo(t) =5t —4Int—4.

Note that the vector (2,4)7 is a multiple of one of the fundamental solutions.
Hence we can write the general solution as

o) ealul )42 1) -2 )

6. The eigenvalues of the coefficient matrix are r1 =0 and ro = —5. It follows
that the solution of the homogeneous equation is

1 —2e5t
X, =C 9 =+ o o5t .

The coefficient matrix is symmetric. Hence the system is diagonalizable. Using the
normalized eigenvectors as columns, the transformation matrix, and its inverse, are

0 ()

Setting x=Ty, and h(t) =T ~'g(t), the transformed system is given, in scalar form,

as
, 548t

yli\/gt

4
Yo = —By2 + —=.

V5

The solutions are readily obtained as

8 4
)=vV5Int+ —t+c; and ) =coe Pt — .
y1() \/5 1 yz() 2 5\/5
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Transforming back to the original variables, we have x=T'y, with

- ) () o (o

Hence the general solution is

i () k() e (N (Ve (2
X =M 9 A 2) M5\ 3B\ 1)

7. The solution of the homogeneous equation is

eft egt
X, =C (—2e_t) + c2 <2€3t> .

Based on the simple form of the right hand side, we use the method of undetermined
coefficients. Set v=ae!. Substitution into the ODE yields

ar\ (1 1\ fa1 , 2\
()=o) ()= (B)e
In scalar form, after canceling the exponential, we have

ap=ay t+as+2
as =4a1 +as — 1,

with a; = 1/4 and as = —2. Hence the particular solution is

1/4\
so that the general solution is

et e3t 1/ et
X = ge-t T 2e3t +i —8et )’

9. Note that the coefficient matrix is symmetric. Hence the system is diagonalizable.
The eigenvalues and eigenvectors are given by

1 1 1
T = R 5(1) = <1) and ro = —2 5(2) = (_1>~

Using the normalized eigenvectors as columns, the transformation matrix, and its

inverse, are
1 /1 1 1 /11
504 el )

Setting x=Ty, and h(t) =T~!g(t), the transformed system is given, in scalar form,
as
yi = —ly VR et
1 2 1 \/i
1
ys = —2yp + V2t — —c'.

V2
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Using any elementary method for first order linear equations, the solutions are

2
yi(t) = ke /2 + %et —4V2 + 22t

1 1 1
Y2 (t) = kge_zt

-+ —=t.
3V2 2V/2 V2

Transforming back to the original variables, x=TYy, the general solution is

A LN\ L, 117\ 1(5\  1(1),
X_Cl(1>e +C2(1)€ i\us) T2ls) tels)

10. Since the coefficient matrix is symmetric, the differential equations can be
decoupled. The eigenvalues and eigenvectors are given by

r=-4, f(l) = <\/f> and 7o = -1, 5(2) = (\}5)

Using the normalized eigenvectors as columns, the transformation matrix, and its

B I V]

Setting x=Ty, and h(t) =T~ !g(t), the transformed system is given, in scalar form,
as

The solutions are easily obtained as

—4t 1 —t _ —t i _ et
yl(t):kle4+3—\/§(1+\@)e , ya2(t) = koe +\/§(1 V2)te .

Transforming back to the original variables, the general solution is

(el s e

2 2+3v3 2 2 1
+V243VB) (242 . e .

36 -v2-1 -V2-1 V2
The second vector is an eigenvector, hence the solution may be written as

N N G e

11. Based on the solution of Problem 3 of Section 7.6, a fundamental matrix is
given by

Note that

5 cost 5sint
() = <2005t+sint —cost+2sint>'
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The inverse of the fundamental matrix is easily determined as

1 (cost—QSint 5sin t )

1 _ 1
v (t)_5 2cost+sint —bHcost

It follows that

—cos?t

wﬁwaw=(

Lsin?t
U (tg(t)dt = 2 .
/ (De(t) (1 cos tsin t — ét)

2

cos t sin t>
)

and

A particular solution is constructed as

v@=ww/w*waww

where

5 . , 5 , 1, 1
vl(t)zacostsmt—cost+§t+1, vg(t):cost51nt—§cos t+t+§.

Hence the general solution is

5cost " 5sint
X =c c —
! 2cost +sint 2 —cost+2sint

et () et (1) s (7).

13.(a) As shown in Problem 25 of Section 7.6, the solution of the homogeneous

system is
(L) = (intm) <o ()

Therefore the associated fundamental matrix is given by

i cos(t/2 sin(t/2
T(t)=e (4 Sié(i{/Q)) —4 cés/(t}2)> '

(b) The inverse of the fundamental matrix is

o) = et/? <4 cos(t/2)  sin(t/2) ) .

4 \4sin(t/2) —cos(t/2)

It follows that

T (g(t) = % (E?ﬁg@) ’

[ omta= (20 00)

A particular solution is constructed as

V() = %) [ 9 0(0)dr

and
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where vy (t) = 0, vo(t) = 4e~*/2. Hence the general solution is

20D ey 002 Yy (0)

Imposing the initial conditions, we require that ¢; = 0, —4cy + 4 = 0, which results
in ¢4 =0 and ¢y = 1. Therefore the solution of the IVP is

x=e"? (4 Sixn((;i/sizﬂ))'

15. The general solution of the homogeneous problem is

(c)
T\ I\, .1 2\ o
(o) =) weeD)

which can be verified by substitution into the system of ODEs. Since the vectors
are linearly independent, a fundamental matrix is given by

t=t 22
\Il(t) = <2t_1 t2 > '
The inverse of the fundamental matrix is
_ 1/ —¢ 2t
1 = —
Dividing both equations by ¢, we obtain

g(t) = (t?, _2t_1>-

Proceeding with the method of variation of parameters,

2,4 2 2
2404242
T (Delt) — 3 30— 3 7
(el (_;t_;t—u;t—s

/wlwgwﬁ< éﬁ+$%ﬁt).

149 441 1,9
—s2+ 5t -3t

and

Hence a particular solution is obtained as

<—;t4 + 3t — 1)
v=1| ", e
Lt 42t —3
The general solution is

o) b O ()

16. Based on the hypotheses,
6'(t) = P()o(t) + g(t) and v'(t) = POV (1) +g(t)

Subtracting the two equations results in

¢'(t) = v'(t) =P()d(t) - P(t)v(t),
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that is,
[6(t) = v()])" =P(#) [o(t) —v(t)].

It follows that ¢(t)—v(t) is a solution of the homogeneous equation. According to
Theorem 7.4.2,

p(t) —v(t) = axV () + c2x@ () + - - 4 c,x™ (2).
Hence
o(t) =u(t) +v(t),

in which u(t) is the general solution of the homogeneous problem.

17.(a) Setting tp = 0 in Equation (34),

t

x = B()x" +¢(t)/0 &1 (s)g(s)ds = B(1)x" +A B()® " (s)g(s)ds.

It was shown in Problem 15(c) in Section 7.7 that ®(t)® '(s) = ®(t — s). There-
fore

¢
x = ®(t)x" + / P(t — s)g(s)ds.
0
(b) The principal fundamental matrix is identified as ®(t) = e”f. Hence

¢
x = eAx0 + / A=) g(s)ds .
0

In Problem 27 of Section 3.6, the particular solution is given as

y(t) = | K(t - s)g(s)ds,

to

in which the kernel K (¢) depends on the nature of the fundamental solutions.

18. Similarly to Eq.(43), here
(ﬂ—MX@zG@+<W)
s

where

G(s) = (2/éj;1)> and  sI— A = <5f12 5112) .

The transfer matrix is given by Eq.(46):

-1 1 s+2 1
A = e (1 e

From these equations we obtain that

2(s+2) 3 a1 (s+2) ey
X(s) = | CT2G) + 26 T oo T G 6T
2 + 3(s+2) + o + as(s+2 .
(s+1)2(s+3) s2(s+1)(s+3) (s+1)(s+3) (s+1)(s+3)
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The inverse Laplace transform gives us that

4+a§+a2 e—t + —4+30é1—3oz2 €—3t Lt te—t _ 4
X(t) = 24+ai1tas  —t 4—3a1+3as ,—3t —t g )
R e - + 2t + te 3

so a1 and ag should be chosen so that

4 —4 4307 — 3

L L P L
This gives us ag = (=5 + 6¢1 + 6¢2)/6 and as = —cy + ¢o — 13/6.
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Numerical Methods

2. The Euler formula for this problem is yn4+1 = yn + A(5¢, — 3y/yn ), in which
tn, =to+mnh. Since tg =0, we can also write ¥, 11 = yn + 5nh? — 3h/y, with
Yo = 2.

(a) Euler method with h = 0.05 :

n=2 n=4 n==~6 n=3~§
t, | 0.1 0.2 0.3 0.4
yn | 1.59980 | 1.29288 | 1.07242 | 0.930175

(b) Euler method with h = 0.025 :

n=4 n=2~8 n=12 n =16
t, | 0.1 0.2 0.3 0.4
Yn | 1.61124 | 1.31361 | 1.10012 | 0.962552

The backward Euler formula is y,+1 = yn + h(5tn+1 — 3y/Un+1) in which ¢, =
to + nh. Since tg = 0, we can also write y,+1 = yn + 5(n + 1)h2 — 3h\/Un+1, with
yo = 2. Solving for y,,+1, and choosing the positive root, we find that

2

3.1
Ynt1 = | —5h+ 5\/(20n +29)h2 + 4y,

333
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(c¢) Backward Euler method with h = 0.05 :

n=2 n=4 n==6 n==§
t, | 0.1 0.2 0.3 0.4
yn | 1.64337 | 1.37164 | 1.17763 | 1.05334

(d) Backward Euler method with h = 0.025 :

n=4 n=3~8 n=12 n =16
t, | 0.1 0.2 0.3 0.4
Yn | 1.63301 | 1.35295 | 1.15267 | 1.02407

3. The Euler formula for this problem is y,4+1 = yn + h(2y, — 3¢, ), in which
tn =to+nh. Since tg =0, Ypi1 = Yn + 2hy, — 3nh?, with yo = 1.

(a) Euler method with h = 0.05 :

n=2 n=4 n==~6 n=2~8
t, | 0.1 0.2 0.3 0.4
Yn | 1.2025 | 1.41603 | 1.64289 | 1.88590

(b) Euler method with h = 0.025 :

n=4 n=3~8 n=12 n =16
t, | 0.1 0.2 0.3 0.4
Yn | 1.20388 | 1.41936 | 1.64896 | 1.89572

The backward Euler formula is yp4+1 = yn + h(2Yn+1 — 3tn41 ), in which ¢, =to +
nh. Since to = 0, we can also write yn11 = Yn + 2hyns1 — 3(n + 1)h2, with yo =
1. Solving for y, 1, we find that

Ynt1 = 1—2n

(c) Backward Euler method with h = 0.05 :

n=2 n =4 n==6 n==~§
t, | 0.1 0.2 0.3 0.4
Yy, | 1.20864 | 1.43104 | 1.67042 | 1.93076

(d) Backward Euler method with h = 0.025 :

n=4 n==~, n=12 n =16
t, | 0.1 0.2 0.3 0.4
yn | 1.20693 | 1.42683 | 1.66265 | 1.91802
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4. The Euler formula is y,+1 = yn + h[2t, +e " ¥"]. Since t, =to+nh and

to = 0, we can also write ¥, 41 = yn + 2nh% + he " ¥n

(a) Euler method with h = 0.05 :

(b) Euler method with h = 0.025 :

The backward Euler formula is y,+1 = yp + h[2tn41 + e In+1¥n+1]. Since tg = 0

5 with Yo = 1.
n=2 n =4 n==~6 n==~§
t, | 0.1 0.2 0.3 0.4
yn | 1.10244 | 1.21426 | 1.33484 | 1.46399
n=4 n==~, n=12 n =16
t, | 0.1 0.2 0.3 0.4
yn | 1.10365 | 1.21656 | 1.33817 | 1.46832

and t,4+1 = (n+ 1)h, we can also write

Ynt1 = Yn + 2h2(n +1)+ he— (DR Ynt1,

with yop = 1. This equation cannot be solved explicitly for y,41.

(c) Backward Euler method with A = 0.05 :

n=2 n=4 n==~6 n=_§
tn, | 0.1 0.2 0.3 0.4
Yy, | 1.10720 | 1.22333 | 1.34797 | 1.48110
(d) Backward Euler method with h = 0.025 :
n=4 n=238 n=12 | n=16
t, | 0.1 0.2 0.3 0.4
Yy, | 1.10603 | 1.22110 | 1.34473 | 1.47688

At each step,
given the current value of y,, the equation must be solved numerically for y,11.

6. The Euler formula for this problem is y,11 = y, + h(t2 —y2 )sin y,. Here
to =0 and t,, = nh. So that y,+1 =y, + h(n2h2 — yi) sin y,, with yo = —1.

(a) Euler method with h = 0.05 :

n=2 n=4 n==6 n==§
t, | 0.1 0.2 0.3 0.4
Yn | —0.920498 | —0.857538 | —0.808030 | —0.770038
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(b) Euler method with h = 0.025 :

n=4

n==~8

n=12

n =16

tn

0.1

0.2

0.3

0.4

Yn

—0.922575

—0.860923

—0.82300

—0.774965

The backward Euler formula is y,11 = yn + h(t2 1 — y2,1 ) sin yn41. Since tp =0
and t,11 = (n+ 1)h, we can also write

Ynt+1l = Yn + I [(n + 1)2h2 - y12L+1] sin Yn41,

with yo = —1. Note that this equation cannot be solved explicitly for y,,4+1. Given
Yn , the transcendental equation

Ynt1 + Y2 18I0 Yny1 = Yy + h(n + 1)2RH3

must be solved numerically for vy, 1.

(c¢) Backward Euler method with h = 0.05 :

n=2 n=4 n==06 n==_§
t, | 0.1 0.2 0.3 0.4
yn | —0.928059 | —0.870054 | —0.824021 | —0.788686
(d) Backward Euler method with h = 0.025 :
n=4 n=3_8 n =12 n = 16
t, | 0.1 0.2 0.3 0.4
Yn | —0.926341 | —0.867163 | —0.820279 | —0.784275

8. The Euler formula y,4+1 = yn + A(5¢, — 3y/yn ), in which ¢, =ty + nh. Since
to = 0, we can also write ¥, 41 = yn + 5nh? — 3hy/y, with yo = 2.

(a) Euler method with h = 0.025 :

n =20 n =40 n = 60 n = 80
t, | 0.5 1.0 1.5 2.0
Yn | 0.891830 | 1.25225 | 2.37818 | 4.07257
(b) Euler method with kA = 0.0125 :
n = 40 n = 80 n =120 | n =160
t, | 0.5 1.0 1.5 2.0
Yn | 0.908902 | 1.26872 | 2.39336 | 4.08799

The backward Euler formula is yp+1 = yn + h(5tnt1 — 3v/Unt1 ), in which ¢, =
to + nh. Since ty = 0, we can also write y,1+1 = y, + 5(n +

1)h? — 3h\/Yny1 with
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Yo = 2. Solving for y,41, and choosing the positive root, we find that

2

3.1
Yni1 = | —5h+ 5\/(20n + 29)h2 + 4y,

(¢) Backward Euler method with h = 0.025 :

n =20 n =40 n = 60 n = 80
t, | 0.5 1.0 1.5 2.0
Yn | 0.958565 | 1.31786 | 2.43924 | 4.13474

(d) Backward Euler method with h = 0.0125 :

n =40 n = 80 n =120 | n =160
t, | 0.5 1.0 1.5 2.0
Yn | 0.942261 | 1.30153 | 2.24389 | 4.11908

10. The Euler formula is y,+1 = yn + h[2t, + e "¥2]. Since t, =ty + nh and
to = 0, we can also write ¥, 41 = yn + 2nh? + he ™V with yo = 1.

(a) Euler method with h = 0.025 :

n =20 n = 40 n = 60 n = 80
t, | 0.5 1.0 1.5 2.0
Yn | 1.60729 | 2.46830 | 3.72167 | 5.45963

(b) Euler method with h = 0.0125 :

n =40 n = 80 n =120 | n =160
t, | 0.5 1.0 1.5 2.0
Yn | 1.60996 | 2.47460 | 3.73356 | 5.47774

The backward Euler formula is 9,11 = yn + h[28,41 + e in+1¥n+1]0 Since o = 0
and t,11 = (n+ 1)h, we can also write

Yn+1 = Yn + 2h2(n + 1) + he—(n+l)h .7Jn-¢-17

with yo = 1. This equation cannot be solved explicitly for y,41. At each step,
given the current value of y,, the equation must be solved numerically for y,11.

(c¢) Backward Euler method with h = 0.025 :

n = 20 n = 40 n = 60 n = 80
t, | 0.5 1.0 1.5 2.0
Yn | 1.61792 | 2.49356 | 3.76940 | 5.53223
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(d) Backward Euler method with h = 0.0125 :

n = 40 n = 80 n =120 | n =160
t, | 0.5 1.0 1.5 2.0
Yn | 1.61528 | 2.48723 | 3.75742 | 5.51404

11. The Euler formula is 9,411 = yn +h(4 —t,yn)/(1 +y2). Since t, =ty +nh
and ty = 0, we can also write ¥, 411 = yn + (4h —nh?y,)/(1 + y2), with yo = —2.

(a) Euler method with h = 0.025 :

n =20 n =40 n = 60 n = 80
t, | 0.5 1.0 1.5 2.0
Yn | —1.45865 | —0.217545 | 1.05715 | 1.41487

(b) Euler method with h = 0.0125 :

n = 40 n = 80 n =120 | n =160
t, | 0.5 1.0 1.5 2.0
Yn | —1.45322 | —0.180813 | 1.05903 | 1.41244

The backward Euler formula is yn41 = yn + h(4 — tny1 Yng1)/(1 + y24,). Since
to=0 and t,11 = (n+1)h, we can also write yp41(1+921) =yn(l+y2.1) +
[4h —(n+1)h? yn+1], with yo = —2. This equation cannot be solved explicitly
for y,+1. At each step, given the current value of y,, the equation must be solved
numerically for y,,11.

(c¢) Backward Euler method with h = 0.025 :

n =20 n =40 n = 60 n = 80
t, | 0.5 1.0 1.5 2.0
yn | —1.43600 | —0.0681657 | 1.06489 | 1.40575

(d) Backward Euler method with h = 0.0125 :

n =40 n = 80 n=120 | n =160
t, | 0.5 1.0 1.5 2.0
Yn | —1.44190 | —0.105737 | 1.06290 | 1.40789

12. The Euler formula is y,+1 = yn + h(y2 + 2t, yn)/(3 + t2). Since t,, = to + nh
and to = 0, we can also write y,+1 = yn + (Ry2 + 2nh?y,)/(3 + n%h?), with yo =
0.5.
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(a) Euler method with h = 0.025 :

n =20 n =40 n=60 | n=280
t, | 0.5 1.0 1.5 2.0
Yn | 0.587987 | 0.791589 | 1.14743 | 1.70973
(b) Euler method with h = 0.0125 :
n = 40 n =80 n =120 | n =160
t, | 0.5 1.0 1.5 2.0
Yn | 0.589440 | 0.795758 | 1.15693 | 1.72955

The backward Euler formula is yn11 = yn + h(Y2 1 + 2tn41 Ynt1)/(3 +t21). Since
to =0 and t,+1 = (n+ 1)h, we can also write

Yni1 [3+ (n+1)°K*] —hyl = yn 34 (n+ 1)°R%] + 2(n + DA%y 1,

with yo = 0.5. Note that although this equation can be solved explicitly for y,1,
it is also possible to use a numerical equation solver. At each time step, given the
current value of y,, the equation may be solved numerically for y,, ;1.

(c¢) Backward Euler method with h = 0.025 :

n =20 n =40 n=60 | n=280
tn | 0.5 1.0 1.5 2.0
Yn | 0.593901 | 0.808716 | 1.18687 | 1.79291
(d) Backward Euler method with h = 0.0125 :
n =40 n = 80 n =120 | n =160
tn, | 0.5 1.0 1.5 2.0
Yn | 0.592396 | 0.804319 | 1.17664 | 1.77111

13. The Euler formula for this problem is y,4+1 = yn + h(1 — t,, + 4y, ), in which
tn =to+nh. Since ty = 0, we can also write y,,1 = y, + h — nh? + 4hy,,, with
yo = 1. With h = 0.01, a total number of 200 iterations is needed to reach t = 2.
With A = 0.001, a total of 2000 iterations are necessary.

14. The backward Euler formula is y,+1 = yn + h(1 — tpe1 +4yns1 ). Since the
equation is linear, we can solve for y,+1 in terms of y,, :

_yn+h_htn+1
L —TA

Heretg =0 and yp = 1. With h = 0.01, a total number of 200 iterations is needed
to reach t = 2. With h = 0.001, a total of 2000 iterations are necessary.
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18. Let ¢(t) be a solution of the initial value problem. The local truncation error
for the Euler method, on the interval ¢, <t <t,41, is given by

1 _
Cn+1 = §¢N(tn)h27
where t,, <7, < tp41. Since ¢'(t) = 2 + [¢(t)]?, it follows that

¢"(t) =2t +26(t)¢'(t) = 2t + 262 (t) + 2[o(1)]°
and so
ent1 = [bn + Lp(n) + 6 ()]
where ¢, < t, < tpi1.

20. Given that ¢(t) is a solution of the initial value problem, the local truncation
error for the Euler method, on the interval ¢, <t <t,41,is

1 _
Cnt1 = id’“( tn)h27

where ¢, < t, < t,4+1. Based on the ODE, ¢'(t) = v/t + &(t), and hence

ney o L) 1 1
o7 =3 t+o(t)  2/t+o(t) T3
and so
_ ! 1 2
S m+a%ﬁh

where ¢, < t, < tpi1.

21. Let ¢(t) be a solution of the initial value problem. The local truncation error
for the Euler method, on the interval t, <t <t,41, is given by

1 _
En+l = iﬁb”(tn)th
where t,, <, < t,i1. Since ¢'(t) =2t + e t¢® it follows that
6"(t) =2 — [p(t) + 1" (1)] - e to® =2 _ [¢>(t) e te_m(t)} et

Hence
2

h _ _ _ — — — —
ens1 = h? — = Jo(E) Y2124 tne—tmb(tn)] o= ()

22.(a) Direct integration yields ¢(t) = (1/57)sin bt + 1.



8.1

341

1.06

1.04

1.02 +

1.00 H

0.98 o

0.96

0.94

n =

n =

n = n =

0.2

0.4

0.6

Yn | 1.0

1.2

1.0

1.2

1.20 7
1.15 4
1.10

1.05

T
0.1

T
0.2

T
0.3

T T
0.4 0.5

1
0.6

n=~0

n=1

n=2

n=3

n=4

0.1

0.2

0.3

0.4

1.1

1.1

1.0

1.0

1.10 7

1.08

1.06 +

1.04 4

1.02 4

T
0.1

T
0.2

T
0.3

d
0.4



342 Chapter 8. Numerical Methods

(d) Since ¢”(t) = —5 sin 57t the local truncation error for the Euler method, on
the interval ¢, <t <t,41, is given by

2

enil = — sin 57 t,, .
In order to satisfy
et < 22 < .05,
it is necessary that .
h < Jor ~ 0.08.
26.(a)
1000 - 'gg 61% =1000-(0) =0
(b)
1000 - ‘ggé (13808 = 1000(0.06) = 60.
(c)
1000 - ’28(1)2 égogé‘ = 1000(—0.09216) = —92.16..

27. Rounding to three digits, a(b — ¢) ~ 0.224. Likewise, to three digits, ab ~ 0.702
and ac ~ 0.477. It follows that ab — ac ~ 0.225.

o
N

2. The improved Euler formula is

h h
Ynt1 = Yn + 5(5tn —3VUn )+ 5(515714_1 -3VK, ),

in which K, =y, + h(5t, — 3\/yn ). Since t, =tg+nh and to =0, we can also

write
h h
Ynt1 = yn + 5 (5mh =3V ) + 5 [5 (n+1)h — 3\/Kn} ,
(a) h =0.05 :

t, | 0.1 0.2 0.3 0.4
yn | 1.62283 | 1.33460 | 1.12820 | 0.995445
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(b) h=10.025 :
n=4 n=238 n=12 | n=16
t, | 0.1 0.2 0.3 0.4
yn | 1.62243 | 1.33386 | 1.12718 | 0.994215
(¢) h = 0.0125 :

n=3~8 n =16 n =24 n =32
t, | 0.1 0.2 0.3 0.4
Yn | 1.62234 | 1.33368 | 1.12693 | 0.993921

3. The improved Euler formula for this problem is
h
Y1 = Yn + 5 (490 = 3ty = 3tng1) + h*(2y, — 3ty).
Since t, =tg+nh and ty = 0, we can also write

h2
Ynt+1 = Yn + 2hyn + 3(4% —3—6n) —3nh®,

(a) h =0.05 :
n=2 n=4 n==~6 n=2_§
t, | 0.1 0.2 0.3 0.4
Yn | 1.20526 | 1.42273 | 1.65511 | 1.90570
(b) h=10.025 :
n=4 n=2~8 n=12 | n=16
t, | 0.1 0.2 0.3 0.4
yn | 1.20533 | 1.42290 | 1.65542 | 1.90621
(¢c) h=0.0125 :

n=3~8 n =16 n =24 n =32
t, | 0.1 0.2 0.3 0.4
Yn | 1.20534 | 1.42294 | 1.65550 | 1.90634

5. The improved Euler formula is

2+ 2t Un K2 +2t, 11K,
2(3+1t2) 23+12,4) 7

Y
Yn+1 = Yn +h

in which )
Yo + 28, Yn
K,=vy,+h*®2—-".
Yn + 3+12
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Since t, = tg +nh and tg = 0, we can also write

2 +2nhy, , KZ+2(n+1)hK,

Y
n = Yn h h P
Untt = Un t 0 ey Y S Bk 2]
with y9 =0.5.
(a) h=10.05 :
n=2 n=4 n==~6 n=3~§
t, | 0.1 0.2 0.3 0.4
yn | 0.510164 | 0.524126 | 0.54083 | 0.564251
(b) h=0.025 :
n=4 n=2~8 n=12 n =16
t, | 0.1 0.2 0.3 0.4
Yn | 0.510168 | 0.524135 | 0.542100 | 0.564277
(c) h=0.0125 :
n==~, n =16 n=24 n =32
t, | 0.1 0.2 0.3 0.4
Yn | 0.510169 | 0.524137 | 0.542104 | 0.564284

6. The improved Euler formula for this problem is

h . h .
Ynt+1 = Yn + 5@% —y2)sin y, + §(t721+1 — K2)sin K,

in which
K, Zyn—&-h(ti —yi)sin Yn -

Since t, = tg +nh and tg = 0, we can also write

h h
Yni1 = Yn + = (n?h% —y2)sin y, + = [(n +1)%h? — K?L] sin K,,,

2 2
with Yo = —1.
(a) h =0.05 :
n=2 n=4 n==~6 n=_§
t, | 0.1 0.2 0.3 0.4
Yn | —0.924650 | —0.864338 | —0.816642 | —0.780008
(b) h=10.025 :
n=4 n==§ n=12 n =16
t, | 0.1 0.2 0.3 0.4
Yn | —0.924550 | —0.864177 | —0.816442 | —0.779781
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(c) h=10.0125 :
n=3~8 n =16 n =24 n =32
t, | 0.1 0.2 0.3 0.4
Yn | —0.924525 | —0.864138 | —0.816393 | —0.779725

7. The improved Euler formula for this problem is

h
Yntl = Yn + 5(4yn —ty —tpy1 + 1)+ A2 (2yn — t, +0.5).

Since t, = tg +nh and tg =0, we can also write

(a) h =0.025 :
(b) h=10.0125 :

8. The improved Euler formula is

Ynt1 = Yn + h(2yn +0.5) + h2(2 Yn — M) — nh? |

n=20 | n=40 | n=60 | n=280
t, | 0.5 1.0 1.5 2.0
Yn | 2.96719 | 7.88313 | 20.8114 | 55.5106
n=40 | n=80 | n=120 | n =160
t, | 0.5 1.0 1.5 2.0
Yn | 2.96800 | 7.88755 | 20.8294 | 55.5758

h h
Ynt+1 = Yn + 5(5tn =3V Un ) + 5(5tn+1 -3VK, ),

in which K, =y, + h(5t, — 3\/yn ). Since t, =tg+nh and to =0, we can also

h h
Yn+1 :yn+§(5nh_3\/yn)+§ {5(714‘1)}7/—3\/}—{”},

write
(a) h =0.025 :

n =20 n=40 | n=060 n = 80
t, | 0.5 1.0 1.5 2.0
Yn | 0.926139 | 1.28558 | 2.40898 | 4.10386
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(b) h=0.0125 :

n =40 n = 80 n =120 | n =160
t, | 0.5 1.0 1.5 2.0
Yn | 0.925815 | 1.28525 | 2.40869 | 4.10359

9. The improved Euler formula for this problem is

h h
yn+1:yn+§\/tn+yn +§ tn+1+Kna

in which K,, =y, + h\/t, + y» . Since t, =tg+ nh and t; = 0, we can also write

h h
Ynt1 = Yo+ VA + Yo + 5V 0+ Dh+ Ko,

(a) h =0.025 :
n=20 |n=40 | n=60 | n=280
tn | 0.5 1.0 1.5 2.0
Yn | 3.96217 | 5.10887 | 6.43134 | 7.92332
(b) h =0.0125 :

n =40 n = 80 n =120 | n =160
t, | 0.5 1.0 1.5 2.0
Yn | 3.96218 | 5.10889 | 6.43138 | 7.92337

10. The improved Euler formula is

Yn+1l = Yn + g [Qtn +etn y"] + g [2tn+1 4 e—thKn} 7

in which K,, =y, +h[2¢, + e tn Yn]. Since t, =ty + nh and tp =0, we can also
write

h h
Yn+1 = Yn + 3 [2 nh + e_"hy”] + B [Q(n +1)h+ e—(n-*-l)hKn} ’

(a) h=0.025 :

n =20 n =40 n = 60 n = 80
t, | 0.5 1.0 1.5 2.0
yn | 1.61263 | 2.48097 | 3.74556 | 5.49595
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(b) h =0.0125 :

n =40 n =80 n =120 | n =160
t, | 0.5 1.0 1.5 2.0
Yn | 1.61263 | 2.48092 | 3.74550 | 5.49589

12. The improved Euler formula is

+2tnyn K72L+2tn+lKn
B+1t) 2B+ 1t5)

y2
Yn+1 :yn+h 72L

in which )
2 tn Yn
b Yn Y )

K =
n = Yn 3+12
Since t, = tg +nh and tg =0, we can also write

y2 + 2nhy, K2 +2(n+1)hK,
Ynt+1 =Yn th 25,2 27,21
2(3 +n?h?) 2[3+ (n+1)2h?)

with yo = 0.5.
(a) h =0.025 :
n = 20 n = 40 n=60 | n=280
t, | 0.5 1.0 1.5 2.0
Yn | 0.590897 | 0.799950 | 1.16653 | 1.74969
(b) h=10.0125 :

n = 40 n =80 n =120 | n =160
t, | 0.5 1.0 1.5 2.0
Yn | 0.590906 | 0.799988 | 1.16663 | 1.74992

16. The exact solution of the initial value problem is ¢(t) = % + %th. Based on the

result in Problem 14(c), the local truncation error for a linear differential equation
is

ni1 = égb’”(in)}f’,
where t,, < t, < t,y1. Since ¢"'(t) = 4¢e?, the local truncation error is
entl = %eﬂ"hg.
Furthermore, with 0<¢, <1,
lent1] < %ths.

It also follows that for h = 0.1,

2 1
< Z202001)3 = 0.2
lea] < 577017 = 7555 €
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Using the improved Euler method, with h = 0.1, we have y; ~ 1.11000. The exact
value is given by ¢(0.1) = 1.1107014 .

17. The exact solution of the initial value problem is given by ¢(t) = %t + et
Using the modified Euler method, the local truncation error for a linear differential

equation is
1 _
entp1 = 6¢1//(tn)h3»
where t, <, < t,11. Since ¢ (t) = 8%, the local truncation error is

4 =
ent1 = gez fnp3,

Furthermore, with 0 < ¢, < 1, the local error is bounded by
4
\en+1| S g €2h3.
It also follows that for h = 0.1,
4 . 1
ler] < 3 e%2(0.1)% = 02,

~ 750

Using the improved Euler method, with h = 0.1, we have y; ~ 1.27000. The exact
value is given by ¢(0.1) = 1.271403.

18. Using the Euler method, y; =14 0.1(0.5 —0+2-1) = 1.25. Using the im-
proved Euler method, y; = 1+ 0.05(0.5 — 0+ 2) + 0.05(0.5 — 0.1 + 2.5) = 1.27. The
estimated error is e; =~ 1.27 — 1.25 = 0.02. The step size should be adjusted by
a factor of 41/0.0025/0.02 = 0.354. Hence the required step size is estimated as
h = (0.1)(0.36) = 0.036.

20. Using the Euler method, y; = 3 + 0.1,/0 4+ 3 = 3.173205. Using the improved
Euler method,

y1 =3+ 0.05v/0+ 3 + 0.05v/0.1 + 3.173205 = 3.177063 .

The estimated error is e; ~ 3.177063 — 3.173205 = 0.003858 . The step size should
be adjusted by a factor of \/0.0025/0.003858 ~ 0.805. Hence the required step
size is estimated as h ~ (0.1)(0.805) = 0.0805.

21. Using the Euler method,

(0.5)2 40

— 05401
4 + 340

= 0.508334

Using the improved Euler method,
(0.5)2 40 4005 (0.508334)2 4 2(0.1)(0.508334)
3+0 ' 34 (0.1)2

The estimated error is ey = 0.510148 — 0.508334 = 0.0018. The local truncation
error is less than the given tolerance. The step size can be adjusted by a factor of
4/0.0025/0.0018 ~ 1.1785. Hence it is possible to use a step size of

h = (0.1)(1.1785) ~ 0.117.

= 0.510148.

y1 = 0.5+ 0.05
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22. Assuming that the solution has continuous derivatives at least to the third
order,
¢///(¥n)

2
h* + 3]

Btner) = Blta) + 6 (1) + O 117 ,

where ¢, <1, < t,11. Suppose that y, = ¢(t,).

(a) The local truncation error is given by
ent1 = @(tnt1) = Yns1.
The modified Euler formula is defined as
Ynt1=Yn +h f [tn + %h,yn + %h f(tn, yn)] -
Observe that ¢'(t,) = f(tn, d(tn)) = f(tn,yn). It follows that

ent1 = O(tnt1) — Ynt1 =

¢"(tn)
2!

"z
= hf(tn ,Z/n) + h2 + (ZS 3(ltn)

1 1
h3 - h’f l:tn + §h7y7z + 2hf(tnvyn):| .

(b) As shown in Problem 14(b),
¢//(tn) = ft(tn 7yn) + fy(tn ayn)f(tn ayn) .

Furthermore,

1 1 h
fltn + §hayn + ih f(tna yn):| = f(tn 7yn) + ft(tn s yn)§ + fy(tn ) yn) k+
1

h2
+§ |:4ftt+hkfty+k2fyy:| ’
: t=¢,y=n

in which k = h f(tn,ys) and ¢, < & <t, +h/2, y, <1 <y, +k. Therefore

QS/,/(fn) h h2
30 hg*a tht+hkfty+k2fyy

En+1 =
t=¢,y=n

Note that each term in the brackets has a factor of k2. Hence the local truncation
error is proportional to h®.

(c) If f(t,y) is linear, then fy = fi, = fyy =0, and
¢I//(gn)

_ 3
€n+1 = 31 h”.

23. The modified Euler formula for this problem is

1 1
Yn+1 :yn+h{3+tn+2h_ |:yn+2h(3+tn_yn):|}

2

h
:yn+h(3+tn_yn)+?(yn_tn_2)'
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Since t, = tg +nh and tg = 0, we can also write

2

h
yn+1:yn+h(3+nh_yn)+?(yn_nh_Z)a

with yo = 1. Setting h = 0.05, we obtain the following values:

n =2 n=4 n==~06 n==~§
t, | 0.1 0.2 0.3 0.4
yn | 1.19512 | 1.38120 | 1.55909 | 1.72956

25. The modified Euler formula is

3
Ynt1 = Yn + h |2yn — 3t — §h + h(2yn — 3ty)

h2
= yn + h(2y, — 3t,) + ?(4yn — 6t, — 3).

Since t, = tg +nh and tg = 0, we can also write

h2
aer = o+ (2 — 30h) + - (4y, —6nh —3)

with yo = 1. Setting h = 0.05, we obtain:

n =2 n=4 n==~06 n==~§
t, | 0.1 0.2 0.3 0.4
yn | 1.20526 | 1.42273 | 1.65511 | 1.90570

26. The modified Euler formula for this problem is
Ynt1 =Yn +h [Qtn Fhge EntHE]

in which K,, = y,, + (h/2) [2t,, + e~ ""¥"]. Now &, = to + nh, with tg = 0 and yo =
1. Setting h = 0.05, we obtain the following values :

n=2 n=4 n==6 n==§
t, | 0.1 0.2 0.3 0.4
Yy, | 1.10485 | 1.21886 | 1.34149 | 1.47264

27. Let f(t,y) be linear in both variables. The improved Euler formula is

Yn+tl = Yn + %h [f(tnvyn) + f(tn + hyyn + hf(tnvyn))]

= Y+ 5 ) + 5 s ) + 5 [, S (1 )]

= o+ Wl () + 5 f [0, f ()]

The modified Euler formula is

1 1 1 1
Yn+l = Yn + hf tn + ih; Yn + ihf(tnayn) =Yn + hf(tnayn) + hf |:2h7 2hf(tn,yn):| .



351

o

Since f(t,y) is linear in both variables,

f |:;h7 ;hf(tnayn):| = %f [h’h’f(tnvyn)] :

1. The ODE is linear, with f(t,y) =3+t —y. The Runge-Kutta algorithm re-
quires the evaluations

kn1 = f(tmyn)

1 1

1 1

The next estimate is given as the weighted average

h
Yn+1 = Yn + g(knl + 2kn2 + 2kn3 + kn4)

(a) For h=0.1:

n=1 n=2 n=3 n=414
t, | 0.1 0.2 0.3 0.4
yn | 1.19516 | 1.38127 | 1.55918 | 1.72968

(b) For h =0.05:

n=2 n=4 n==~6 n=_§
t, | 0.1 0.2 0.3 0.4
Yn | 1.19516 | 1.38127 | 1.55918 | 1.72968

The exact solution of the IVP is y(t) =2+t — e .

2. In this problem, f(t,y) =5t — 3,/y . At each time step, the Runge-Kutta algo-
rithm requires the evaluations

knl = f(tnvyn)

kn2:f(

1

1

tn + 7hayn + 7hknl)

2

2

1 1
kn?) = f(tn + 7hayn + ihkn2)

2
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The next estimate is given as the weighted average

h
Yn+1 = Yn + E(knl + 2kn2 + 2kn3 + kn4)

(a) For h=0.1:

n=1 n=2 n=3 n=4
t, | 0.1 0.2 0.3 0.4
yn | 1.62231 | 1.33362 | 1.12686 | 0.993839

(b) For h =0.05:

n=2 n=4 n==~6 n=2=8
t, | 0.1 0.2 0.3 0.4
Yyn | 1.62230 | 1.33362 | 1.12685 | 0.993826

The exact solution of the IVP is given implicitly as

! V2

2y +51)°(t — /y)? 512’

3. The ODE is linear, with f(¢,y) = 2y — 3t. The Runge-Kutta algorithm requires
the evaluations

knl = f(tnvyn)

1 1
kn2 = f(tn + §hayn + §hkn1)

1 1
kn3 = f(tn + §hayn + ihkrﬂ)
knga = f(tn + h,yn + hkns3).

The next estimate is given as the weighted average

h
Yn+1 = Yn + g(knl + 2kn2 + 2kn3 + kn4)

(a) For h=0.1:

n=1 n=2 n=3 n=4
tn, | 0.1 0.2 0.3 0.4
Yy, | 1.20535 | 1.42295 | 1.65553 | 1.90638

(b) For h =0.05:

n=2 n=4 n==06 n==~§
t, | 0.1 0.2 0.3 0.4
yn | 1.20535 | 1.42296 | 1.65553 | 1.90638

The exact solution of the IVP is y(t) = 2! /4 + 3t/2 + 3/4.
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5. In this problem, f(t,y) = (y* + 2ty)/(3 +t*). The Runge-Kutta algorithm re-
quires the evaluations

knl = f(tn,yn)

1 1

kna = f(tn + ih’y” + §hkn1)
1 1

kns = f(tn + ihayn + ihkrﬂ)

The next estimate is given as the weighted average

h
Ynt1 = Yn + = (kn1 + 2kn2 + 2kn3 + kna).

6
(a) For h=0.1:
n=1 n=2 n=3 n=4
t, | 0.1 0.2 0.3 0.4
yn | 0.510170 | 0.524138 | 0.542105 | 0.564286
(b) For h =0.05:
n=2 n =4 n==6 n=2~8
t, | 0.1 0.2 0.3 0.4
yn | 0.520169 | 0.524138 | 0.542105 | 0.564286

The exact solution of the IVP is y(t) = (3 +t2)/(6 —t).

6. In this problem, f(t,y) = (t> — y*)sin y. At each time step, the Runge-Kutta
algorithm requires the evaluations

kn1 = f(tn,yn)
1 1

kn2 = f(tn + 7hayn + 7hkn1)
2 2
1 1

The next estimate is given as the weighted average

h
Yn+1 = Yn + 7(kn1 + 2kn2 + 2kn3 + kn4)

6
(a) For h=0.1:
n=1 n=2 n=3 n=4
t, | 0.1 0.2 0.3 0.4
Yn | —0.924517 | —0.864125 | —0.816377 | —0.779706
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(b) For h =0.05:

n=2 n=4 n==6 n==§
t, | 0.1 0.2 0.3 0.4
Yn | —0.924517 | —0.864125 | —0.816377 | —0.779706

7.(a) For h=0.1:

n=>5 n =10 n=1>5 n = 20
t, | 0.5 1.0 1.5 2.0
Yn | 2.96825 | 7.88889 | 20.8349 | 55.5957

(b) For h =0.05:

n =10 n =20 n =30 n = 40
t, | 0.5 1.0 1.5 2.0
Yn | 2.96828 | 7.88904 | 20.8355 | 55.5980

The exact solution of the IVP is y(t) = €2t +t/2.
8. See Problem 2 for the exact solution.

(a) For h=0.1:

n=>5 n =10 n=15 n =20
t, | 0.5 1.0 1.5 2.0
Yn | 0.925725 | 1.28516 | 2.40860 | 4.10350

(b) For h =0.05:

n =10 n =20 n=30 | n=40
t, | 0.5 1.0 1.5 2.0
Yn | 0.925711 | 1.28515 | 2.40860 | 4.10350

9.(a) For h=0.1:

n=>5 n =10 n=15 n =20
t, | 0.5 1.0 1.5 2.0
Yn | 3.96219 | 5.10890 | 6.43139 | 7.92338

(b) For h =0.05:

n =10 n =20 n =30 n =40
t, | 0.5 1.0 1.5 2.0
Yn | 3.96219 | 5.10890 | 6.43139 | 7.92338
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The exact solution is given implicitly as

2
In [—I—tl} + 2Vt +y —2arctanh /7 +y =t +2v3 — 2arctanh V3 .
y _

10. See Problem 4.

(a) For h=0.1:

n=>5 n =10 n =15 n =20
tn, | 0.5 1.0 1.5 2.0
Yn | 1.61262 | 2.48091 | 3.74548 | 5.49587

(b) For h =0.05:

n =10 n =20 n =30 n =40
t, | 0.5 1.0 1.5 2.0
yn | 1.61262 | 2.48091 | 3.74548 | 5.49587

12. See Problem 5 for the exact solution.

(a) For h=0.1:

n=>5 n =10 n=15 n =20
t, | 0.5 1.0 1.5 2.0
Yn | 0.590909 | 0.800000 | 1.166667 | 1.75000

(b) For h =0.05:

n =10 n =20 n =30 n =40
t, | 0.5 1.0 1.5 2.0
Yn | 0.590909 | 0.800000 | 1.166667 | 1.75000

13. The ODE is linear, with f(¢t,y) =1—1t¢+4y. The Runge-Kutta algorithm
requires the evaluations

knl = f(tn,yn)

1 1
an = f(tn + ihayn + §hkn1)

1 1
knz = f(tn + ihayn + ihkrﬂ)
kna = f(tn + hayn + han)

The next estimate is given as the weighted average

h
Yn+tl = Yn + g(knl +2kn2 +2kp3 + kn4)

The exact solution of the IVP is y(t) = 19¢% /16 + t/4 — 3/16.
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(a) For h=0.1:
n=>5 n =10 n=15 n =20
t, | 0.5 1.0 1.5 2.0
Yyn | 8.7093175 | 64.858107 | 478.81928 | 3535.8667
(b) For h =0.05:
n =10 n =20 n =30 n =40
t, | 0.5 1.0 1.5 2.0
Yyn | 8.7118060 | 64.894875 | 479.22674 | 3539.8804
15.(a)
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(b) For the integral curve starting at (0,0), the slope turns infinite near t5; ~ 1.5.
Note that the exact solution of the IVP is defined implicitly as

y3 —4y:t3.

-0.1
-0.2
-0.3
-0.4
—0.5
-0.6
—0.7:

-0.8 1

(c) Using the classic Runge-Kutta algorithm with the given values of h, we obtain
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the values
h=0.1
n=12 n=13 n=14 n =15 n =16
t, | 1.2 1.3 1.4 1.5 1.6
Yn | —0.45566 | —0.60448 | —0.82806 | —1.73807 | —1.56618
h =0.05
n =26 n =28 n =30 n =32 n =34
t, | 1.3 1.4 1.5 1.6 1.7
Yn | —0.60447 | —0.82786 | —1.06266 | —1.42862 | —1.17608
h =0.025
n =54 n = 56 n =58 n = 60 n =62
t, | 1.35 1.4 1.45 1.5 1.55
Yn | —0.70134 | —0.82783 | —1.05986 | —1.49336 | —1.30986
h =0.01
n = 142 n = 143 n = 144 n = 145 n = 146
t, | 1.42 1.43 1.44 1.45 1.46
Yn | —0.89513 | —0.93617 | —0.98653 | —1.05951 | —0.76554

Based on the direction field, the solution should decrease monotonically to the
limiting value y = —2/4/3 . In the following table, the value of tj; corresponds to
the approximate time in the iteration process that the calculated values begin to

increase.

h tym
0.1 1.55
0.05 1.65
0.025 | 1.525
0.01 1.455

(d) Numerical values will continue to be generated, although they will not be asso-

ciated with the integral curve starting at (0,0). These values are approximations
to nearby integral curves.

(e) We consider the solution associated with the initial condition y(0) =1

exact solution is given by

0.8 4

0.6 +

0.4 A

0.2

v —dy=1>-3.

-0.2
-0.4

~0.6 -

~0.8 -

. The
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For the integral curve starting at (0, 1), the slope becomes infinite near ¢5; ~ 2.0.
In the following table, the values of ¢,; corresponds to the approximate time in the
iteration process that the calculated values begin to increase.

h tar
0.1 1.85
0.05 | 1.85
0.025 | 1.86
0.01 1.835

o
~

1.(a) Using the notation f, = f(t,,yn), the predictor formula is

h
Yn+1 = Yn + ﬂ(55 fn -39 fnfl + 37fn72 - 9fn73)-

With fr41 = f(tnt1,Ynt1), the corrector formula is

h
Yntl = Yn + ﬂ(9 fot1 +19 fro =5 fooi + fa2).

We use the starting values generated by the Runge-Kutta method:

n=0|n=1 n=2 n=3
tn, | 0.0 0.1 0.2 0.3
Yn | 1.0 1.19516 | 1.38127 | 1.55918

n=4 (pre) | n=4 (cor) | n=>5 (pre) | n=>5 (cor)
t, | 0.4 0.4 0.5 0.5
Yn | 1.72967690 | 1.72986801 | 1.89346436 | 1.89346973

(b) With fr41 = f(tnt1,Yn+1), the fourth order Adams-Moulton formula is
h
Yn+l = Yn + ﬂ(g fn+1 +19 fn - 5fn—1 + fn—Z)-
In this problem, f, 11 =3+ t511 — Ynt1 . Since the ODE is linear, we can solve for

1
Yn4+1 = m [24yn + 27h + 9htn+1 + h(].g fn — 5fn71 + fnfg)] .

n=4 n=>5
t, | 0.4 0.5
Yn | 1.7296800 | 1.8934695

(¢) The fourth order backward differentiation formula is

1
Yn4+1 = % [48 Yn — 36 Yn—1 + 16 Yn—2 — 3yn73 + 12hfn+1] .
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In this problem, f,11 =3+ t54+1 — Yn+1 . Since the ODE is linear, we can solve for

1
Yn4+1 = m [36h + 12h tn+1 + 48 Yn — 36 Yn—1 + 16 Yn—2 — 3yn,3] .

n=4 n=>5
t, | 0.4 0.5
Yn | 1.7296805 | 1.8934711

The exact solution of the IVP is y(t) =2+t —e™".

2.(a) Using the notation f,, = f(t, ,yn), the predictor formula is

h
Yn+1 = Yn + ﬂ(55 fn -39 fnfl + 37fn72 - 9fn73)~

With fr41 = f(tnt1,Ynt1), the corrector formula is

h
Yn+1 = YUn + ﬂ(gfn-&-l + 19fn - 5fn—1 +fn—2)-

We use the starting values generated by the Runge-Kutta method:

n=0|n=1 n=2 n=3
tn, | 0.0 0.1 0.2 0.3
Yn | 2.0 1.62231 | 1.33362 | 1.12686

n=4 (pre) | n=4 (cor) | n=>5 (pre) | n=>5 (cor)
t, | 0.4 0.4 0.5 0.5
Yn | 0.993751 0.993852 0.925469 0.925764

(b) With fr+1 = f(tnt1,Yn+1), the fourth order Adams-Moulton formula is

h
Yn+1 = YUn + ﬂ(g.fn-‘rl + 19fn - 5fn—1 +fn—2)-

In this problem, f,+1 = 5tn4+1 — 3\/Ynt1 - Since the ODE is nonlinear, an equation
solver is needed to approximate the solution of

h
Yn+1 =Yn + 50 [45tn41 — 27/Yns1 + 19 frn — 5 fuo1 + fu—2]

at each time step. We obtain the approximate values:

n=4 n=>5
t, | 0.4 0.5
yn | 0.993847 | 0.925746

(¢) The fourth order backward differentiation formula is

1
Yn4+1 = 275 [48 Yn — 36 Yn—1 + 16 Yn—2 — 3yn73 + 12hfn+1] .
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Since the ODE is nonlinear, an equation solver is used to approximate the solution
of
1
Yn+1 = % [48 Yn — 36 Yn—1 + 16 Yn—2 — 3yn73 + 12h(5tn+1 - 3\/ Yn+1 ):|

at each time step.

n=4 n=>5
t, | 0.4 0.5
Yn | 0.993869 | 0.925837

The exact solution of the IVP is given implicitly by

1 V2
2y +51)5(t— /)2 512’

3.(a) The predictor formula is
h
Yn+1 = Yn + ﬂ(55 fn -39 fnfl + 37fn72 - 9fn73)~
With fr41 = f(tnt1,Ynt1), the corrector formula is

h
Ynt+1 = Yn + ﬂ(g fn+1 +19 fn - 5fn—1 + fn—Z)-

Using the starting values generated by the Runge-Kutta method:

n=0|n=1 n=2 n=3
t, | 0.0 0.1 0.2 0.3
Yn | 1.0 1.205350 | 1.422954 | 1.655527

n=4 (pre) | n=4 (cor) | n=>5 (pre) | n=>5 (cor)
t, | 0.4 0.4 0.5 0.5
Yn | 1.906340 1.906382 2.179455 2.179567

(b) With f,41 = f(tnt1,Ynt1), the fourth order Adams-Moulton formula is

h
Yn+1 = Yn + ﬂ(g fn+1 + 19 fn - 5fn71 + fn72)'

In this problem, f,4+1 = 2yp+1 — 3tp41 . Since the ODE is linear, we can solve for

1

n=4 n=>5
t, | 0.4 0.5
Yn | 1.906385 | 2.179576

(¢) The fourth order backward differentiation formula is

1
Yn4+1 = % [48 Yn — 36 Yn—1 + 16 Yn—2 — 3yn73 + 12hfn+1] .
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In this problem, f,11 = 2¥yp4+1 — 3tn41 . Since the ODE is linear, we can solve for

1
Yn+1 = m [48 Yn — 36 Yn—1 + ]-6 Yn—2 — Syn73 - 36h tn+1} .

n=4 n=>5
t, | 0.4 0.5
yn | 1.906395 | 2.179611

The exact solution of the IVP is y(t) = e?!/4 + 3t/2+ 3/4.
5.(a) The predictor formula is
h
Yn+1 = Yn + ﬂ(55 fn —59 fn—l + 37fn—2 - 9fn—3)'
With fri1 = f(tnt1,Ynt1), the corrector formula is

h
Yn+1 = Yn + ﬂ(g fn+1 +19 fn - 5fn71 + fn72)o

Using the starting values generated by the Runge-Kutta method:

n=0|n=1 n=2 n=3
t, | 0.0 0.1 0.2 0.3
Yn | 0.5 0.51016950 | 0.52413795 | 0.54210529

n=4 (pre) | n=4 (cor) | n=>5 (pre) | n=>5 (cor)
t, | 0.4 0.4 0.5 0.5
Yn | 0.56428532 | 0.56428577 | 0.59090816 | 0.59090918

(b) With f,41 = f(tnt1,Ynt1), the fourth order Adams-Moulton formula is

h
Ynt+1 = Yn + ﬁ(g fn+1 +19 fn - 5fn—1 + fn—2)-

In this problem,
Y21+ 2tn1 Yngt
3412,

fn+1 -

Since the ODE is nonlinear, an equation solver is needed to approximate the solution
of
ho[ o Ynir T2t Ynpa

Yn+1 =Yn + o7
" "4 3412,

+19fn =5 fno1+ fo-2

at each time step.

n=4 n=>5
t, | 0.4 0.5
Yn | 0.56428578 | 0.59090920

(c) The fourth order backward differentiation formula is

1
Yn4+1 = 275 [48 Yn — 36 Yn—1 + 16 Yn—2 — 3yn73 + 12hfn+1] .
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Since the ODE is nonlinear, an equation solver is needed to approximate the solution
of

1 Yo i1+ 2tni1 Ynsa
i1 = — |48y, — 36 Yy 16 yp—o — 3Yn— 12h
Yn+1 25 Y Yn—1 + 10Yn_2 Yn—3 + 3 +t%+1

at each time step. We obtain the approximate values:

n=4 n=>5
t, | 0.4 0.5
Yn | 0.56428588 | 0.59090952

The exact solution of the IVP is y(t) = (3 +12)/(6 —t).
6.(a) The predictor formula is

Ynt1 = Yn + %(55 fn =59 fuo1+37 fu2—9 fn_s).
With fr41 = f(tn+1,Yns1), the corrector formula is

h
Yn+1 = Yn + ﬂ(g fn+1 +19 fn - 5fn—1 + fn—Z)'

We use the starting values generated by the Runge-Kutta method:

n=0|n=1 n=2 n=3
tn, | 0.0 0.1 0.2 0.3
Y, | —1.0 | —0.924517 | —0.864125 | —0.816377

n=4 (pre) | n=4 (cor) | n=>5 (pre) | n=>5 (cor)
t, | 0.4 0.4 0.5 0.5
Yn | —0.779832 | —0.779693 | —0.753311 | —0.753135

(b) With fr41 = f(tnt1,Yn+1), the fourth order Adams-Moulton formula is

h
Yn+1 = Yn + ﬂ(g fn+1 + 19 fn - 5fn71 + fn72)'

In this problem, f,11 = (t2,; —y2,,)sin y,41 . Since the ODE is nonlinear, we
obtain the implicit equation

h .
Ynt1=1Yn+ o7 [9(t2 1 — ypy1)Sin Ypgr +19 fro =5 fa1 + fa—2] -
n=4 n=>5
t, | 0.4 0.5

Yn | —0.779700 | —0.753144

(c) The fourth order backward differentiation formula is

1
Yn4+1 = % [48 Yn — 36 Yn—1 + 16 Yn—2 — 3yn73 + 12hfn+1] .
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Since the ODE is nonlinear, we obtain the implicit equation

1 .
Yntl = % [48 Yn —36Yn_1+16y,_—o —3yn_s3 + 12h(t721+1 — yTQLH) sin yn+1] .

n=>5
0.5
—0.753089

n=4
0.4
—0.779680

ln
Yn

8.(a) The predictor formula is

h
=Yn + 7(55 fn - 59 fnfl + 37fn72 - 9fn73)~

Yn+1 Y

With fr41 = f(tnt1,Ynt1), the corrector formula is

h
Ynt+1 = Yn + 274(9 fn+1 +19 fn - 5fn—1 + fn—2)-

We use the starting values generated by the Runge-Kutta method:

n=0|n=1 n=2 n=3
tn, | 0.0 0.05 0.1 0.15
Yn | 2.0 1.7996296 | 1.6223042 | 1.4672503
n =10 n =20 n = 30 n = 40
tn, | 0.5 1.0 1.5 2.0
Yn | 0.9257133 | 1.285148 | 2.408595 | 4.103495

(b) Since the ODE is nonlinear, an equation solver is needed to approximate the

solution of
h
Ynt+1 = Yn + ﬂ [45tn+1 - 27\/ Yn+1 + 19 fn - 5fn—1 + fn—Q]

at each time step. We obtain the approximate values:

n =10 n =20 n =30 n = 40
t, | 0.5 1.0 1.5 2.0
Yn | 0.9257125 | 1.285148 | 2.408595 | 4.103495

(¢) The fourth order backward differentiation formula is
1
Ynt+1 = 5 [48Yn = 36yn—1 +16yn—2 = 3yn—s + 120 fns1].

Since the ODE is nonlinear, an equation solver is needed to approximate the solution
of

1
yn+1 - % [48 Yn — 36 Yn—1 + ]-6 Yn—2 — 3yn73 + 12h(5tn+1 - 3’\/ ynJrl )}
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at each time step.

n =10 n =20 n =30 n = 40
t, | 0.5 1.0 1.5 2.0
Yn | 0.9257248 | 1.285158 | 2.408594 | 4.103493

The exact solution of the IVP is given implicitly by

1 v

2y +5t)5(t—y)? 5127

9.(a) The predictor formula is
h
Yn+1 = Yn + ﬂ(55 fn -39 fnfl + 37fn72 - 9fn73)~
With fr+1 = f(tn+1,Yn+1), the corrector formula is

h
Yn+1 = Yn + ﬂ(g fn+1 +19 fn - 5fn—1 + fn—2)~

Using the starting values generated by the Runge-Kutta method:

n=0|n=1 n=2 n=3
t, | 0.0 0.05 0.1 0.15
Yn | 3.0 3.087586 | 3.177127 | 3.268609
n =10 n =20 n =30 n =40
t, | 0.5 1.0 1.5 2.0
Yn | 3.962186 | 5.108903 | 6.431390 | 7.923385

(b) With fr41 = f(tnt1,Yn+1), the fourth order Adams-Moulton formula is

h
Yn+1 = Yn + ﬂ(g fn+1 + 19 fn - anfl + fn72)-

In this problem, f,,+1 = \/tn+1 + Ynt1 - Since the ODE is nonlinear, an equation
solver must be implemented in order to approximate the solution of

h
Yokt = Y+ 57 | OV/Enrt FYnet +19.f0 =5 fuo + faco

at each time step.

n =10 n =20 n =30 n = 40
t, | 0.5 1.0 1.5 2.0
Yn | 3.962186 | 5.108903 | 6.431390 | 7.923385

(c) The fourth order backward differentiation formula is

1
Yn4+1 = % [48 Yn — 36 Yn—1 + 16 Yn—2 — 3yn73 + 12hfn+1] .
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Since the ODE is nonlinear, an equation solver is needed to approximate the solution
of
1
Yn+1 = % |:48 Yn — 36 Yn—1 + 16 Yn—2 — 3yn73 + 12h\/ tn+1 + Yn+1 i|

at each time step.

n =10 n =20 n =30 n =40
t, | 0.5 1.0 1.5 2.0
Yn | 3.962186 | 5.108903 | 6.431390 | 7.923385

The exact solution is given implicitly by

2
In [—I—tl} + 2Vt +y —2arctanh /I +y =t +2v3 — 2arctanh V3 .
y _

10.(a) The predictor formula is

24

With fr41 = f(tnt1,Ynt1), the corrector formula is

h
Yn+1 = Yn + 7(55 fn - 59 fn—l + 37fn—2 - 9fn—3)~

h
Yn+1 = Yn + ﬂ(g fn+1 +19 fn - 5fn—1 + fn—2)-

We use the starting values generated by the Runge-Kutta method:

n=0|n=1 n=2 n=23
t, | 0.0 0.05 0.1 0.15
Yn | 1.0 1.051230 | 1.104843 | 1.160740
n =10 n =20 n =30 n =40
t, | 0.5 1.0 1.5 2.0
yn | 1.612622 | 2.480909 | 3.7451479 | 5.495872

(b) With f,41 = f(tnt1,Ynt1), the fourth order Adams-Moulton formula is

h
Yn+1 = Yn + ﬂ(g fn+1 + 19 fn - 5fn71 + fn72)-

In this problem, f, 1 = 2t,41 + e t»+1¥+1  Since the ODE is nonlinear, an equa-
tion solver must be implemented in order to approximate the solution of

Yn+1 = Yn + % {9[2thsr +e 9] $19f, =5 fuor + froa}

at each time step.

n =10 n =20 n =30 n =40
t, | 0.5 1.0 1.5 2.0
Yy, | 1.612622 | 2.480909 | 3.7451479 | 5.495872
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(¢) The fourth order backward differentiation formula is
1
Ynt1 = 52 [48yn — 36 yn—1 + 16 yn_2 — 3yn_3 + 12h fri1].

Since the ODE is nonlinear, we obtain the implicit equation

1
Ynt1 = 5 {48 yn — 36 yn—1 + 16 yn_—2 — 3yn—s + 12k [2t,4q + e Yt}

n =10 n =20 n =30 n =40
t, | 0.5 1.0 1.5 2.0
Yn | 1.612623 | 2.480905 | 3.7451473 | 5.495869

11.(a) The predictor formula is
h
Yn+1 = Yn + ﬂ(55 fn -39 fnfl + 37fn72 - 9fn73)-
With fr+1 = f(tn+1,Yn+1), the corrector formula is

h
Yn+1 = Yn + ﬂ(g fn+1 + 19 fn - 5fn71 + fn72)~

Using the starting values generated by the Runge-Kutta method:

n=0|n=1 n=2 n=3
tn, | 0.0 0.05 0.1 0.15
Yo | —2.0 | —1.958833 | —1.915221 | —1.868975
n =10 n =20 n = 30 n =40
t, | 0.5 1.0 1.5 2.0

Yn | —1.447639 | —0.1436281 | 1.060946 | 1.410122

(b) With f,41 = f(tnt1,Ynt1), the fourth order Adams-Moulton formula is

h
Ynt+1 = Yn + ﬂ(g fn+1 +19 fn - 5fn71 + fn72)~

In this problem,
4 —tny1Yns1

Jn1 =
" 1+y721+1

Since the differential equation is nonlinear, an equation solver is used to approxi-
mate the solution of

h 4— tn-i—l Yn+1

Ynt1 =Unt oy T+y2,,

+ 19fn - 5fn—l +fn—2

at each time step.

n =10 n =20 n =30 n =40
t, | 0.5 1.0 1.5 2.0
Yn | —1.447638 | —0.1436767 | 1.060913 | 1.410103




8.4

367

(¢) The fourth order backward differentiation formula is

1
Yn+1 = ?5 [48 Yn — 36 Yn—1 + 16 Yn—2 — 3yn_3 + 12hfn+1] .

Since the ODE is nonlinear, an equation solver must be implemented in order to
approximate the solution of

1 4 - tn+1 yn+1
= — |48y, — 36y, _ 16 y,—2 — 3Yp— 12h——="—"=
Yn+1 o5 Yn Yn—1 + Yn—2 Yn—3 + 1+ y»,2L+1
at each time step.
n =10 n =20 n =30 n =40

tn | 0.5 1.0 1.5 2.0
Yn | —1.447621 | —0.1447619 | 1.060717 | 1.410027

12.(a) The predictor formula is
h
Ynt+1 = Yn + ﬂ(55 fn - 59 fn—l + 37fn—2 - 9fn—3)-
With fr+1 = f(tn+1,Yn+1), the corrector formula is

h
Yn+1 = Yn + ﬂ(g fn+1 + 19 fn - 5fn71 + fnf2)-

We use the starting values generated by the Runge-Kutta method:

n=0|n=1 n=2 n=23
t, | 0.0 0.05 0.1 0.15
Yn | 0.5 0.5046218 | 0.5101695 | 0.5166666

n =10 n =20 n =30 n =40
t, | 0.5 1.0 1.5 2.0
Yn | 0.5909091 | 0.8000000 | 1.166667 | 1.750000

(b) With fr41 = f(tnt1,Yn+1), the fourth order Adams-Moulton formula is

h
Ynt+1 = Yn + ﬁ(g fn+1 +19 fn - 5fn—1 + fn—2)-

In this problem,

Yot T 2tnt1 Yoy
3+th '

fn+1 -

Since the ODE is nonlinear, an equation solver is needed to approximate the solution
of

h 9 y721+1 + 2 tn+1 Yn+1

Yn+l = Yn + =

+19fn =5 fn-1+ fa—2
24 3412, " " "




368

Chapter 8. Numerical Methods

at each time step.

n =10 n =20 n =30 n =40
t, | 0.5 1.0 1.5 2.0
Yn | 0.5909091 | 0.8000000 | 1.166667 | 1.750000

(¢) The fourth order backward differentiation formula is

1
Yn+1 = % [48 Yn — 36 Yn—1 + 16 Yn—2 — 3yn—3 + 12hfn+l] .

Since the ODE is nonlinear, we obtain the implicit equation

1 Y21+ 2ttt Yt
il = — |48, — 36yn_1 + 16Yn_9 — 3yn_3 + 12h 22
Yn+1 25 Y Yn—1 1+ 10Yn—_2 Yn—3 + 3+t%+1

n =10 n =20 n =30 n =40
t, | 0.5 1.0 1.5 2.0
Yn | 0.5909092 | 0.8000002 | 1.166667 | 1.750001

The exact solution of the IVP is y(t) = (3 +12)/(6 —t).

13. Both Adams methods entail the approximation of f(¢,y), on the interval
[ty , tn+1], by a polynomial. Approximating ¢'(¢t) = P;(t) = A, which is a constant
polynomial, we have

tnal
O(tnt1) — o(tn) = /t Adt = A(tpy1 —t,) = Ah.

n

Setting A=A f, + (1 = X)fn_1, where 0 < X <1, we obtain the approximation
Ynt1 = Yn + A fo + (1= A) froa].
An appropriate choice of A yields the familiar Euler formula. Similarly, setting
A=A+ 1 =N fns1,

where 0 < A < 1, we obtain the approximation

Yn+1 = YUn +h[)‘fn + (1 - /\)fn-‘rl]'

14. For a third order Adams-Bashforth formula, we approximate f(¢,y), on the in-
terval [ty , tnt1], by a quadratic polynomial using the points (tn,—2, Yyn—2), (tn—1, Yn—1)
and (t,,yn). Let P3(t) = At?> + Bt + C'. We obtain the system of equations
At2_, + Bty 2+ C = fr_2
At%_l +Bty,_1+C = fnfl
At2 + Bt, +C = f,.
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©
o

For computational purposes, assume that to = 0, and ¢, = nh. It follows that
fn - 2fn71 + fn72

A= 2h2
B B=—2n)fn+@n—4)frn_1+ (1 —2n)fr_2
o 2h
2 2 2 _
C=T T o)+

2 2

We then have

bnt1 1 1
Ynt1 — Un = / [At? + Bt + C] dt = Ah*(n® + n+ 3+ Bh2(n + 3)+Ch,
t

n

which yields
h
Yn+1 — Yn = 5(23 fn—16 fru_1+ 5fn72) .

15. For a third order Adams-Moulton formula, we approximate f(¢,y), on the
interval [t,,t,+1], by a quadratic polynomial using the points (t,—1,¥n—1), (tn,Yn)
and (tpi1,Ynt1). Let P3(t) = at? + Bt +~. This time we obtain the system of
algebraic equations
at2 |+ Bty_1+7 = fa
O‘ti +Btn +v=fn
at? )+ Btngr +7 = fas1.

For computational purposes, again assume that to =0, and ¢, = nh. It follows

that
_ fnfl - an + fnJrl
2 h?

—2n+ 1) fo1 +H4nfrn + (1 —2n) foaa

B:
2h

n2+n n2—n

Y= fn,—1+(17n2)fn+ fn+1-

2 2

We then have
b1 3/ 2 1 2 1
yn+1*yn:/ [Ozt +[3t+’y]dt:ah (n +n+§)+ﬂh (n+§)+7h,
t

n

which results in B
Yn+1 — Yn = ﬁ<5fn+1 + 8fn - fnfl) .

1. In vector notation, the initial value problem can be written as

i) - () =0=()
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(a) The Euler formula is
n n n n tTL
(o) =G =i )
Yn+1 Yn dx, — 2y,

With h = 0.1, we obtain the values

That is,

n=2|n=4 | n==6 n=2~8 n =10
t, | 0.2 0.4 0.6 0.8 1.0

T, | 1.26 1.7714 | 2.58991 | 3.82374 | 5.64246
Yn | 0.76 1.4824 | 2.3703 3.60413 | 5.38885

(b) The Runge-Kutta method uses the following intermediate calculations:

knl = (xn + Yn + ty 74xn - Qyn)T

h h h h h T
Kp2 = |2y + *kil +yn + *kil +tn+ o 74($n + *kil) - 2(yn + *kil)

2 2 2 2 2

h h h h h T
Kpz = |Tn + —kto 4y + =k2g +tn + = 4(z, + =kLy) — 2(yn + k2,)

2 2 2 2 2
s = [0 + Bl + Y + k25 + o + b, Ay + hkLy) — 2y, + BE2,)] "

With h = 0.2, we obtain the values:

n=1 n=2 n=3 n=4 n=>5
t, | 0.2 0.4 0.6 0.8 1.0

T, | 1.32493 1.93679 | 2.93414 | 4.48318 | 6.84236
Yn | 0.758933 | 1.57919 | 2.66099 | 4.22639 | 6.56452

(¢) With h = 0.1, we obtain

n=2 n=4 n==~6 n==_§ n =10

t, | 0.2 0.4 0.6 0.8 1.0

z, | 1.32489 1.9369 2.93459 | 4.48422 | 6.8444

Yn | 0.759516 | 1.57999 | 2.66201 | 4.22784 | 6.56684

The exact solution of the IVP is

2 1 2
x(t) = e + 967375 - gt ~3
8 2 1
o2t St _cy L
y(t) =e” — ge 3t g

3.(a) The Euler formula is

n n _tn n - n_]-
Gert) =G o)
Yn+1 Yn Tn,
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That is,

Tpt1 = Tp + h(_tn LTp — Yn — 1)
Yn+1l = Yn + h(xn)

With h = 0.1, we obtain the values

n=2|n=4 n==6 n=38 n =10
t, | 0.2 0.4 0.6 0.8 1.0
r, | 0.582 | 0.117969 | —0.336912 | —0.730007 | —1.02134
Yn | 1.18 1.27344 1.27382 1.18572 1.02371

kn1 = (_tn Tn — Yn — an)T

h h
Ko = [—(tn + )z + §k}11

h
kn3 = [_(tn + =

Kna = [—(tn + h)(zn + hkhg) — (yn + hk23) — 1,2, + hk)y
With h = 0.2, we obtain the values:

2

2

(b) The Runge-Kutta method uses the following intermediate calculations:

h o 1"
)= (o + 3E2) =~ Loz + 5k

2n1

h h hoo 1t
) + 5HE) = O+ 42) ~ Loz + kL

]T

n=1 n=2 n=3 n=4 n=>5
t, | 0.2 0.4 0.6 0.8 1.0
xpn | 0.568451 | 0.109776 | —0.32208 | —0.681296 | —0.937852
Yn | 115775 1.22556 1.20347 1.10162 0.937852
(c) With h = 0.1, we obtain
n=2 n=4 n==~6 n==~§ n =10
t, | 0.2 0.4 0.6 0.8 1.0
Tn | 0.56845 | 0.109773 | —0.322081 | —0.681291 | —0.937841
yn | 115775 | 1.22557 | 1.20347 1.10161 0.93784
4.(a) The Euler formula gives
Tpi1 = Ty + h(xn — Yn + Tp yn)
Yn+1 = Yn + h(3Tn — 2Yn — T Yn)-
With h = 0.1, we obtain the values
n=2 n=4 n==~06 n=2_y n =10
t, | 0.2 0.4 0.6 0.8 1.0
xn | —0.198 | —0.378796 | —0.51932 —0.594324 | —0.588278
Yn | 0.618 0.28329 —0.0321025 | —0.326801 | —0.57545
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(b) Given

ftzy)=z—-y+azy
g(t,:c,y) :3$*2y7$y,

the Runge-Kutta method uses the following intermediate calculations:

tnv T, yn) g(tna T, yn)]T

[f
[f

mn+

hkl

h
xn+ kn2ﬂy7l+ k7212>7g(t

9 nl> Yn + 51@211)79

h

h

h
(tn'i_*a

TL+

57 ¥n Tt

h
2

h
2]{:117:(171 +

h
’x’ﬂ+ kn2ayn+2k

h
h

= [f(tn + h,zn + hkyg, yn + hE23), g(tn + h, 2y + bk} s, Yy + hE )]

With h = 0.2, we obtain the values:

t, | 0.2 0.4 0.6 0.8 1.0
T, | —0.196904 | —0.372643 | —0.501302 —0.561270 | —0.547053
Yn | 0.630936 0.298888 —0.0111429 | —0.288943 | —0.508303
(¢) With h = 0.1, we obtain
n=2 n=4 n==~6 n=2~8 n =10
t, | 0.2 0.4 0.6 0.8 1.0
T, | —0.196935 | —0.372687 | —0.501345 —0.561292 | —0.547031
Yn | 0.630939 0.298866 —0.0112184 | —0.28907 —0.508427
5.(a) The Euler formula gives
Tpy1 = Tp + h[x,(1 =052, —0.5y,)]
Yn+t1 = Yn + A [yn(—0.25 4+ 0.5z,)].
With h = 0.1, we obtain the values
n=2 n=4 n==~6 n=3~8 n =10
tp, | 0.2 0.4 0.6 0.8 1.0
Tp | 2.96225 | 2.34119 | 1.90236 | 1.56602 | 1.29768
Yn | 1.34538 | 1.67121 | 1.97158 | 2.23895 | 2.46732

(b) Given

ft,z,y) =2(1—-0.52—0.5y)
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the Runge-Kutta method uses the following intermediate calculations:

tnv T, y’n) g(tn, L, yn)]T

[f
= [0+

h

h
+ 50wt Qkil,ywr

h

h h h
—E2)), 9(t, +2xn+

h h h
xn+ kn27yn+ k?ﬂ)vg(tn"’_*v

2

Qk'}leyn +

h
Ty + an,yn + kn

h
e
h

)]T

22)]T

Kna = [f(tn + hy @ + hkls, yn + hk25), (tn+h,zn+hk;3,yn+hk33)]T.

With h = 0.2, we obtain the values:

n=1 n=2 n=3 n=4 n=
t, | 0.2 0.4 0.6 0.8 1.0
T, | 3.06339 | 2.44497 | 1.9911 1.63818 | 1.3555
Yn | 1.34858 | 1.68638 | 2.00036 | 2.27981 | 2.5175
(¢c) With h =0.1, we obtain
n=2 n=4 n==~06 n=3~8 n =10
t, | 0.2 0.4 0.6 0.8 1.0
Tn | 3.06314 | 2.44465 | 1.99075 | 1.63781 | 1.35514
Yn | 1.34899 | 1.68699 | 2.00107 | 2.28057 | 2.51827
6.(a) The Euler formula gives
Tpy1 =Xp+h [e*m"”" — cos xn]
Yn+1l = Yn + h [Sin(xn - 3yn)] .
With h = 0.1, we obtain the values
n=2 n=4 n==~6 n=2~8 n =10
t, | 0.2 0.4 0.6 0.8 1.0
T, | 1.42386 | 1.82234 | 2.21728 | 2.61118 | 2.9955
Yn | 2.18957 | 2.36791 | 2.53329 | 2.68763 | 2.83354

(b) The Runge-Kutta method uses the following intermediate calculations:

tn, T, yn) g(tnﬂ L, yn)]T

h

T oot

h

2

mn+2

h
k7lzl7yn +

h
kiﬂv Yn +

h h h
k 1), 9(tn +2xn+

h h h
2k7212) (t + 5%+

2

2k71117yn +

Zk'}van +

h
e

h
bz,

= [f(tn + h,zn + hkjs, yn + hks), g(tn+h,xn+hk;3,yn+hkﬁ3)]

)]Z
)
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With h = 0.2, we obtain the values:

(c) With h = 0.1, we obtain

n=1 n=2 n=23 n=4 n=>5
0.2 0.4 0.6 0.8 1.0
T, | 1.41513 | 1.81208 | 2.20635 | 2.59826 | 2.97806
Yn | 2.18699 | 2.36233 | 2.5258 2.6794 2.82487
n=2 n=4 n==~6 n=2~8 n =10
0.2 0.4 0.6 0.8 1.0
T, | 1.41513 | 1.81209 | 2.20635 | 2.59826 | 2.97806
Yn | 2.18699 | 2.36233 | 2.52581 | 2.67941 | 2.82488

7. The Runge—Kutta method uses the following intermediate calculations:

4yn7 xn+yn]
ho, h hoy 1"
[wn+ A+ R~ )+t ]
h h ho, 17
= [a: (yn+§kig),—(xn+ ko) +yn + kfﬂ}
Kna = [ + hkbs — A(yn + hk2g), —(n + hkLg) + o + hk2,] " .

Using h = 0.05, we obtain the following values:

n=4 n==8 n=12 n =16 n =20
tn 0.2 0.4 0.6 0.8 1.0
z, | 1.3204 1.9952 3.2992 5.7362 10.227
Yn | —0.25085 | —0.66245 | —1.3752 | —2.6434 | —4.9294
Using h = 0.025, we obtain the following values:
n=38 n =16 n =24 n =32 n = 40
t, | 0.2 0.4 0.6 0.8 1.0
z, | 1.3204 1.9952 3.2992 5.7362 10.227
yn | —0.25085 | —0.66245 | —1.3752 | —2.6435 | —4.9294
The exact solution is given by
et 4+ 3t et _ 3t
t = t = -
o) = - vl =
and the associated tabulated values:
n=>5 n =10 n =15 n =20 n =25
tn 0.2 0.4 0.6 0.8 1.0
(b(tn) 1.3204 1.9952 3.2992 5.7362 10.227
Y(t,) | —0.25085 | —0.66245 | —1.3752 | —2.6435 | —4.9294
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o

9. The predictor formulas are
h

Tn+1 = Tn + ﬂ(55 fn -39 fnfl + 37fn72 - 9fn73)
h

Yn+1 = Yo+ 5 (5590 =59 g1+ 37gn—2 — 9 gn-s).

With f11 = Tpe1 — 4yns1 and gpi1 = —Tpa1 + Ynt1, the corrector formulas are

h
Tn+1 = T + ﬁ(g fn+1 +19 fn - 5fn71 + fn72)

h
Yn+1 = Yn + ﬂ(ggn+1 + 199n - 5gn—l + gn—2)~

We use the starting values from the exact solution:

n=0|n=1 n=2 n=3
t, | O 0.1 0.2 0.3
r, | 1.0 1.12883 1.32042 1.60021
Yn | 0.0 —0.11057 | —0.250847 | —0.429696

One time step using the predictor-corrector method results in the approximate
values:

n =4 (pre) | n =4 (cor)
t, | 0.4 0.4

Ty | 1.99445 1.99521

yn | —0.662064 | —0.662442

3. The solution of the initial value problem is ¢(t) = e=100% 4 ¢.

(a,b) Based on the exact solution, the local truncation error for both of the Euler
methods is

4
‘eloc| < &efloof"h?

2
Hence |e,| < 5000 k2, for all 0 < #,, < 1. Furthermore, the local truncation error is
greatest near t = 0. Therefore |e;| < 5000h2 < 0.0005 for h < 0.0003. Now the
truncation error accumulates at each time step. Therefore the actual time step
should be much smaller than h ~ 0.0003. For example, with h = 0.00025, we
obtain the data

Euler B.Euler | ¢(t)
t=0.05 | 0.056323 | 0.057165 | 0.056738
t=0.1 0.100040 | 0.100051 | 0.100045
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Note that the total number of time steps needed to reach ¢ = 0.1 is N = 400.

(c¢) Using the Runge-Kutta method, comparisons are made for several values of h;

h = 0.005 is sufficient.

h=0.1:
(b(t) Yn Yn — (b(tn)
t=0.05 | 0.056738 | 0.057416 | 0.000678
t=20.1 0.100045 | 0.100055 | 0.000010
h =0.005 :
(b(t) Yn Yn — (b(tn)
t=10.05 | 0.056738 | 0.056766 | 0.000027
t=0.1 0.100045 | 0.100046 | 0.0000004

6.(a) Using the method of undetermined coefficients, it is easy to show that the
general solution of the ODE is y(t) = ce™ + t2. Imposing the initial condition, it

follows that ¢ = 0 and hence the solution of the IVP is ¢(t) = t%.

(b) Using the Runge-Kutta method, with A = 0.01 , numerical solutions are gener-
ated for various values of A :

A=1:
¢(t) Yn |yn - ¢(tn)|
t=0.25 | 0.0625 | 0.0624999 | 2 x 10~ 1!
t=05 | 0.25 0.25 0
t=0.75 | 0.5625 | 0.5625 0
t=10 | 1.0 1.0 0
A=10
¢(t) Yn |yn - ¢(tn)|
t=0.25 | 0.0625 | 0.0624998 | 2.215 x 10~ "
t=0.5 | 0.25 0.249997 | 2.920 x 10~6
t=0.75 | 0.5625 | 0.562464 | 3.579 x 10~°
t=1.0 | 1.0 0.999564 | 4.362 x 10~*
A=20:
¢(t) Yn ‘yn - (b(tn)'
t=0.25 | 0.0625 | 0.062489 | 1.10 x 10~°
t=05 | 0.25 0.248342 | 1.658 x 103
t=0.75 | 0.5625 | 0.316455 | 0.246045
t=10 | 1.0 —35.5143 | 36.5143
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o(t) Yn [Yn — &(tn)]
t =025 0.0625 | —0.044803 0.107303
t=05 | 025 —28669.55 28669.804
t=0.75 | 0.5625 | —7.66014 x 10° | 7.66014 x 10°
t=10 | 1.0 —2.04668 x 10'° | 2.04668 x 10°

The following table shows the calculated value, y; , at the first time step:

1 (A=1)

y1 (A = 10)

Y1 (/\ = 20)

y1 (A = 50)

9.99999 x 10~°

9.99979 x 10~°

9.99833 x 10~°

9.97396 x 10~°

(c) Referring back to the exact solution given in part (a), if a nonzero initial con-
dition, say y(0) = €, is specified, the solution of the IVP becomes

be(t) = e + 12,

We then have |¢(t) — ¢-(t)| = || e . It is evident that for any ¢ > 0,

Tim [6(t) — 6.(8) = oo
— 00

This implies that virtually any error introduced early in the calculations will be
magnified as A — oco. The initial value problem is inherently unstable.
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Nonlinear Differential Equations and

Stability

2.(a) Setting x= € " results in the algebraic equations

5—r -1 51 _ 0
3 1—1r 62 o 0 '
For a nonzero solution, we must have det(A — rI) =% —6r + 8 = 0. The roots of
the characteristic equation are 71 = 2 and ro = 4. For r = 2, the system of equa-
tions reduces to 3¢; = &. The corresponding eigenvector is € = (1,3)7. Substi-

tution of r = 4 results in the single equation &; = & . A corresponding eigenvector
is €@ = (1,1)7.

(b) The eigenvalues are real and positive, hence the critical point is an unstable
node.

379
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(c,d)

P e

— e e a Ny
=TT oo
=TTl
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50
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~ —a - _v_>

3.(a) Solution of the ODE requires analysis of the algebraic equations

(5 2t (@) -6)

For a nonzero solution, we must have det(A — rI) =r? —1=0. The roots of the

characteristic equation are r; = 1 and ro = —1. For r = 1, the system of equations
reduces to & = & . The corresponding eigenvector is E(l) = (1,1)". Substitution
of r = —1 results in the single equation 3&; — & = 0. A corresponding eigenvector

is €@ =(1,3)T.

(b) The eigenvalues are real, with r; 7o < 0. Hence the critical point is an unstable
saddle point.

(c,d)
LA AL A L N o
Ay il——
A e = :
AR == 7
AR —~ /R
AR — /4
YRy ey 2y 4
AR gy /XL 2]
s v g /0 ” R —
s Y 22 LS 1
L e e o CAS A o
/// P \f / ///// 0.2 0.4 , 0.6 0.8 1
L i S 1 G2 fr s ny
G LN ] 7 22 2
Ky Y VAV 4 R
N & AV AR
=W LIS s
e /A Y AR
Nt AP0 777 7 77 7

5.(a) The characteristic equation is given by

1—7r -5 | o -

‘ 1 —S—T‘T +2r4+2=0.
The equation has complex roots r1 = —1+4 and ro = —1—1i. For r=—1+1,
the components of the solution vector must satisfy & — (24 4)§; = 0. Thus the
corresponding eigenvector is E(l) = (2+1i,1)T. Substitution of » = —1 — i results

in the single equation & — (2 —i)§&2 =0. A corresponding eigenvector is 5(2) =
2—i,)T.
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(b) The eigenvalues are complex conjugates, with negative real part. Hence the
origin is an asymptotically stable spiral.

(c,d)

P g g g g e
o7 o o o o o o o o
b a aaaaa a s

o v o =
bl d

6.(a) Solution of the ODEs is based on the analysis of the algebraic equations

(2=

For a nonzero solution, we require that det(A — rI) = 72 + 1 = 0. The roots of the
characteristic equation are r = +i. Setting r = i, the equations are equivalent to
€ — (2+1i)& = 0. The eigenvectors are £V = (24i,1)T and £€® = (2—i,1)T.

(b) The eigenvalues are purely imaginary. Hence the critical point is a stable center.

(c,d)
e e e o o oo o o —
DU e P DU P Prn e G N — — = 8
DU el el PP P PR = o o — e o
Pl P e ral e -— o 6
o o — — = -
— — e -— — -
= 4

8.(a) The characteristic equation is given by

—1-r -1
‘ 0 _1/4_r:(r+1)(r+1/4):0,
with roots ;1 = —1 and ro = —1/4. For r = —1, the components of the solution

vector must satisfy £ = 0. Thus the corresponding eigenvector is 5(1) = (1,0)7.
Substitution of r = —1/4 results in the single equation 3¢;/4 + & =0. A corre-
sponding eigenvector is 5(2) =(4,-3)7T.
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(b) The eigenvalues are real and both negative. Hence the critical point is an
asymptotically stable node.

-0.54

9.(a) Solution of the ODEs is based on the analysis of the algebraic equations

) @) -6)

For a nonzero solution, we require that det(A — rI) = r? —2r + 1 = 0. The single
root of the characteristic equation is » = 1. Setting r = 1, the components of

the solution vector must satisfy & —2& = 0. A corresponding eigenvector is & =
(2,1t

(b) Since there is only one linearly independent eigenvector, the critical point is an
unstable, improper node.

oo i e s e e ada e e e e e a—a— o= -0

, = — — o~
e ‘¢ S — -10
e . — - = — —

-20 o

T T e - > > > = > > v v v v v v v v

11.(a) The characteristic equation is (r + 1)? = 0, with double root 7 = —1. It is

easy to see that the two linearly independent eigenvectors are 5(1) = (1,0)" and
€% =0,

(b) Since there are two linearly independent eigenvectors, the critical point is an
asymptotically stable proper node.
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12.(a) Setting x= £ "’ results in the algebraic equations

2—r —=5/2 ISANEAY
9/5 —1—-r)\&) \0o)°
For a nonzero solution, we require that det(A — rI) = r? —r +5/2 = 0. The roots

of the characteristic equation are r =1/2 + 3¢/2. Substituting r =1/2 — 3i/2,
the equations reduce to (3 4 3i)&; — 5& = 0. Therefore the two eigenvectors are

€M = (5,34 3))T and £€? = (5,3 —3i)7.

(b) Since the eigenvalues are complex, with positive real part, the critical point is
an unstable spiral.

(c,d)

0.5 1 5 2.5

~10 4

14. Setting x’ = 0, that is,

-2 1 x— 2

1 =2)7  \-1)’
we find that the critical point is x° = (—=1,0)7. With the change of dependent
variable, x=x"+u , the differential equation can be written as

da (-2 1
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The critical point for the transformed equation is the origin. Setting u= & e results
in the algebraic equations

7 )=

For a nonzero solution, we require that det(A —rI) =r%+4r + 3 = 0. The roots
of the characteristic equation are r = —3, —1. Hence the critical point is an
asymptotically stable node.

15. Setting x’ = 0, that is,

(2 )= ()

we find that the critical point is x° = (—=2,1)7. With the change of dependent
variable, x=x"4u , the differential equation can be written as

da (-1 -1

The characteristic equation is det(A — rI) = 72 4+ 2r + 3 = 0, with complex conju-
gate roots » = —1 =+ iy/2 . Since the real parts of the eigenvalues are negative, the
critical point is an asymptotically stable spiral.

16. The critical point x° satisfies the system of equations
0 —5 x={ 7).
6 0 ~

It follows that z° =+/§ and y° = /3. Using the transformation, x=x"+u , the
differential equation can be written as

du 0 -8

dat (6 0 )“'
The characteristic equation is det(A — rI) = r> + 36 = 0. Since 86 > 0, the roots
are purely imaginary, with r = 4+4,/80 . Hence the critical point is a stable center.

21.(a) If ¢ > 0 and p < 0, then the roots are either complex conjugates with negative
real parts, or both real and negative.

(b) If ¢ > 0 and p = 0, then the roots are purely imaginary.

(c) If ¢ < 0, then the roots are real, with r1 - ro < 0. If p > 0, then either the roots
are real, with r; > 0 or the roots are complex conjugates with positive real parts.
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2. The differential equations can be combined to obtain a related ODE

dy 2y

dr =z
The equation is separable, with

@ _ 2dx

y x

The solution is given by y = C 72. Note that the system is uncoupled, and hence
we also have = = xpe~* and y = ype?’. Matching the initial conditions, for the
first case we obtain xz(t) = 4e~! and y(t) = 2¢2!, for the second case we obtain
x(t) = 4e~" and y(t) = 0.

? PP T P R T A R R R R KRR
I DI A A R R R R R
1 1T AR TR TR R
1 D A RRARXNANRNARX
to5 D IR A R R T T T
f DI U R T T T T
f AT T T ) N e e W T W e
o A AR R D T T T T T
? AR TR R T A T T T T e
71 A T T T T T e e T T e
tr AR R T T T T T e T e
A R A R T T T T e S
R AR R T e e T e T e S
t | AR R T T T T S = N
rt AORORORORR R R R RO R R T v
Ve R U U N N N N N NG N N N A S S
VA L UL NN N NG R A A e e et
= A N R e
o i e e e i Tt et e e
NN P f oo a gt o e

In order to determine the direction of motion along the trajectories, observe that
for positive initial conditions, x will decrease, whereas y will increase.

4. The trajectories of the system satisfy the ODE

dy _ bz
der  ay’
The equation is separable, with ay dy = —bx dz. Hence the trajectories are given

by bx? + ay? = C?, in which C is arbitrary. Evidently, the trajectories are ellipses.
Invoking the initial condition, we find that C? = ab. The system of ODEs can also

be written as
dx (0 a
a \-b 0)*

Using the methods in Chapter 7, it is easy to show that

x = +/a cos Vabt, y = —Vb sin Vabt.
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Note that for positive initial conditions, z will increase, whereas y will decrease.

6.(a) The critical points are solutions of the equations

14+2y=0
1-32%=0.
There are two critical points, (—1/v/3,—1/2) and (1/v/3,—1/2).
(b)

vy NY bV
Vo NI
Yoy Ny by
VoLoy v oy oy

v v Vb

v \ by

Y v MR

v vy I R

I AR L\

4 .Y |
B4 VY i

¢ b ¥

4 b 4

¢ bl ¢

¥ $d a4

¢ 44 -

4 44 4

44 ) y

4 4 ¢

4 i 4 4 44

(c) Locally, the trajectories near the point (—1/4/3,—1/2) resemble the behavior
near a saddle. Hence the critical point is unstable. Near the point (1/v/3,—1/2),
the solutions are periodic. Therefore the second critical point is stable.

7.(a) The critical points are solutions of the equations

Z_2y=0

2z —x
3y —2y% — 3zy = 0.

There are four critical points, (0,0), (0,3/2), (2,0), and (—1,3).
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(b)
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(¢) Examining the phase plot we can conclude that (0,0) is an unstable node,
(0,3/2) is a saddle point (hence unstable), (2,0) is an asymptotically stable node,
and (—1, 3) is an asymptotically stable node.

(d) Again, the phase plot shows us that the basin of (2,0) is the (open) first and
fourth quadrants and the basin of (—1,3) is the (open) second quadrant.

8.(a) The critical points are solutions of the equations

-2+y)(z+y) =0
—y(l—2)=0.

There are three critical points, (0,0), (1,—1), and (1, —2).

(b)
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(¢) Examining the phase plot we can conclude that (0, 0) is an asymptotically stable
node, (1,—1) is a saddle point (hence unstable), and (1, —2) is an asymptotically
stable spiral.

(d) The phase plot suggests that the basin of (0,0) is the whole plane except for a
subset of the fourth quadrant that is the basin of (1, —2).
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9.(a) The critical points are given by the solution set of the equations
y2—z—y)=0
—r—y—2z2y=0.
Clearly, (0,0) is a critical point. If z =2 —y, then it follows that y(y —2)=1.
The additional critical points are (1 —v/2,1++/2) and (1 ++v2,1 —+/2).

(b)
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(¢) The behavior near the origin is that of a stable spiral. Hence the point (0,0)
is asymptotically stable. At the critical point (1 — /2,14 /2), the trajectories
resemble those near a saddle. Hence the critical point is unstable. Near the point
(1+ V2 ,1— V2 ), the trajectories resemble those near a saddle. Hence the critical
point is also unstable.

(d) Observing the direction field and the trajectories in (b), we can see that the
basin of attraction of the origin is a complicated region including portions of all
four quadrants.

10.(a) The critical points are solutions of the equations
2+z)(y—2)=0
y(2+z—2?)=0.
The origin is evidently a critical point. If z = —2, theny = 0. If x = y, then either

y=0or x=y=—1or x =y =2. Hence the other critical points are (—2,0),
(—1,-1) and (2,2).
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(c) Based on the global phase portrait, the critical points (0,0) and (—2,0) have
the characteristics of a saddle. Hence these points are unstable. The behavior near
the remaining two critical points resembles those near a stable spiral. Hence the
critical points (—1,—1) and (2,2) are asymptotically stable.

(d) The basin of (2,2) is the part of the upper half plane where x > —2, the basin
of (—1,—1) is the part of the lower half plane where z > —2.

11.(a) The critical points are given by the solution set of the equations
x(1-2y)=0
y—a?—y>=0.
Ifz =0, theneithery =0ory=1. Ify = 1/2, then x = +1/2. Hence the critical
points are at (0,0), (0,1), (—1/2,1/2) and (1/2,1/2).

(b)

(¢) The trajectories near the critical points (—1/2,1/2) and (1/2,1/2) are closed
curves. Hence the critical points have the characteristics of a center, which is
stable. The trajectories near the critical points (0,0) and (0,1) resemble those
near a saddle. Hence these critical points are unstable.



390

Chapter 9. Nonlinear Differential Equations and Stability

(d) As the two stable critical points are centers, they have no basins of attraction.
Trajectories near the critical points are ovals around those points.
13.(a) The critical points are solutions of the equations

2+a)(y—=z)=0

4—2z)(y+x)=0.
Ify=a,theneitherc=y=0orz=y=4. lf c =-2, theny=2. If z = —y,
then y =2 or y = 0. Hence the critical points are at (0,0), (4,4) and (-2, 2).

(b)
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(c) The critical point at (4,4) is evidently a stable spiral, which is asymptotically
stable. Closer examination of the critical point at (0, 0) reveals that it is a saddle,
which is unstable. The trajectories near the critical point (—2,2) resemble those
near an unstable node.

(d) The basin of attraction for (4,4) consists of the points for which « > —2 and

which lie over a curve (inferred from part (b)) passing through the origin and
(_2a2)'

14.(a) The critical points are given by the solution set of the equations
2-=z)(y—x)=0
y(2—x—2?)=0.

If x =2, theny=0. If y =0, then x = 0. Also, x = 1 and x = —2 are roots of the
second equation, and then y = = from the first equation. Hence the critical points
are at (2,0), (0,0), (1,1) and (-2, -2).
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(¢) The critical points (0,0) and (2,0) are saddles, hence unstable. The other two
critical points are asymptotically stable spirals.

(d) The basin of (1, 1) is the part of the upper half plane where 2 < 2 (so all points
(z,y) such that < 2 and y > 0), the basin of (—2, —2) is all points (x, y) such that
< 2andy<0.

15.(a) The critical points are given by the solution set of the equations
x2—xz—y)=0
—r+3y —2xy=0.

If x =0, then y = 0. The other critical points can be found by setting y =2 — x
and substituting this into the second equation. This gives us x =3 and = = 1.
Hence the critical points are at (0,0), (1,1) and (3,—1).

(b)

I s g d S

(¢) The critical point (1,1) is a saddle, hence unstable. (0,0) is an unstable node
and (3,—1) is an asymptotically stable spiral.

(d) The basin of (3, —1) consists of all points (z,y) for which z > 0 and z > y.
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16.(a) The critical points are given by the solution set of the equations
x(2—xz—y)=0
(1-y)2+a)=0.
If x =0, then y =1. Also, when z = —2, then y = 4. The last critical point is
given by y = 1, © = 1. Hence the critical points are at (0,1), (1,1) and (—2,4).

(b)
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(c) The critical point (0,1) is a saddle, hence unstable. (—2,4) is an unstable spiral
and (1,1) is an asymptotically stable node.

(d) The basin of (1,1) is the right half plane, i.e. all the points (z,y) for which
x> 0.
18.(a) The trajectories are solutions of the differential equation
dy A
dx y’
which can also be written as 4x dx + ydy = 0. Integrating, we obtain

4a? +y? = C2.

A
i

Hence the trajectories are ellipses.

(b)
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Based on the differential equations, the direction of motion on each trajectory is
clockwise.

19.(a) The trajectories of the system satisfy the ODE

dy 2x+y
de  y

which can also be written as (2x + y)dx — ydy = 0. This differential equation is
homogeneous. Setting y = zv(x), we obtain
2

dv
v+r—=—-+1,
dr v

that is,
dv  2+4+v—0v?
r—=—.
dx v
The resulting ODE is separable, with solution 23(v + 1)(v — 2)? = C. Reverting
back to the original variables, the trajectories are level curves of

H(z,y) = (z +y)(y — 22)°.

The origin is a saddle. Along the line y = 2z, solutions increase without bound.
Along the line y = —x, solutions converge toward the origin.

20.(a) The trajectories are solutions of the differential equation

dy x4y

dr  x—vy’

which is homogeneous. Setting y = z v(x), we obtain

dv T+ v
v+r— = ,
dr x—av

that is,
dv 1+ 02
r— = .
dx 1—w
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The resulting ODE is separable, with solution

arctan(v) = In|z| v/ 1+ v2.

Reverting back to the original variables, the trajectories are level curves of

H(z,y) = arctan(y/z) — In Va2 2.

The origin is a stable spiral.
22.(a) The trajectories are solutions of the differential equation

dy —2xy? + 62y

doe  2x2y — 322 — 4y’

which can also be written as (2ry? — 6 xy)dx + (22%y — 32% — 4y)dy = 0. The re-
sulting ODE is exact, with

OH OH
— =2zy® —6xy and — = 222y — 322 — 4y.
or oy

Integrating the first equation, we find that H(x,y) = 2%y? — 32%y + f(y). It fol-
lows that

OH
=92 2, 3 2 / .
e A
Comparing the two partial derivatives, we obtain f(y) = —2y% + c¢. Hence

H(z,y) = 2%y* — 322y — 2%

(b) The associated direction field shows the direction of motion along the trajecto-
ries.
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24.(a) The trajectories are solutions of the differential equation

6z + z°

dy

dz
which can also be written as (6 x — 2%)dz + 6 ydy = 0. The resulting ODE is exact,

with

)

6y

=6y.

OH

0OH

or
Integrating the first equation, we have H(z,y) = 322 — 2*/4 + f(y).

that

6z — x> and

dy

It follows

3y% + c. Hence

Comparing the two partial derivatives, we conclude that f(y)

+ 392

z*
4

H(I‘,y):3$2—

/ﬁ;

WAA

=

Q\A
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©
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1. Write the system in the form x’ =Ax+g(x). In this case, it is evident that

i z\ (1 O x n —y?

dt\y) \1 -2/ \y z2 )’
That is, g(x) = (—y?2,22)7. Using polar coordinates, ||g(x)|| = 72V/sin* 6 + cos* 0
and ||x|| =r. Hence

lim el = lim rV/sin 6 4 costf =0,

r—0 ||X|| r—0

and the system is locally linear. The origin is an isolated critical point of the linear

system C‘;(;) = G —02> <Z>

The characteristic equation of the coefficient matrix is 2 4+ r — 2 = 0, with roots
ry =1 and ro = —2. Hence the critical point is a saddle, which is unstable.

2. The system can be written as

a()-C 200

Following the discussion in Example 3, we note that F(z,y) = —x + y + 2zy and
G(r,y) = —4x —y + 2% — 2. Both of the functions F and G are twice differen-
tiable, hence the system is locally linear. Furthermore,

Fo=-1+2y, Fy=1+2z, G, =—-4+2z, Gy=-1-2y.
The origin is an isolated critical point, with
(Fx(o,O) Fy(0,0)> _ (—1 1 )
G.(0,0) G,(0,0)) \—-4 -1)°
The characteristic equation of the associated linear system is 72 + 27 + 5 = 0, with

complex conjugate roots 712 = —1 £ 2¢. The origin is a stable spiral, which is
asymptotically stable.

5.(a) The critical points consist of the solution set of the equations
2+a)(y—=z)=0
4—-z)(y+2)=0.

As shown in Problem 13 of Section 9.2, the only critical points are at (0,0), (4,4)
and (—2,2).

(b,c) First note that F(z,y) = 2+ z)(y —z) and G(z,y) = (4 —z)(y +z). The
Jacobian matrix of the vector field is

-Gy - (L i)
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At the origin, the coefficient matrix of the linearized system is

3(0,0) = (‘f Z)

with eigenvalues r; =1 —+/17 and ro =14 /17 . The eigenvalues are real, with
opposite sign. Hence the critical point is a saddle, which is unstable. At the point
(—2,2), the coefficient matrix of the linearized system is

3(=2,2) = (‘6L g)

with eigenvalues 71 = 4 and ro = 6. The eigenvalues are real, unequal and positive,
hence the critical point is an unstable node. At the point (4,4), the coefficient
matrix of the linearized system is

J(4,4) = <:g g),

with complex conjugate eigenvalues 719 = —3 £ ¢v/39 . The critical point is a
stable spiral, which is asymptotically stable. Based on Table 9.3.1, the nonlinear
terms do not affect the stability and type of each critical point.

(d)
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7.(a) The critical points are solutions of the equations

1—-y=0
(z—y)(x+y)=0.

The first equation requires that y = 1. Based on the second equation, x = £1.
Hence the critical points are (—1,1) and (1,1).

(b,e) F(z,y)=1—y and G(z,y) = 2% — y*. The Jacobian matrix of the vector

field is
= (G - 5)
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At the critical point (—1,1), the coefficient matrix of the linearized system is

st =(5 5.

with eigenvalues ry = —1 — V3 and 1o = -1+ /3 . The eigenvalues are real, with
opposite sign. Hence the critical point is a saddle, which is unstable. At the point
(1,1), the coefficient matrix of the linearized system is

J(1,1) = (g :;)

with complex conjugate eigenvalues 72 = —1 £ 7. The critical point is a stable
spiral, which is asymptotically stable.

(d)
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Based on Table 9.3.1, the nonlinear terms do not affect the stability and type of
each critical point.

8.(a) The critical points are given by the solution set of the equations
z(l—z—y)=0
y(2—y—3z)=0.

If x =0, then eithery=0o0ry=2. If y=0,thenz=0o0orz=1. If y=1—=x,
then either x =1/2 or x =1. If y=2—3z, then £ =0 or x =1/2. Hence the
critical points are at (0,0), (0,2), (1,0) and (1/2,1/2).

(b,c) Note that F(x,y) =z —2? — 2y and G(z,y) = (2y — y* — 3zy)/4. The Ja-
cobian matrix of the vector field is

3= (G ) =i’ vamu-sa)

At the origin, the coefficient matrix of the linearized system is

oGy )
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with eigenvalues 71 =1 and 7o = 1/2. The eigenvalues are real and both positive.
Hence the critical point is an unstable node. At the point (0,2), the coefficient
matrix of the linearized system is

0= (04 5)

with eigenvalues 7 = —1 and ro = —1/2. The eigenvalues are both negative, hence
the critical point is a stable node. At the point (1,0), the coeflicient matrix of the

linearized system is
-1 -1
J(lao)_(o _411),

with eigenvalues r1 = —1 and ro = —1/4. Both of the eigenvalues are negative,
and hence the critical point is a stable node. At the critical point (1/2,1/2), the
coefficient matrix of the linearized system is

S22 = (She THR)

with eigenvalues r; = —5/16 — v/57 /16 and ro = —5/16 + /57 /16. The eigen-
values are real, with opposite sign. Hence the critical point is a saddle, which is
unstable.

(d)
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Based on Table 9.3.1, the nonlinear terms do not affect the stability and type of
each critical point.

9.(a) The critical points are given by the solution set of the equations

2+y)(y—=z/2)=0
2—-z)(y+x/2)=0.

If y=—2, then either z=2 or x =4. If £ =2, then y=—-2 or y=1. Also,
=y = 0 is a solution. Hence the critical points are at (0,0), (2, —2), (4,—2) and
)-

]

2,1

—~
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(b,c) Note that F(z,y) =2y +y? — 2z —2y/2 and G(z,y) =2y — oy +z — 2%/2.
The Jacobian matrix of the vector field is

-(Gly &em)- (G )

At the origin, the coefficient matrix of the linearized system is

3(0,0) = (‘11 3)

with eigenvalues 1 = (1 ++/17)/2 and 7o = (1 — +/17)/2. The eigenvalues are
real, with opposite sign. Hence the critical point is a saddle, which is unstable. At
the point (2, —2), the coefficient matrix of the linearized system is

um—m=<2‘f)

with eigenvalues r; = v/3i and r, = —/3i. The eigenvalues are purely imaginary,
hence the critical point is either a center or a spiral point. At the point (4,—2),
the coefficient matrix of the linearized system is

ML—%=(ﬂ_:®7

with eigenvalues r = —1 + /5 and rog =—1— V5. The eigenvalues are real, with
opposite sign. Hence the critical point is a saddle, which is unstable. At the critical
point (2, 1), the coefficient matrix of the linearized system is

MLQ(?? @,

with eigenvalues r; = —3/4++/87i/4 and ry = —3/4—+/87i/4. The critical
point is a stable spiral, which is asymptotically stable.

(d)
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We observe that the point (2, —2) is a spiral point.
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11.(a) The critical points are solutions of the equations

2o+ y+xy> =0
r—2y—a2y=0.

Substitution of y = x/(x + 2) into the first equation results in
32" 4 132° + 282° + 202 = 0.

One root of the resulting equation is z = 0. The only other real root of the equation
is

T =

(287 + 18v/2019)1/% — 83(287 + 18v/2019) /3 — ]

@\»—A

Hence the critical points are (0,0) and (—1.19345...,—1.4797...).

(b,c) F(x,y) =2x+y+2y® and G(z,y) = — 2y — xy. The Jacobian matrix of
the vector field is

il G ) R A g

At the origin, the coefficient matrix of the linearized system is

s00= (7 L),

with eigenvalues r; = V5 and ro = —/5 . The eigenvalues are real and of op-
posite sign. Hence the critical point is a saddle, which is unstable. At the point
(—1.19345...,—1.4797...), the coefficient matrix of the linearized system is

J(~1.19345, —1.4797) = (—1.2399 —6.8393)

24797 —0.8065

with complex conjugate eigenvalues 719 = —1.0232 4 4.1125¢. The critical point
is a stable spiral, which is asymptotically stable.

(d)
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In both cases, the nonlinear terms do not affect the stability and type of the critical
point.

12.(a) The critical points are given by the solution set of the equations
(I1+2z)siny=0
l—x—cosy=0.
If x = —1, then we must have cos y = 2, which is impossible. Therefore sin y =0,
which implies that y =nm,n=0,+1,2,.... Based on the second equation,

r=1—cosnm.

It follows that the critical points are located at (0,2kw) and (2, (2k + 1)7) , where
k=0,+1,+£2,...

(b,c) Given that F(z,y)=(1+x)siny and G(z,y) =1—2x —cos y, the Jaco-
bian matrix of the vector field is

(sin y (1+x)cos y)
J= . .
—1 sin y

At the critical points (0, 2k7), the coefficient matrix of the linearized system is

3(0,2km) = (_01 é) :

with purely complex eigenvalues 712 = £ ¢. The critical points of the associated
linear systems are centers, which are stable. Note that Theorem 9.3.2 does not
provide a definite conclusion regarding the relation between the nature of the critical
points of the nonlinear systems and their corresponding linearizations. At the points
(2, (2k + 1)7), the coefficient matrix of the linearized system is

32,2k + )7 = (01 ‘03),

with eigenvalues 7 = v/3 and 75 = —v/3 . The eigenvalues are real, with opposite
sign. Hence the critical points of the associated linear systems are saddles, which
are unstable.

(d)
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As asserted in Theorem 9.3.2, the trajectories near the critical points (2, (2k + 1)7)
resemble those near a saddle. Upon closer examination, the critical points (0, 2km)
are indeed centers.

13.(a) The critical points are solutions of the equations

r—1y>=0

Yy — 22 =0
Substitution of y = 2 into the first equation results in
r—at= 0,
with real roots x = 0, 1. Hence the critical points are at (0,0) and (1,1).

(b,c) In this problem, F(z,y) =z —y? and G(r,y) =y — 2?. The Jacobian ma-

trix of the vector field is
(1 2
J= (—23: 1 ) )

At the origin, the coefficient matrix of the linearized system is

J(o,O)(}) ‘f)

with repeated eigenvalues 71 = 1 and ro = 1. It is easy to see that the correspond-
ing eigenvectors are linearly independent. Hence the critical point is an unstable
proper node. Theorem 9.3.2 does not provide a definite conclusion regarding the
relation between the nature of the critical point of the nonlinear system and the
corresponding linearization. At the critical point (1,1), the coefficient matrix of

the linearized system is
1 -2

with eigenvalues 1 = 3 and ro = —1. The eigenvalues are real, with opposite sign.
Hence the critical point is a saddle, which is unstable.

(d)
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Closer examination reveals that the critical point at the origin is indeed a proper
node.

14.(a) The critical points are given by the solution set of the equations
1—2y=0
r—y>=0.

After multiplying the second equation by y, it follows that y = +1. Hence the
critical points of the system are at (1,1) and (=1, —1).

(b,c) Note that F(z,y) =1—xy and G(x,y) =2 —y>. The Jacobian matrix of

the vector field is
_(y -z

At the critical point (1,1), the coefficient matrix of the linearized system is

= (7 5.

with eigenvalues 7y = —2 and ry = —2. The eigenvalues are real and equal. It is
easy to show that there is only one linearly independent eigenvector. Hence the
critical point is a stable improper node. Theorem 9.3.2 does not provide a definite
conclusion regarding the relation between the nature of the critical point of the
nonlinear system and the corresponding linearization. At the point (—1,—1), the
coefficient matrix of the linearized system is

I(=1,-1) = G _13> ,

with eigenvalues r1 = —1 + V5 and 7o = —1 — /5 . The eigenvalues are real, with
opposite sign. Hence the critical point of the associated linear system is a saddle,
which is unstable.

()

Closer examination reveals that the critical point at (1,1) is indeed a stable im-
proper node, which is asymptotically stable.
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15.(a) The critical points are given by the solution set of the equations
2 —y—a(x® +y*) =0
z—y+y(a®+y?) =0.

It is clear that the origin is a critical point. Solving the first equation for y, we find

that
—1 £+v1—8z2 — 424
y= 5 :
T

Substitution of these relations into the second equation results in two equations of
the form f1(z) =0 and fo(z) = 0. Plotting these functions, we note that only
fi(z) = 0 has real roots given by =~ +£0.33076. It follows that the additional
critical points are at (—0.33076,1.0924) and (0.33076,—1.0924).

(b,c) Given that
F(z,y) = -2z —y —a(a® +y?)
Glz,y) =z —y+y@® +y?),

the Jacobian matrix of the vector field is

J— -2 — 322 — 92 —1—2zy
- 14 2y —1+2%2+3y%)"

At the critical point (0,0), the coefficient matrix of the linearized system is
-2 -1
with complex conjugate eigenvalues 71 o = (—3 %+ i1/3)/2. Hence the critical point

is a stable spiral, which is asymptotically stable. At the point (— 0.33076,1.0924),
the coefficient matrix of the linearized system is

—3.5216 —0.27735)

J(—0.33076,1.0924) = <0_27735 2.6895

with eigenvalues r; = —3.5092 and 79 = 2.6771. The eigenvalues are real, with

opposite sign. Hence the critical point of the associated linear system is a saddle,
which is unstable. Identical results hold for the point at (0.33076, —1.0924) .

(d)
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16.(a) The critical points are solutions of the equations
y+az(l—2®—y*) =0
—z+y(l -2 —y*) =0.

Multiply the first equation by y and the second equation by x. The difference of
the two equations gives 22 4+ y? = 0. Hence the only critical point is at the origin.

(b,c) With F(x,y) =y +z(1 — 2% —4?) and G(z,y) = —x +y(1 — 22 —3?), the
Jacobian matrix of the vector field is

1— 322 —y? 1—2z2y
J: 2 2 .
-1 -2y 1—2*—-3y

At the origin, the coefficient matrix of the linearized system is

3(0,0) = (_11 })

with complex conjugate eigenvalues 712 =1 £ ¢. Hence the origin is an unstable
spiral.

(d)
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17.(a) The critical points are given by the solution set of the equations

4—y*=0
(x+3/2)(y—=x)=0.

Clearly, y = +2. The second equation tells us that = —3/2 or « = y. Hence the
critical points are at (—3/2,2), (=3/2,-2), (2,2) and (-2, -2).

(b,c) Note that F(z,y) =4 —y* and G(x,y) = zy + 3y/2 — 2% — 32/2. The Ja-
cobian matrix of the vector field is

1= (Gl S = (s gn o)
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At (—3/2,2), the coefficient matrix of the linearized system is

3(=3/2,2) = (732 ‘04> ,

with eigenvalues 71 = /147 and ro = —v/14i. The eigenvalues are purely imag-
inary, hence the critical point is either a center or a spiral point. At the point
(—=3/2,—2), the coefficient matrix of the linearized system is

3(=3/2,-2) = (%2 3) ,

with eigenvalues r; = v/2i and ry = —/2i. The eigenvalues are purely imaginary,
hence the critical point is either a center or a spiral point. At the point (2,2), the
coefficient matrix of the linearized system is

J(2,2) = (_3/2 7‘/2) ,

with eigenvalues 1 = (74 v/273)/4 and ry = (7 — /273)/4. The eigenvalues are
real, with opposite sign. Hence the critical point is a saddle, which is unstable. At
the critical point (—2,—2), the coefficient matrix of the linearized system is

J(=2,-2) = <1(/)2 —f/2> ’

with eigenvalues r; = (—1++v/33)/4 and ro = —1 —+/33)/4. Hence the critical
point is a saddle, which is unstable.

(d)

\

L

\ §
¥ g\
i LI
/ i
/ it
;

Further observation indicates that (—3/2,2) and (—3/2,—2
points.

are unstable spiral

19.(a) The Jacobian matrix of the vector field is

0 1
J= <1+6x2 O)'

At the origin, the coefficient matrix of the linearized system is

J<0,0>=(‘1) (1))
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with eigenvalues r1 = 1 and ro = —1. The eigenvalues are real, with opposite sign.
Hence the critical point is a saddle point.

(b) The trajectories of the linearized system are solutions of the differential equation

@753

der vy

)

which is separable. Integrating both sides of the equation xzdx —ydy =0, the
solution is x? — y? = C'. The trajectories consist of a family of hyperbolas.

—ea o i ¥
>~ 1 N WNVY WY

AR o b

AR AR R W g

It is easy to show that the general solution is given by x(t) = cie’ + cae™

and
y(t) = c1et — cpe™t. The only bounded solutions consist of those for which ¢; = 0.

In that case, x(t) = coe™t = —y(t).
(¢) The trajectories of the given system are solutions of the differential equation

@ _r+ 223
de y
which can also be written as (z + 223)dxr — ydy = 0. The resulting ODE is exact,
with
OH OH

%:x—&—Qx?’ and a—y:—y.

Integrating the first equation, we find that H(x,y) = 2%/2+ 2*/2 + f(y). It fol-
lows that

OH ,
57y = f'(y).
Comparing the partial derivatives, we obtain f(y) = —y?/2 + c¢. Hence the solu-
tions are level curves of the function

H(z,y) =2*/2+2%/2 —y?/2.

(The equation is also separable. Separation of variables yields the same H(x,y).)
The trajectories approaching to, or diverging from, the origin are no longer straight
lines.
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21.(a) The solutions of the system of equations

y=0

—W?sinz =0

consist of the points (xnm,0), n=0,1,2,.... The functions F(z,y) =y and
G(x,y) = —w?sin z are analytic on the entire plane. It follows that the system is
locally linear near each of the critical points.

(b) The Jacobian matrix of the vector field is

0 1
J= (—wzcos T 0) '

At the origin, the coefficient matrix of the linearized system is

30.0=(_% o).

with purely complex eigenvalues r; o = *iw. Hence the origin is a center. Since
the eigenvalues are purely complex, Theorem 9.3.2 gives no definite conclusion
about the critical point of the nonlinear system. Physically, the critical point
corresponds to the state 6 =0, ' =0. That is, the rest configuration of the
pendulum.

(c) At the critical point (7,0), the coefficient matrix of the linearized system is

I(r,0) = (:}2 é)

with eigenvalues r1 2 = +w. The eigenvalues are real and of opposite sign. Hence
the critical point is a saddle. Theorem 9.3.2 asserts that the critical point for the
nonlinear system is also a saddle, which is unstable. This critical point corresponds
to the state # = 7w, 8’ = 0. That is, the upright rest configuration.

(d) Let w? = 1. The following is a plot of the phase curves near (0,0).
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It should be noted that the phase portrait has a periodic pattern, since § = x mod
27 .

22.(a) The trajectories of the system in Problem 21 are solutions of the differential
equation
dy —w?sin

dx y ’

which can also be written as w?sin xdx + ydy = 0. The resulting ODE is exact,
with

OH OH

— =w?sinz and — =y.

ox 0
Integrating the first equation, we find that H(z,y) = —w?cos & + f(y). It follows
that
oOH ,
873/ =f'(y).

Comparing the partial derivatives, we obtain f(y) = y?/2 + C'. Hence the solutions
are level curves of the function

H(z,y) = —w?cos z +4°%/2.
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Adding an arbitrary constant, say w?, to the function H(x ,y) does not change the
nature of the level curves. Hence the trajectories are can be written as

1
§y2 +w?(1 —cos x) =c,

in which c¢ is an arbitrary constant.

(b) Multiplying by mZL? and reverting to the original physical variables, we obtain
1 de

§mL2(E)2 +mL*w?(1 — cos 0) = mL?c.
Since w? = g/L, the equation can be written as
1 do
§mL2(a)2 +mgL(l —cos §) = F,

in which F = mL3c.

(¢) The absolute velocity of the point mass is given by v = Ldf/dt. The kinetic
energy of the mass is T = mv?/2. Choosing the rest position as the datum, that
is, the level of zero potential energy, the gravitational potential energy of the point
mass is

V =mgL(1 — cos 0).

It follows that the total energy,T'+ V', is constant along the trajectories.

23.(a) A =0.25

0.2 4

-0.1 A

—0.2

Since the system is undamped, and y(0) = 0, the amplitude is 0.25. The period is
estimated at 7~ 3.16.
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R T
A=05 051 320
A=10 10| 3.35
A=15 |15 | 3.63
A=20 20| 4.17

(c) Since the system is conservative, the amplitude is equal to the initial amplitude.
On the other hand, the period of the pendulum is a monotone increasing function

of the initial position A.

a.1 ]
4.():
3.9:
3.8 ]
3.7 ]
3.0:
3.5 ]
3.4:
3.3 ]

3.2

>

0's

1
A

2

It appears that as A — 0, the period approaches 7, the period of the corresponding

linear pendulum (27/w).
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2 a 6 & 10
t

The pendulum is released from rest, at an inclination of 4 — 7w radians from the
vertical. Based on conservation of energy, the pendulum will swing past the lower
equilibrium position (@ = 27) and come to rest, momentarily, at a maximum rota-
tional displacement of 0,4, = 37 — (4 — ) = 4w — 4. The transition between the
two dynamics occurs at A = 7, that is, once the pendulum is released beyond the
upright configuration.

26.(a) It is evident that the origin is a critical point of each system. Furthermore,
it is easy to see that the corresponding linear system, in each case, is given by
dx
dt
dy
dt
The eigenvalues of the coefficient matrix are 72 = £¢. Hence the critical point of
the linearized system is a center.

=Y

= —X.

(b) Using polar coordinates, it is also easy to show that

SELES]

=0.
r=0 x|l

Alternatively, the nonlinear terms are analytic in the entire plane. Hence both
systems are locally linear near the origin.

(c) For system (ii), note that

d d
xﬁ + ydit/ =ay — (2 +y?) — 2y — y* (¢ + 7).
Converting to polar coordinates, and differentiating the equation r? = 22 + y? with

respect to ¢, we find that
dr  dx dy 9 202 4
P =ty = (x° +y*)* = —r".
That is, 7’ = —r3. Tt follows that 72 = 1/(2t + ¢), where ¢ = 1/r2. Since r — 0 as

t — oo and dr/dt < 0, regardless of the value of r( , the origin is an asymptotically
stable critical point.
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©
~

On the other hand, for system (i),

dr  dx dy . o N2 4
rdt—xdt—I—ydt—( +y°) =1t

That is, 7’ = r3. Solving the differential equation results in

22 _ c—2t
(2t —c)?

Imposing the initial condition r(0) = o, we obtain a specific solution

2

2 _ o

T = - .
2rgt—1

Since the solution becomes unbounded as ¢ — 1/2r2, the critical point is unstable.

27. The characteristic equation of the coefficient matrix is 72 + 1 = 0, with complex
roots 712 = £4. Hence the critical point at the origin is a center. The characteristic
equation of the perturbed matrix is 72 — 2er + 1 + €2 = 0, with complex conjugate
roots 112 =€ x i. As long as € # 0, the critical point of the perturbed system is
a spiral point. Its stability depends on the sign of € .

28. The characteristic equation of the coefficient matrix is (r + 1)? = 0, with roots
ry =ro = —1. Hence the critical point is an asymptotically stable node. On the
other hand, the characteristic equation of the perturbed system is 72 +2r +1 4 € =
0, with roots r1o=-1++/—€. If €>0, then 75 =—1 =+ i\/e are complex
roots. The critical point is a stable spiral. If € <0, then 72 = -1 £ \/H are
real and both negative (Je| < 1). The critical point remains a stable node.
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(b) The critical points are solutions of the system of equations
z(1.5—2z—-05y)=0
y2—-—y—0.752)=0.

The four critical points are (0,0), (0,2), (1.5,0) and (0.8,1.4).

(¢) The Jacobian matrix of the vector field is
J— 3/2—2x—vy/2 —x/2
a —3y/4 2—-3x/4—-2y)"

At the critical point (0,0), the coefficient matrix of the linearized system is

3(0,0) = (3(/)2 g) .

The eigenvalues and eigenvectors are

r=3/2, €0 = <é> s =2, 6% = (?)

The eigenvalues are positive, hence the origin is an unstable node.
At the critical point (0,2), the coefficient matrix of the linearized system is

3(0,2) = (_1?{/22 _02> .

The eigenvalues and eigenvectors are

1 0
?”1:1/2,5(1): <_06) ;7"2:—2,5(2): <1>

The eigenvalues are of opposite sign. Hence the critical point is a saddle, which is
unstable.
At the critical point (1.5,0), the coefficient matrix of the linearized system is

~1.5 —0.75
J(1'5’0):( 0 0.875)’

The eigenvalues and eigenvectors are

1 —0.31579
r=-15,¢eW = (0) i1 =0.875, £?) = ( . )

The eigenvalues are of opposite sign. Hence the critical point is also a saddle, which
is unstable.
At the critical point (0.8,1.4), the coefficient matrix of the linearized system is

~0.8 —0.4
J(0.8,1.4) = (_1.05 _1.4) :

The eigenvalues and eigenvectors are

11 /51 1 11 /51
-+ — 75(1)2 3 BT |32 = ,5(2)2
10 10 3=val

e T 100 10




416 Chapter 9. Nonlinear Differential Equations and Stability

The eigenvalues are both negative. Hence the critical point is a stable node, which
is asymptotically stable.

(de)

(f) Except for initial conditions lying on the coordinate axes, almost all trajectories
converge to the stable node at (0.8,1.4). Thus the species can coexist.

2.(a)
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(b) The critical points are the solution set of the system of equations

z(1.5—2—-05y)=0
y(2—-05y—15z)=0.

The four critical points are (0,0), (0,4), (1.5,0) and (1,1).

(¢) The Jacobian matrix of the vector field is

(3/2 -2z —y/2 —x/2
J= < —3y/2 2—3x/2—y>'

At the origin, the coefficient matrix of the linearized system is

3(0,0) = (3(/)2 g) .
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The eigenvalues and eigenvectors are

ri=3/2, 60 = ((1)> ire=2, 6% = <(1)>

The eigenvalues are positive, hence the origin is an unstable node.
At the critical point (0,4), the coefficient matrix of the linearized system is

J(0,4) = (__1? _02> :

The eigenvalues and eigenvectors are

T = _1/2 ) 5(1) = (_14) y T2 = -2 ) 5(2) = <§))

The eigenvalues are both negative, hence the critical point (0,4) is a stable node,
which is asymptotically stable.
At the critical point (3/2,0), the coefficient matrix of the linearized system is

J(3/2,0) = <_%/2 :i’;i) .

The eigenvalues and eigenvectors are

ri=—3/2, € = (é) vy = —1/4, €)= (_35)

The eigenvalues are both negative, hence the critical point is a stable node, which
is asymptotically stable.
At the critical point (1, 1), the coefficient matrix of the linearized system is

(-1 -1/2
JA,1) = (—3/2 —1/2> '
The eigenvalues and eigenvectors are

-3+ v13 1 34+ +v13 0
Ty = a1 5(1) = (1+\/ﬁ) 3 T2 = T4 5(2) = (—1+\/ﬁ>~
2 2

The eigenvalues are of opposite sign, hence (1, 1) is a saddle, which is unstable.

(de)

AN S X RO
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(f) Trajectories approaching the critical point (1,1) form a separatrix. Solutions
on either side of the separatrix approach either (0,4) or (1.5,0). Thus depending
on the initial conditions, one species will drive the other to extinction.

4.(a)
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(b) The critical points are solutions of the system of equations

(1.5 —-052—y)=0
y(0.75 —y —0.1252) = 0.

The four critical points are (0,0), (0,3/4), (3,0) and (2,1/2).
(c) The Jacobian matrix of the vector field is
J— 3/2—x—y —x
o —y/8 3/4—x/8—2y)"
At the origin, the coefficient matrix of the linearized system is

3(0,0) = <3(/)2 3(/)4> .

The eigenvalues and eigenvectors are

=32, €0 = ()i =369 = (7).

The eigenvalues are positive, hence the origin is an unstable node.
At the critical point (0,3/4), the coefficient matrix of the linearized system is

3/4 0
J(0,3/4) = <—3/32 —3/4) :

The eigenvalues and eigenvectors are

r=3/4, €60 = (_116> pro=—3/4,¢% = (2)

The eigenvalues are of opposite sign, hence the critical point (0,3/4) is a saddle,
which is unstable.
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At the critical point (3,0), the coefficient matrix of the linearized system is

J(3,0) = (%/2 3/:;> .

The eigenvalues and eigenvectors are

r=-3/2,60 = <(1)) s =3/8, €@ = (_58>

The eigenvalues are of opposite sign, hence the critical point (0,3/4) is a saddle,

which is unstable.
At the critical point (2,1/2), the coeflicient matrix of the linearized system is

J(2,1/2) = (1/116 1%) '

The eigenvalues and eigenvectors are
-3+V3 4 1 3+V3 0
™ = 4 76()<_1+\/§); ro = — 4 75(): —1+3 |
8

The eigenvalues are negative, hence the critical point (2,1/2) is a stable node,
which is asymptotically stable.

(dye)

ittt
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(f) Except for initial conditions along the coordinate axes, almost all solutions
converge to the stable node (2,1/2). Thus the species can coexist.

7. It follows immediately that

(01X + 02Y)? — 4010 XY = 07 X% + 20102 XY 4+ 03Y? — 40105 XY = (01X — 02Y)?,

SO
(0’1X + 02Y)2 — 4((710'2 — a1a2)XY = (O’lX — O’QY)2 + 40&10[2X}/.

Since all parameters and variables are positive, it follows that
(O'lX + O'QY)Z - 4(0’102 - CleZQ)XY 2 0.

Hence the radicand in Eq.(39) is nonnegative.
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10.(a) The critical points consist of the solution set of the equations
xz(eg — o1z —a1y) =0
ylea — o2y — ) = 0.

If £ =0, then either y =0 or y = e2/02. If €, — 012 — ayy = 0, then solving for
x results in & = (e; — @1y)/01. Substitution into the second equation yields

(0'102 — alag)yQ - (0162 — 610&2)y = O

Based on the hypothesis, it follows that (o1€3 — e;aa)y = 0. So if o1€2 — €109 # 0,
then y = 0, and the critical points are located at (0,0), (0,e3/02) and (€1/07,0).
For the case o169 — €192 = 0, y can be arbitrary. From the relation

xz = (€1 —ary)/o1,

we conclude that all points on the line o1 + ayy = €; are critical points, in addi-
tion to the point (0,0).

(b) The Jacobian matrix of the vector field is

J— €1 — 201 — oy -1
- —any € — 209y —anx )’

At the origin, the coefficient matrix of the linearized system is

s0.0= (5 0.

with eigenvalues 71 =¢; and ry =€y. Since both eigenvalues are positive, the
origin is an unstable node.
At the point (0, €2/02), the coefficient matrix of the linearized system is

J(0,e2/02) = ((61“2 —oe)/or 0 > _ <<61a2 —ore)fon 0 )

€202 /02 —€2 €2002 /09 —€2

since o109 — ayay = 0 implies that «y /09 = 01 /as. Thus the matrix has eigenval-
ues 1 = (€2 — 01€2) /g and ro = —e3. If 0162 — €ga3 > 0, then both eigenval-
ues are negative. Hence the point (0, €2/02) is a stable node, which is asymptotically
stable. If oi1e3 — €12 < 0, then the eigenvalues are of opposite sign. Hence the
point (0,€ez/02) is a saddle, which is unstable.

At the point (e1/071,0), the coefficient matrix of the linearized system is

J(e1/o1,0) = (‘51 —e1e1/on ) :

(0'162 — 61(12)/0’1

with eigenvalues 7 = (0162 — €1a9)/01 and 19 = —€1. If 0160 — €100 > 0, then
the eigenvalues are of opposite sign. Hence the point (e;/01,0) is a saddle, which
is unstable. If o165 — €19 < 0, then both eigenvalues are negative. In that case
the point (e1/01,0) is a stable node, which is asymptotically stable.

(c) As shown in part (a), when o1e3 — €30 = 0, the set of critical points consists of
(0,0) and all the points on the straight line o1z + a1y = €1. Based on part (b), the
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origin is still an unstable node. Setting y = (€1 — o12)/aq , the Jacobian matrix of
the vector field, along the given straight line, is

I(er/o1,0) = < o —— )

—ag(e1 —o1x) /€3 — 209(e1 — o1x) /g — Qo

_ —01X —Q1xr
70&2(61 7(711’)/0&1 04213761042/0'1 ’

since o102 — ajag = 0 implies that oo/; = as /oy and since o165 — €10 = 0 im-
plies that ea = e;aa/01. The characteristic equation of the matrix is

2

€10y — 201X + 07X

7‘2—|— L r=20.
01

Since €3 = €12 /01, we have that (eyae — apo1@ + 021) /01 = €3 — o + 012, Hence
the characteristic equation can be written as

r? 4 ey —asr +oyx]r =0.

First note that 0 < x <e¢;/0y. Since the coefficient in the quadratic equation is
linear, and

egsat =0
€9 — X + 01X =
€rat x=¢€1/01,

it follows that the coefficient is positive for 0 < x < ¢;/07. Therefore, along the
straight line o1& 4+ a1y = €1, one eigenvalue is zero and the other one is negative.
Hence the continuum of critical points consists of stable nodes, which are asymp-
totically stable.

11.(a) The critical points are solutions of the system of equations
z(l—z—y)+0a=0
y(0.75 —y —0.52) +db=0.
Assume solutions of the form
T =20+ 210 + 120% + ...
Y=1yo+yd+yad>+....
Substitution of the series expansions results in
zo(1 — 20 — yo) + (¥1 — 27170 — Toy1 — T1Yo + @)d +... =0
Y0(0.75 —yo — 0.5x0 ) + (0.75y1 — 2yoy1 — 1Y0/2 — xoy1/2+ b)d + ... =0.

(b) Taking a limit as 6 — 0, the equations reduce to the original system of equations.
It follows that =g =yo =0.5.
(c) Setting the coefficients of the linear terms equal to zero, we find that
—y1/2 —x1/24+a=0
—21/4—y1/24+b=0,
with solution x1 =4a —4b and y; = —2a + 4b.
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(d) Consider the ab-parameter space. The collection of points for which b < a
represents an increase in the level of species 1. At points where b > a, 16 < 0.
Likewise, the collection of points for which 2b > a represents an increase in the
level of species 2. At points where 2b < a, y16 <0.

T T T T )
o 2 4 6 8 10

It follows that if b < a < 2b, the level of both species will increase. This condition
is represented by the wedge-shaped region on the graph. Otherwise, the level of
one species will increase, whereas the level of the other species will simultaneously
decrease. Only for a = b = 0 will both populations remain the same.

12.(a) The critical points consist of the solution set of the equations
—y=0
—yy—z(x—0.15)(x —2) =0.

Setting y =0, the second equation becomes z(z —0.15)(x —2) =0, with roots
x =0, 0.15 and 2. Hence the critical points are located at (0,0), (0.15,0) and
(2,0). The Jacobian matrix of the vector field is

5 0 1
T \-322+432x-03 —)°

At the origin, the coefficient matrix of the linearized system is

J(0,0) = (—3.3 j) :

1
Pia=—2 4 —/2542+30 .

2 10

Regardless of the value of ~, the eigenvalues are real and of opposite sign. Hence
(0,0) is a saddle, which is unstable.
At the critical point (0.15,0), the coefficient matrix of the linearized system is

0 -1
J(O.15,O):<0.2775 _7>,

with eigenvalues

with eigenvalues

¥ 1
— T4 /10042 —111.
ne2 =g vy
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If 10072 — 111 > 0, then the eigenvalues are real. Furthermore, since 779 =
0.2775, both eigenvalues will have the same sign. Therefore the critical point
is a node, with its stability dependent on the sign of v. If 1004% — 111 < 0, the
eigenvalues are complex conjugates. In that case the critical point (0.15,0) is a
spiral, with its stability dependent on the sign of ~y.

At the critical point (2,0), the coefficient matrix of the linearized system is

J(2,0) = (—gi j) ’

1
i = —% + — /252 + 370 .

10

Regardless of the value of «, the eigenvalues are real and of opposite sign. Hence
(2,0) is a saddle, which is unstable.

(b)

with eigenvalues
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Closer examination shows that for v = 1.5, the critical point (0.15,0) is a stable
node.

(c) Based on the phase portraits in part (b), it is apparent that the required value
of y satisfies 0.8 < v < 1.5. Using the initial condition 2(0) =2 and y(0) = 0.01,
it is possible to solve the initial value problem for various values of v. A reasonable
first guess is v = +/1.11 . This value marks the change in qualitative behavior of



424 Chapter 9. Nonlinear Differential Equations and Stability

the critical point (0.15,0). Numerical experiments show that the solution remains
positive for v ~ 1.20.

i LA 4ddy
Ly 4
Lhdd ‘il
vdd 4

o8y Y Y 4 Y 44
Liy 44
Ldd ‘il

oo d 44 4L v

Y YL ‘i

v i NN AR
Vi NN NN\~

oad b A v NAN NN NN
N e N N R R S AR
RN AR
A R R R R AR

N SRR SRR EANAR

seNTITIII TN
AR\ R,
d—rtttrrrtrt Nl

Py S e B e e AR i

%

14.(a) Nullclines:

(a) =3 (b) a=28/3 (c)a=2

(b) The critical points are solutions of the algebraic system

3
§oz—y:0

—dr+y+2®=0

which are

and exist for o < 8/3.

(¢) For a = 2, the critical points are at (1,3) and (3,3). The Jacobian matrix of

the vector field is
0 -1
J= (—4 +2z 1 > '

At the critical point (1,3), the coefficient matrix of the linearized system is

J(1,3) = (_02 _11) :



425

9.4

The eigenvalues of the Jacobian, r = —1 and 2, are real and opposite in sign; hence

the critical point is a saddle point.
At the critical point (3, 3), the coefficient matrix of the linearized system is

The eigenvalues of the Jacobian are

hence the critical point is an unstable spiral.

.“‘1 IR N NN
P e e e e e e e S S N

P e e e e e e e S S S SN NN

P e e e C XL QN

Fo

(d) The bifurcation value is «, = 8/3. The coincident critical points are at (2,4).

The coeflicient matrix of the linearized system i

S

1)

= (s

32,4

=0and 1.

The eigenvalues of the Jacobian are r

D e e et O S A SN
e e e e e K ASSSNASNSS

RS C A AN NN A\ W

T U S N N N, N %)
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15.(a) Nullclines:

(a) a=3 (b) a=9/4 (c) a=2

(b) The critical points are solutions of the algebraic system

—dr+y+a2®=0

—a—z+y=0
which are
3+ V9 —4a 3+ V9 — 4«
ro=—"F7 ", Yo=0+ ——F5——
2 2
and
3—+V9 — 4« 3—vV9 —da
fozf ,yO:aJrf.

These critical points exist for o < 9/4.

(c) For ao =2, the critical points are at (1,3) and (2,4). The Jacobian matrix of

the vector field is
J— 20 -4 1
B —1 1/°

At the critical point (1,3), the coefficient matrix of the linearized system is

J(1,3) = (:f D
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The eigenvalues of the Jacobian are
-1+5
r=——-"—,
2
hence the critical point is a saddle point.
At the critical point (2,4), the coefficient matrix of the linearized system is

3(2,4) = (_01 D

The eigenvalues of the Jacobian are

REXNE
2

hence the critical point is an unstable spiral.

r

AN N AN NN S A

(d) A bifurcation occurs for «, = 9/4. The coincident critical points are at (3/2,15/4).
The coefficient matrix of the linearized system is

J(3/2,15/4) = <j }) ,

with eigenvalues both equal to zero.
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w

N
7 Y I |

<

¥

16.(a) Nullclines:

(b) a=09/4

(b) The critical points are solutions of the algebraic system

—a—z+y=0
Az +y+2?=0
which are
3+ V9 —4a 3+ V9 —4a
= —F—— Y=+ ———
2 2
and

3—vV9 —4a 3—vV9 —4a

Y s Yo=a+ ——— .
2 2

These critical points exist for a < 9/4.

o =

(c) For a =2, the critical points are at (1,3) and (2,4). The Jacobian matrix of

the vector field is
g -1 1
S \2z—-4 1)/)°

At the critical point (1,3), the coefficient matrix of the linearized system is

J(1,3) = (:; D
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The eigenvalues of the Jacobian are
r==41,

hence the critical point is a center.
At the critical point (2,4), the coefficient matrix of the linearized system is

-1 1
- (7).
The eigenvalues of the Jacobian, » = —1 and 1, are real and opposite in sign; hence
the critical point is a saddle point.

-
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3
X

(d) The bifurcation value is «, = 8/3. The coincident critical point is at (3/2,14/4).
The coefficient matrix of the linearized system is

J(3/2,15/4) = (j D .

The eigenvalues are both equal to zero.
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18.(a) Nullclines:

(a) a=1/2 (b) a=3/4 (¢)a=1

(b) The critical points are (0,0), (1,0), ((4a — 3)/(4a — 2),1/(4dac — 2)), and (0, 3/(4c)).
The third critical point is in the first quadrant as long as a > 3/4.

(¢) The third and fourth critical points will coincide (see part (b)) when a = 3/4.

(d,e) The Jacobian is
J— 1-2z—y -
B —y/2 3/4—2ay —x/2)"
This means that at the origin
1 0

so the origin is an unstable node. (The eigenvalues are clearly 1 and 3/4.)
At the critical point (1,0) the Jacobian is

0= 1)

which means that this critical point is a saddle.
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At the critical point (0,3/(4«)) the Jacobian is

sosvor= (4

which implies that this critical point is a saddle when o > 3/4 and an asymptotically
stable node when 0 < o < 3/4.

At the critical point (72=2, L) the Jacobian is given by

3—4a 3—4a
J(404 -3 1 y=[%2 42
do—2 4o — 2 —12 0 —a |

da—2 da—2
It can be shown that this is an asymptotically stable node when « > 3/4.

(f) Phase portraits:

LS QA S s s
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!
A
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7
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(b) a=3/4 (c)a=1

19.(a) Nullclines:

(a) a=3/4 b)a=1 (¢) a=5/4

(b) The critical points are (0,0), (1,0), (0,«) and (1/2,1/2). Also, when a =1,
then all points on the line z + y = 1 are critical points.

(c) Clearly, @ = 1 is the bifurcation value.
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(d,e) The Jacobian is

1= (32, ey )

This means that at the origin
1 0
J(07 0) - <0 Oé) 9

so the origin is an unstable node when « > 0.
At the critical point (1,0) the Jacobian is

-1 -1
J(l’o)_(o 1a>’
which means that this critical point is a saddle when 0 < a < 1 and an asymptoti-

cally stable node when o > 1.
At the critical point (0, ) the Jacobian is

J(0,0)) = <_oi2_ozoi 1) —004> ’

which implies that this critical point is a saddle when 0 < o < 1 and an asymptot-
ically stable node when o > 1.
At the critical point (1/2,1/2) the Jacobian is given by

(=12 —1)2
J(1/2,1/2) = (1/2 ~a —1/2> '
The eigenvalues of J(1/2,1/2) are (—1 + +/—1 4+ 2«)/2. Thus the critical point is
an asymptotically stable spiral for 0 < a < 1/2, an asymptotically stable node for

1/2 < a < 1, and a saddle for a > 1.

(f) Phase portraits:

N S SO PR

1 B

S Statay
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1.(a)
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(b) The critical points are solutions of the system of equations
2(1.5— 0.5y) = 0
y(—=0.5+ ) =0.
The two critical points are (0,0) and (0.5, 3).

(c¢) The Jacobian matrix of the vector field is

S, (3/2 Ul e x) |

At the critical point (0,0), the coefficient matrix of the linearized system is

J@,@::C%Q _3Q>.

The eigenvalues and eigenvectors are

7"1:3/275(1): (é) ;T2:_1/27£(2): (2)

The eigenvalues are of opposite sign, hence the origin is a saddle, which is unstable.
At the critical point (0.5, 3), the coefficient matrix of the linearized system is

Jmamz(gyﬂ.

The eigenvalues and eigenvectors are

R T S A S WV e S A
rl_l?761_(2i\/§)7r2__22’62_<2iﬁ>.

The eigenvalues are purely imaginary. Hence the critical point is a center, which is
stable.
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(dye)

14 \q
N————— > > > > > > > > >

0.5 1 1.5 2

(f) Except for solutions along the coordinate axes, almost all trajectories are closed
curves about the critical point (0.5, 3).

2.(a)

.\
N
|
!
!
f
)
/
!
/
/
/
/
/
/
/
/
/

N
n\
\
!
!
!
/
!
/
/
/
/
7
/
/

e S R R R

"
4
4 NN N
! ENONN N NN
VS e e e T T T T T T S T
R S R e e e e e e e e T T e e e
A A e NN N N N N N N e e
VARSI IS TN A A TA T TR AT T A
I N I Y
N 2 T N W W Ve Vs W W U W S A
I O R AN/ S S S S S S A A A A A §
VN N~~s— ST
i\\\_'//////////////

I'd
/
/
l
|
|
|
|
|
\
\
\
\
\
\
\
\
\
\

PR S S S S

(b) The critical points are the solution set of the system of equations
2(1-05y)=0
y(—=0.254+0.52) =0.
The two critical points are (0,0) and (0.5, 2).

(¢) The Jacobian matrix of the vector field is

J:<1—y/2 —x/2 )

y/2  —1/4+z/2

At the critical point (0,0), the coefficient matrix of the linearized system is

J(O,O):(é f/4>.

The eigenvalues and eigenvectors are

r=1,eV= (é) iro=—1/4, €% = ((1))
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The eigenvalues are of opposite sign, hence the origin is a saddle, which is unstable.
At the critical point (0.5,2), the coefficient matrix of the linearized system is

J(05,2)::<? ‘}/4>.

The eigenvalues and eigenvectors are

T = Z/2 ) 5(1) = (121) T2 = _Z/2 ) 5(2) = (212)

The eigenvalues are purely imaginary. Hence the critical point is a center, which is
stable.

(de)

(f) Except for solutions along the coordinate axes, almost all trajectories are closed
curves about the critical point (0.5,2).

4.(a)
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(b) The critical points are the solution set of the system of equations
x(9/8—xz—y/2)=0
y(—1+ 2)=0.
The three critical points are (0,0), (9/8,0) and (1,1/4).
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(¢) The Jacobian matrix of the vector field is

J— (9/8—2x—y/2 —z/2 )

Y —1+z

At the critical point (0,0), the coefficient matrix of the linearized system is

3(0,0) = (9(/)8 01> .

The eigenvalues and eigenvectors are

r=9/8, M = (é) sro=—1,6% = (?)

The eigenvalues are of opposite sign, hence the origin is a saddle, which is unstable.
At the critical point (9/8,0), the coefficient matrix of the linearized system is

~9/8 —9/16
J(9/8,0)< o 173 )

The eigenvalues and eigenvectors are

9 1 1 9
n=-got <0> =gk (—20)'

The eigenvalues are of opposite sign, hence the critical point (9/8,0) is a saddle,
which is unstable.
At the critical point (1,1/4), the coefficient matrix of the linearized system is

I(1,1/4) = (1‘/11 ‘B/2> .

The eigenvalues and eigenvectors are

~2+v2 €W = <_241_\/§> ;7"2:7_2_\@ €@ = <_2_ﬁ>.

=Ty A 1

The eigenvalues are both negative. Hence the critical point is a stable node, which
is asymptotically stable.

(dse)
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(f) Except for solutions along the coordinate axes, all solutions converge to the
critical point (1,1/4).

5.(a)
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(b) The critical points are solutions of the system of equations
2(=14+252—-03y—2%)=0
y(—=1.5+ z)=0.
The four critical points are (0,0), (1/2,0), (2,0) and (3/2,5/3).

(¢) The Jacobian matrix of the vector field is
J_ —1 45z —32% —3y/10  —3z/10
o y -3/2+z)"

At the critical point (0,0), the coefficient matrix of the linearized system is

3(0,0) = <_01 _§/2> .

The eigenvalues and eigenvectors are

=g = (o) -a2 60 = (7).

The eigenvalues are both negative, hence the critical point (0,0) is a stable node,
which is asymptotically stable.
At the critical point (1/2,0), the coefficient matrix of the linearized system is

3(1/2.0) = <3é4 —31/12()) .

The eigenvalues and eigenvectors are

3 1 3
1 4 5 <0> y T2 1 ) 5 <35> .

The eigenvalues are of opposite sign, hence the critical point (1/2,0) is a saddle,
which is unstable.
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At the critical point (2,0), the coefficient matrix of the linearized system is

J(2,0) = (’63 ’1?45).

The eigenvalues and eigenvectors are

1 6
ro=-3,¢Y = <0) ira=1/2, 6% = (_35)

The eigenvalues are of opposite sign, hence the critical point (2,0) is a saddle,
which is unstable.
At the critical point (3/2,5/3), the coeflicient matrix of the linearized system is

_(-3/4 =9/20
J(3/275/3)—<5/3 0 )
The eigenvalues and eigenvectors are

. —9+i3v/39 . —9-i3v39
T () o ()

"= 8 1 8 1

The eigenvalues are complex conjugates. Hence the critical point (3/2,5/3) is a
stable spiral, which is asymptotically stable.

(dye)

.

G G G GG T

LR

e e e T e e e S T
et e e S e S B S S

AN N R,

(f) The single solution curve that converges to the node at (1/2,0) is a separatrix.
Except for initial conditions on the coordinate axes, trajectories on either side of
the separatrix converge to the node at (0,0) or the stable spiral at (3/2,5/3).

6. Given that ¢ is measured from the time that x is a maximum, we have

c cK
cos

x = —+ — cos(Vac t)

v Y
y:E_,_KE © sin(vac t) .
! al o

(a) Since sin f reaches a maximum at § = /2, y reaches a maximum at \/act = /2,
or t = m/(2y/ac) = T/4, where T = 2w /\/ac is the period of oscillation.
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(b) Note that
dx cK

= = ;/%sin(\/@t).
Since sin @ reaches a minimum of —1 at § = 37/2,77/2,..., x is increasing most
rapidly at \/act = 37/2,77/2,...,ort = 3T/4,7T /4, .. .. Since sin § reaches a maxi-
mum of 1 at 6 = 7/2,57/2, ..., x is decreasing most rapidly at \/act = 7/2,57/2, ...,
ort =T/4,5T/4,.... Since cosf reaches a minimum at § = 7,37, ..., x reaches a
minimum at /act = m,3m,...,or t =T/2,3T/2,....

(¢) Note that

d 3/2

d%{ = Kec (%) cos(vact).
Since cos # reaches a minimum of —1 at 6 = «, 3w, ..., y is decreasing most rapidly
at \/act =m,3m,...,or t =T/2,3T/2,.... Since cosf reaches a maximum of 1 at
0 =0,2m,...,yisincreasing most rapidly at \/act = 0,2m,...,ort =0,T,.... Since
sin f reaches a minimum at 6 = 37/2,77/2,..., y reaches a minimum at /act =
3w/2,7m/2,...,or t =3T/4,7T/4,....

(d) In the following example, the system in Problem 2 is solved numerically with
the initial conditions z(0) = 0.7 and y(0) =2. The critical point of interest is
at (0.5,2). Since a =1 and ¢ =1/4, it follows that the period of oscillation is
T=4m.

2.34
2.24

2.14

T u T d
0.4 0.5 0.6 0.7

8.(a) The period of oscillation for the linear system is T' = 27 /y/ac . In system (2),
a=1and ¢ =0.75. Hence the period is estimated as T = 27 /+/0.75 ~ 7.2552.

(b) The estimated period appears to agree with the graphic in Figure 9.5.3.

(c) The critical point of interest is at (3,2). The system is solved numerically, with
y(0) =2 and x(0) = 3.5,4.0,4.5,5.0. The resulting periods are shown in the table:

2(0) =35 | 2(0) =4.0 | 2(0) =45 | 2(0) =5.0
T | 7.26 7.29 7.34 7.42

The actual period steadily increases as z:(0) increases.
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9. The system

dy x
29— by(—1+ =
dt ( +3)

is solved numerically for various values of the parameters. The initial conditions
are z(0) =5, y(0) = 2.

(a) a=1land b=1":

T T T 1
2 3 4 5
x

The period is estimated by observing when the trajectory becomes a closed curve.
In this case, T'~ 6.45.

(b)a=3anda=1/3, withb=1:

2.6

4
2.4+
2.2+ 34

y y

2.0+

24
1.8
1.6

1

2 1 a 3
x

Fora=3, T~3.69. Fora=1/3, T ~ 11.44.
(c)b=3and b=1/3, witha=1:
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Forb=3, T~382. Forb=1/3, T~ 11.06.

(d) It appears that if one of the parameters is fixed, the period varies inversely with
the other parameter. Hence one might postulate the relation

10.(a) Since T' = 27/+/ac , we first note that

A+T

A+T
/ cos(vac t + ¢)dt :/ sin(vac t + ¢)dt = 0.

A A

Hence
1 [A+T 1 [A+T
f:—/ Cat="C and y:f/ =2,
T Ja v v T Ja « o

(b) One way to estimate the mean values is to find a horizontal line such that
the area above the line is approximately equal to the area under the line. From
Figure 9.5.3, it appears that = ~ 3.25 and y ~ 2.0. In Example1,a=1,¢=0.75,
a =0.5 and v = 0.25. Using the result in part (a), T=3 and 7= 2.

(¢) The system

JRR— 1_ <z
TRRAEY
dy 3 =z
I y(—z‘i'z)

is solved numerically for various initial conditions.

2(0) =3 and y(0) =2.5:

3.5

2.5 +

z(0) =3 and y(0) =3.0:
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4.5

x(0) =3 and y(0) =3.5
z(0) =3 and y(0) =4.0

t

It is evident that the mean values increase as the amplitude increases. That is, the
mean values increase as the initial conditions move farther from the critical point.

12.(a) The critical points are the solutions of the system

z(a—ox—ay) =0
y(—c+~z) =0.

If =0, then y=0. If y=0, then x =a/o. The third solution is found by
substituting « = ¢/ into the first equation. This implies that y = a/a — oc¢/(va).
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So the critical points are (0,0), (£,0) and (£, & — 22). When o is increasing, the
Yo

v«
critical point (£,0) moves to the left and the critical point (£, & — 2¢) moves down.

7o o
The assumption a > 2¢ is necessary for the third critical point to be in the first
quadrant. (When a = ‘770, then the two nonzero critical points coincide.)
(b,c) The Jacobian of the system is
(a — 201 — ay —ax )
J= .
7Y —Cc+z
This implies that at the origin

J(0,0) = (g _OC) ,

which implies that the origin is a saddle point. (a > 0 and ¢ > 0 by our assumption.)
At the critical point (£,0)

a . (—a —aafo
J(;’O) B ( 0 ch’ya/cr) ’
which implies that this critical point is also a saddle as long as our assumption
a > % is valid.

At the critical point (£, & — 2£)

A ( —oc/y —aC/7>.

ya/o — oc/o 0

The eigenvalues of the matrix are

—co £ /202 + 4c2yo — dacy?
27 '
We set the discriminant equal to zero and find that the greater solution is
2vvac + ¢?
- .

o1 =27+

First note that o1 > 0, since vac + ¢ > ¢. Next we note that o1 < ay/c. Since

a? a
Vac+ 2 < Z+ac+02:§+c,

2vvac + c2 -
c

we see that

27+21 (9+c) =29+ T 12y=2
c \2 c c
For 0 < 0 < 01, the eigenvalues will be complex conjugates with negative real part,
so the critical point will be an asymptotically stable spiral point. For ¢ = o1, the
eigenvalues will be repeated and negative, so the critical point will be an asymp-
totically stable spiral point or node. For o1 < 0 < ac/~, the eigenvalues will be

distinct and negative, so the critical point will be an asymptotically stable node.

0'1:—2’)/+
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(d) Since the third critical point is asymptotically stable for 0 < o < ac/v, and
the other critical points are saddle points, the populations will coexist for all such
values of o.

13.(a) The critical points are the solutions of the system

z 2y
1—-— 0
(=5 - 7%
1 x
—= =0.
y( 4+x+6)

If z =0, then y = 0. If y = 0, then x = 5. The third critical point can be found by
setting 1/4 = z/(x 4 6), which gives = 2 and then y = 2.4. So the critical points
are (0,0), (5,0) and (2,2.4).

(b) The Jacobian of the system is

1— 2z _ 12y2 _ 2z
J= < 5 6y (z+6) z+6 ) ]

! _1 z
(z+6)2 4 + z+6

This implies that at the origin

J0,0) = ((1) —f/4>’

which implies that the origin is a saddle point.
At the critical point (5,0)
(-1 -—-1o0/11

which implies that this critical point is also a saddle point.
At the critical point (2,2.4)

J(2,2.4) = (g}ﬁ _B/Q) ,

whose eigenvalues are complex with negative real part, which implies that this
critical point is an asymptotically stable spiral.

~— > T RS-

—— > A - -

1 2 3 4 5 6
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15.(a) Solving for the equilibrium of interest we obtain

E2 +c a o E2 +c E1
T = — - —.
y a o« 5y @
Soif F1 > 0 and Ey = 0, then we have the same amount of prey and fewer predators.
(b) If Ey =0 and E3 > 0, then we have more prey and fewer predators.

(¢) If E1 > 0 and E5 > 0, then we have more prey and even fewer predators.

16.(b) The equilibrium solutions are given by the solutions of the system

Y
1-3)=H
a( 2) 1

3 =z
—Z 4+ 3= H,.
y(4+4) 2

Now if Hy = 0, then = 3 and the first equation gives y = 2 — 2H; /3. This means
we have the same amount of prey and fewer predators.

(¢) If Hy =0, then y = 2 and the second equation gives = 3 + 2H,. This means
we have the same amount of predators and more prey.

(d) If H; >0 and Hs > 0, then the second equation gives (z — 3)y = 4H, and
using this we obtain from the first equation that x(1 — 32:[3) = H;. This gives the
quadratic equation z? — (3 + 2Hy + Hy)x + 3H; = 0. Now at the old value z = 3
this expression is —6H>, so there is a root which is bigger than x = 3. The other
root of the quadratic equation is closer to 0, so the equilibrium increases here: we
have more prey. (Check this with e.g. H; = Hs = 1: the roots are 3 V6, so both
of the original roots get bigger.) A similar analysis shows that we will have fewer

predators in this case.

2. We consider the function V(z,y) = ax? + cy?. The rate of change of V along
any trajectory is

. d d 1
V= de—ag + Vyc% = 2ax(—§x3 + 22y?) 4 2cy(—y*) = —az* + dax’y?® — 2cy®.

Let us complete the square now the following way:
V= —az'+ daz?y? — 2cy* = —a(m4 — 4m2y2) — 2yt =
= —a(z? = 2y*)* + day* — 2cy* = —a(x? — 29%)% + (4a — 2c)y*.

If a>0 and ¢ >0, then V(z,y) is positive definite. Clearly, if 4a — 2¢ < 0, i.e.
when ¢ > 2a, then V(z,y) is negative definite. One such example is V(x,y) =
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22 + 392 Tt follows from Theorem 9.6.1 that the origin is an asymptotically stable
critical point.

4. Given V(z,y) = ax?® + cy?, the rate of change of V along any trajectory is
d d
o + Vy—y = 2az(2® — ) + 2cy(22y® + 422y + 29°) =
dt dt
=2ax* + (4¢c — 2a)xy® + S8ca’y? + dey*.

V=V,

Setting a = 2¢,
V =4dcaxt + 8ca?y? + dey* > deat + deyt

As long as a = 2¢ > 0, the function V (z,y) is positive definite and V(x,v) is also
positive definite. It follows from Theorem 9.6.2 that (0,0) is an unstable critical
point.

5. Given V(z,y) = c¢(2? + y?), the rate of change of V along any trajectory is

dx dy
a
If ¢ > 0, then V(z, y) is positive definite. Furthermore, if f(z,y) is positive in some
neighborhood of the origin, then V(x, y) is negative definite. Theorem 9.6.1 asserts
that the origin is an asymptotically stable critical point. On the other hand, if
f(x,y) is negative in some neighborhood of the origin, then V (z,%) and V (z,y) are
both positive definite. It follows from Theorem 9.6.2 that the origin is an unstable
critical point.

V - Vx =2cx [y - wf(:v,y)] + QCy [—$ - yf(x7y)] = —20({52 + yQ)f(.’E,y) .

9.(a) Letting z = u and y = u’, we obtain the system of equations

dr

ar Y

dy

i
Since ¢g(0) =0, it is evident that (0,0) is a critical point of the system. Consider
the function

—g(x) —y.

1 x
V(z,y) = Sy +/ g(s)ds .

2 0
It is clear that V(0,0) = 0. Since g(u) is an odd function in a neighborhood of
u=20,

/ g(s)ds >0 for z >0,
0

and

T 0
/ g(s)ds = —/ g(s)ds >0 for z < 0.
0 T

Therefore V (z,y) is positive definite. The rate of change of V along any trajectory
is

. dx dy

V=Vor + Vo = g(2) - (v) +y[~9(2) -y = —*.
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It follows that V(m,y) is only negative semidefinite. Hence the origin is a stable
critical point.

(b) Given

1 1 *
V(z,y) = 592 + 5Y sin(x) -|-/ sin(s)ds,
0

Tt is easy to see that V' (0,0) = 0. The rate of change of V along any trajectory is

Vv

dy
Tdt %

Ty T

: y 1. .
smx—|—§cosx] (y) + y—i—ismx [—sinz —y] =

2 2

15 1 . Y.
= —y“cosx— —sin“x — Zsinz — y-.
Y B 9 Y

2

For —7/2 < x < 7/2 , we can write sin x = x — a23/6 and cos x =1 — $2%/2, in
which o = a(z), § = B(x). Note that 0 < o, 8 < 1. Then

2 2 3 3
' _ Y By 1 art, oy ozt o
Using polar coordinates,
. r2 . .2 .
V(T,@):fg [1+smt9(:ost9+h(r,0)]:f? 1+§sm29+h(r,0) )

It is easy to show that

1 1
< =24t
|h(r,0)] < 27" + 72r

So if r is sufficiently small, then [h(r,60)| < 1/2 and |4 sin 20 + h(r,6)| < 1. Hence

V(z,y) is negative definite. Now we show that V' (x,y) is positive definite. Since
g(u) =sin u,

1 1
V(z,y) = 53/2 + iy sin(z) +1 — cos z.

This time we set

2 1’4

=1-— —.
COS ¥ 2+’y24

Note that 0 < v < 1 for —7/2 < z < m/2. Converting to polar coordinates,

V(r,0) =

| S

r? 3 r? o,
{1+Sm9c089—1281n6‘cos G—WQCOS 9}

3]

r 1 r2 72
=11 Zgin 20 — — si 39 _ A~ 4 )
5 [ + 5 Sin 0 75 Sin 0 cos’ O — T 0]

Now
2 2
1
—%sin900839—7%00549>—§ forr <1.

It follows that when r > 0,

r? (7 1 312
-4+ g > )
V(r,0) > 5 {8—4-2511129} 16 >0
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Therefore V(z,y) is indeed positive definite, and by Theorem 9.6.1, the origin is
an asymptotically stable critical point.

12.(a) We consider the linear system
X ! _ (a1 a2 X
Yy a1 A2 Yy '
Let V(z,y) = Ax? + Bxy + Cy?, in which

2 2
a3 +aj, + (anaz — aizas)

A= 2A
Q12022 + 11021
A
o _afy +afy + (an1a22 — a1za21)
2A ’

and A = (a11 + agz)(a11a22 — a12a91). Based on the hypothesis, the coefficients A
and B are negative. Therefore, except for the origin, V'(z,y) is negative on each of
the coordinate axes. Along each trajectory,

V= (2Az + By)(a11 & + a12y) + (2Cy + Bx) (a2 © + ae y) = —z? — g2

Hence V(z,y) is negative definite. Theorem 9.6.2 asserts that the origin is an
unstable critical point.

(b) We now consider the system
- 20+ 6)
y azi az) \y Gi(z,y))’
in which Fy(z,y)/r — 0 and Gi(x,y)/r — 0 as r — 0. Let
V(z,y) = Az? + Bay + Cy?,

in which
A= a3y + a3y + (ar1a22 — aizas)
2A
B — _ 112022 1 an1a
A
= afy + afy + (a11022 — a12a21)
2A ’

and A = (ay1 + as2)(ai1ass — ajzaz1). Based on the hypothesis, A, B > 0. Ex-
cept for the origin, V(x,y) is positive on each of the coordinate axes. Along each
trajectory,

V =2”+ 9 + (24z + By)Fi(z,y) + (2Cy + Bx)Gi(z,y) .
Converting to polar coordinates, for r # 0,

V= :r2+r(2Ac0s 0 + Bsin 0) Fy + r(2C'sin 6 4+ B cos 0) Gy

=72+ 72 |(2Acos 0 + Bsin 9)5+(2CSiHQ+BCOS 9)g .
r T



449

=)

Since the system is almost linear, there is an R such that

(2A cos 0 + Bsin 9)i+(2051n 6 + B cos 9)ﬁ < %,
r T
and hence
F; 1
(2A cos 6 4+ Bsin 9)71+(208in9+Bcos 9)% > -3

for r < R. It follows that )
V > 57’2
as long as 0 < r < R. Hence V is positive definite on the domain
D ={(z,y)|2* +y*> < R*}.

By Theorem 9.6.2, the origin is an unstable critical point.

3. The critical points of the ODE

d
d—: =r(r—1)(r—23)
are given by r1 =0, ro =1 and r3 = 3. Note that

%>0f0r0<r<1and r>3;%<0for 1<r<3.

r = 0 corresponds to an unstable critical point. The critical point ro = 1 is asymp-
totically stable, whereas the critical point r3 =3 is unstable. Since the critical
values are isolated, a limit cycle is given by

r=1,0=t+ty
which is asymptotically stable. Another periodic solution is found to be
r=3,0=t+ty

which is unstable.

5. The critical points of the ODE

dr .

— =sin 71

dt
aregiven by r=n, n=0,1,2,.... Based on the sign of 7’ in the neighborhood of
each critical value, the critical points r =2k, k=1,2,... correspond to unstable

periodic solutions, with 8 =t 4 tg. The critical points r =2k +1,k=0,1,2,...
correspond to stable limit cycles, with 8 = ¢+ t5. The solution r = 0 represents
an unstable critical point.
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6. The critical points of the ODE

d
dit“ = rlr —2|(r — 3)
are given by r1 =0, ro =2 and r3 = 3. Note that

dr dr
E<O for0<r<3,a>0 for r > 3.

r =0 corresponds to an asymptotically stable critical point. The critical points
ro = 2 is semistable, whereas the critical point r3 = 3 is unstable. Since the critical
values are isolated, a semistable limit cycle is given by

7‘22, 0: —t+t0.
Another periodic solution is found to be
r=3, 0=—t+tg

which is unstable.

10. Given F(z,y) =anz+aey and G(z,y) = a1 « + azn y, it follows that
Fr+Gy=an +ax.
Based on the hypothesis, F,, + G|, is either positive or negative on the entire plane.
By Theorem 9.7.2, the system cannot have a nontrivial periodic solution.
12. Given that F(x,y) = —2z — 3y — zy? and G(z,y) =y +2° — 2%y,
Fo+Gy = —1—x? —y2
Since Fy + Gy < 0 on the entire plane, Theorem 9.7.2 asserts that the system

cannot have a nontrivial periodic solution.

14.(a) Based on the given graphs, the following table shows the estimated values:

n=02|T=6.29
nw=10 | T ~6.66
pw=>50 | T~11.60

(b) The initial conditions were chosen as z(0) =2, y(0) =0.
For 4 =0.5,T ~ 6.38:

-
x 1 A /\ ﬁ /
o T T 1 T
10 5 20 - B o
¢
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For py =2, T =~ 7.65:

2

24

For p =5,T ~ 10.25:

2 6
a4
14 y
24
T T T O T

N
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15.(a) Setting « = u and y = u’, we obtain the system of equations

do _
a7

dy_ L,
P z+ p(1 gy)y

(b) Evidently, y = 0. It follows that 2 = 0. Hence the only critical point of the
system is at (0,0). The components of the vector field are infinitely differentiable
everywhere. Therefore the system is almost linear. The Jacobian matrix of the

vector field is
J— ( 0 1 )
-1 pu—wy?)

At the critical point (0,0), the coefficient matrix of the linearized system is
0 1

1
Tl’gzgi 5\//}?—4.

If p =0, the equation reduces to the ODE for a simple harmonic oscillator. For the
case 0 < p < 2, the eigenvalues are complex, and the critical point is an unstable
spiral. For p > 2, the eigenvalues are real, and the origin is an unstable node.

with eigenvalues

(c) The initial conditions were chosen as x(0) =2, y(0) = 0.

>
x4 /\ /
T T 1
s 15 20

2

p=1 A~216 and T ~ 6.65.

o

T
10
t
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=02 A~ 200 and T =~ 6.30.

VY

A~26 and T ~ 7.62.

nw=>5 A~4.37 and T ~ 11.61.
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=02 2.00 | 6.30
(=05 2.04 | 6.38
=10 2.16 | 6.65
=20 26 | 7.62
=50 | 437 | 11.61

16.(a) The critical points are solutions of the algebraic system
2,2y _

pr+y—z(@ +y7)=0

—z+py —y(z® +y°) = 0.
Multiply the first equation by y and the second equation by x to obtain

pry+y* —ay(e® +y°) =0
—2% + pay —zy(z® + %) = 0.

Subtraction of the two equations results in
22442 =0,
which is satisfied only for x =y =0.

(b) The Jacobian matrix of the vector field is

J— p— 3x% — g2 1—2xy
—1-2zy pu—ax?-3y%)"

At the critical point (0,0), the coefficient matrix of the linearized system is

J(0,0) = (_“1 i)

z':uery
y'=—x+ny.

resulting in the linear system
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The characteristic equation for the coefficient matrix is A2 — 2uA+ 2 +1=0,
with solution
A=p £1.

For pu < 0, the origin is a stable spiral. When p = 0, the origin is a center. For
1> 0, the origin is an unstable spiral.
(¢) Introduce polar coordinates rand 6, so that © = cos § and y =r sin 6 for
r > 0. Multiply the first of Equs (i) by = and the second equation by y to obtain

v’ =pa? +ry — 22 (2 +y?)

yy' = —xy+py? -y (@ + 7).
Addition of the two equations results in

vr' +yy' = p® +y?) — (@ +y7)°

Since r? = 2?2 +y? and rr’ =z x’' +yy’, it follows that rr’ = pur? —r* and

d
d%‘:,ur—r?’

for r > 0. Multiply the first of Eqns (i) by y and the second equation by z, the
difference of the two equations results in

yr' —zy =22 +y%

Since yx' —xy’ = —r?0’, the above equation reduces to

do

dt
(d) From 7’ =r(u —r?) and 6’ = —1, it follows that one solution of the system is
given by

r=+/p and 0 =—t+1g

valid for g > 0. This corresponds to a periodic solution with a circular trajectory.

Since r > 0, observe that
dr
= =r(u—1r?) <0 for 7>/

r(u—1%) >0 for /g >r>0.

Hence solutions with initial condition r(0) # ,/ are attracted to the limit cycle.

17.(a) The critical points are solutions of the algebraic system
y=0
—x+pu(l -2ty =0.

Clearly, y = 0, and this implies that = 0. So the origin is the only critical point.
The Jacobian matrix of the vector field is

5 0 1
T\l —2uxy p(l—22))"
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456

At the critical point (0,0), the coefficient matrix of the linearized system is

1
-1 pu)-

<0

The characteristic equation is A2 — uA + 1 = 0, and the roots are

3(0,0)

\”

totically stable spiral point for —2 < p < 0, an unstable spiral point for 0 < p < 2

This implies that the origin is an asymptotically stable node for ; < —2, an asymp-
and an unstable node for p > 2.

m;,

\ N

=3

Sy

(d) p=-0.5

—1.5

(c) n

=-2

(b) n

(a) p=-25
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19.(a) The critical points are solutions of the algebraic system

T 2y
x(a_g_x—&—G)_O
1 x

—— =0.
e

If £ =0, then y = 0. If y = 0, then x = 5a from the first equation. The third critical
point comes from xz = 2, and then the first equation implies that y = 4a — 8/5. So
the critical points are (0,0), (5a,0) and (2,4a — 8/5).

(b) The Jacobian matrix of the vector field is

a— 2z _ 12y _ 2z
J= 5 6 (x+6)2 z+6

Yy _1 z
(z+6)2 4 + z+6

At the critical point (2, 4a — 8/5), the coefficient matrix of the linearized system is
C(ajA-1/2  —1/2
3(2,4a —8/5) = (3a/8_3/20 o > :
The characteristic equation is A2 + A\(1/2 — a/4) + (3a/8 — 3/20)/2 = 0, and the
roots are

a 1
A=———
8 4

We can conclude that ag = 2.
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20.(a) The critical points are solutions of the algebraic system
1—(b+ 1z +2%y/4=0
br —x?y/4=0.

Add the two equations to obtain 1 —x = 0, with solution z = 1. The second of
the above equations yields y =45b.

(b) The Jacobian matrix of the vector field is
J_ 1/—4(b+1)+2zy 2
T4 4b — 2zy —x% )

At the critical point (1,4b), the coefficient matrix of the linearized system is

_(b-1 1/4
= (P 4,
with characteristic equation
5 1
M (S=bDA+-=0
+ (4 A+ 1
and eigenvalues
5—-4b =+ V9—40b+160> _(5/4—b) + /(5/4—1b)2 -1

A=
8 2

(c) Let L =5/4 —b. The eigenvalues can be expressed as

L+ VL2 -1
—

We find that the eigenvalues are real if L? > 1 and are complex if L2 < 1.

For the complex case, that is, —1 < L < 1, the critical point is a stable spiral if
0 < L < 1; it is an unstable spiral if —1 < L < 0. That is, the critical point is an
asymptotically stable spiral if 1/4 < b < 5/4 and is an unstable spiral if 5/4 < b <
9/4. When L2 > 1, the critical point is a node. The critical point is a stable
node if L > 1; it is an unstable node if L < —1. That is, the critical point is an
asymptotically stable node if 0 < b < 1/4 and is an unstable node if b > 9/4.

A=
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(d) From part (c), the critical point changes from an asymptotically stable spiral
to an unstable spiral when by = 5/4.

(ef)

14O OO N

6. r = 28, with initial point (5,5,5):

10

PEETETI PR AT ST A

r = 28, with initial point (5.01,5,5):

| |
- — |
) ) o) <]
PRI P AP AR
~ 3
M)
84

-10
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—30 ~20 ~To ) 10 20 -30
x

The period appears to be T ~ 1.12.

(b) r =99.94, initial point (—5,—13,55):

140 o
130 o
120 o
110 o
100
90 o
80 o
70 o

60 o

-30 -30 -1o 10 20 i 2 3 4 3
x ¢

The periodic trajectory appears to have split into two strands, indicative of a period-
doubling. Closer examination reveals that the peak values of z(t) are slightly dif-
ferent.

r =99.7, initial point (=5,—13,55):
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140 o

130 o

120 o

110

100 o

920 o

80

70 o

60 -

“30 ~20 “lo ;) 10 20

(c) 7 = 99.6, initial point (—5,—13,55) :

140 o
130
120 o
110 o
100
90 +
80 -
70

60 -

-30 -20 -10 o 10 20 [¢

1 2 3 a K
x

t

The strands again appear to have split. Closer examination reveals that the peak
values of z(t) are different.

10.(a) r = 100.5, initial point (=5,—13,55):

140 o
130 o
120 o
110
100 o
90 A
80 -
70 -

60

“30 ~30 “1o 10 20

r = 100.7, initial point (—=5,—13,55):
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140 -
130 4
120 ]
110
100
90
80 +
“ 70
60 o
o o b 3 m P ) j A p 3
(b) » = 100.8, initial point (—5,—13,55):
140
130 +
120 4
110 o
100 ]
90
50
_—
60 o
T T 3 m = d I 3 p 3
r = 100.81, initial point (=5,—13,55):
140 -
130
120
110 o
100
90 o
80
z 70 4
60 o
.'o % i 3 7 p 1

x t

The strands of the periodic trajectory are beginning to split apart.

r = 100.82, initial point (=5,—13,55):

140 o
130 o
120
110 o
100
90

80 o
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r = 100.83, initial point (—5,—13,55) :
140 -
130 +
120 A
110 A
100 +
90 o
80
z 70 4
60
1 3 : 3 P s
140 ]
130 +
120 +
1o
100 ]
920 A
s
s ]
60
) i ) 1 p 3

12. The system is given by

' =—y—2z

y'=z+y/d
z'=1/24z(x—c¢).

(a) We obtain that the critical points (when ¢? > 1/2) are

1

(g + VAP =2, 20— V4P — 2,20+ Va2 —2),
1

(g - ZV402 —2,—2c+ V4c% — 2,2c — /42 — 2).

The Jacobian of the system is

0 -1 -1
J=1|1 1/4 0
z 0 x—c

In the following computations, we approximate the values to 4 decimal points.
When ¢ = 1.3, the two critical points are

(1.1954, —4.7817,4.7817) and (0.1046,—0.4183,0.4183).
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The corresponding eigenvalues of the Jacobian are

0.1893, —0.0219 £ 2.4007¢ and —0.9613, 0.0080 £ 1.06523.

—0.44

~0.64

-0.84
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13.(b) Using the eigenvalue idea:

c Critical Point Complex Eigenvalue Pair
1.2 | (0.1152,—-0.4609, 0.4609) —0.0063 £ 1.0859¢
1.25 | (0.1096, —0.4384,0.4384) 0.0010 4 1.0747:

Clearly, somewhere in between we have a Hopf bifurcation. Similar computations
show that the bifurcation value is ¢ = 1.243.

14.(a) When ¢ = 3, the two critical points are
(2.9577,—11.8310,11.8310) and (0.0423, —0.1690, 0.1690).
The corresponding eigenvalues of the Jacobian are

0.2273, —0.0098 £ 3.5812¢ and — 2.9053, 0.0988 £ 0.9969:.

(c) Tp ~ 11.8.

15.(a) When ¢ = 3.8, the two critical points are

(3.7668, —15.0673,15.0673) and (0.0332,—0.1327,0.1327).
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The corresponding eigenvalues of the Jacobian are

0.2324, —0.0078 £ 4.0078¢ and — 3.7335, 0.1083 £ 0.9941:.

(b) Ty ~ 23.6.
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