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Introduction

1.1

1.

For y > 3/2, the slopes are negative, therefore the solutions are decreasing. For
y < 3/2, the slopes are positive, hence the solutions are increasing. The equilibrium
solution appears to be y(t) = 3/2, to which all other solutions converge.
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3.

For y > −3/2, the slopes are positive, therefore the solutions increase. For y <
−3/2, the slopes are negative, and hence the solutions decrease. All solutions
appear to diverge away from the equilibrium solution y(t) = −3/2.

5.

For y > −1/2, the slopes are positive, and hence the solutions increase. For y <
−1/2, the slopes are negative, and hence the solutions decrease. All solutions
diverge away from the equilibrium solution y(t) = −1/2.

6.

For y > −2, the slopes are positive, and hence the solutions increase. For y < −2,
the slopes are negative, and hence the solutions decrease. All solutions diverge
away from the equilibrium solution y(t) = −2.
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8. For all solutions to approach the equilibrium solution y(t) = 2/3, we must have
y ′ < 0 for y > 2/3, and y ′ > 0 for y < 2/3. The required rates are satisfied by the
differential equation y ′ = 2− 3y.

10. For solutions other than y(t) = 1/3 to diverge from y = 1/3, we must have
y ′ < 0 for y < 1/3, and y ′ > 0 for y > 1/3. The required rates are satisfied by the
differential equation y ′ = 3y − 1.

12.

Note that y ′ = 0 for y = 0 and y = 5. The two equilibrium solutions are y(t) = 0
and y(t) = 5. Based on the direction field, y ′ > 0 for y > 5; thus solutions with
initial values greater than 5 diverge from the solution y(t) = 5. For 0 < y < 5, the
slopes are negative, and hence solutions with initial values between 0 and 5 all
decrease toward the solution y(t) = 0. For y < 0, the slopes are all positive; thus
solutions with initial values less than 0 approach the solution y(t) = 0.

14.

Observe that y ′ = 0 for y = 0 and y = 2. The two equilibrium solutions are y(t) = 0
and y(t) = 2. Based on the direction field, y ′ > 0 for y > 2; thus solutions with
initial values greater than 2 diverge from y(t) = 2. For 0 < y < 2, the slopes are
also positive, and hence solutions with initial values between 0 and 2 all increase
toward the solution y(t) = 2. For y < 0, the slopes are all negative; thus solutions
with initial values less than 0 diverge from the solution y(t) = 0.
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15. -(j) y ′ = 2− y.

17. -(g) y ′ = −2− y.

18. -(b) y ′ = 2 + y.

20. -(e) y ′ = y (y − 3).

23. The difference between the temperature of the object and the ambient tem-
perature is u− 70 (u in ◦F). Since the object is cooling when u > 70, and the rate
constant is k = 0.05 min−1, the governing differential equation for the temperature
of the object is du/dt = −.05 (u− 70).

24.(a) Let M(t) be the total amount of the drug (in milligrams) in the patient’s
body at any given time t (hr). The drug is administered into the body at a constant
rate of 500 mg/hr. The rate at which the drug leaves the bloodstream is given by
0.4M(t). Hence the accumulation rate of the drug is described by the differential
equation dM/dt = 500− 0.4M (mg/hr).

(b)

Based on the direction field, the amount of drug in the bloodstream approaches the
equilibrium level of 1250 mg (within a few hours).

26.

All solutions appear to approach a linear asymptote (with slope equal to 1). It is
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easy to verify that y(t) = t− 3 is a solution.

27.

All solutions appear to approach y = 0.

30.

All solutions (except y(0) = −5/2) appear to diverge from the sinusoid y(t) =
−3 sin(t+ π/4)/

√
2− 1, which is also a solution corresponding to the initial value

y(0) = −5/2.

32.

All solutions appear to converge to y(t) = 0. Solutions above the line y = −2t
(but below the t-axis) have positive slope and increase rapidly to meet the t axis.
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Solutions that begin below the line y = −2t eventually cross it and have positive
slope.

33.

The direction field is rather complicated. Nevertheless, the collection of points at
which the slope field is zero, is given by the implicit equation y3 − 6y = 2t2. The
graph of these points is shown below:

The y-intercepts of these curves are at y = 0, ±
√

6 . It follows that for solutions
with initial values y >

√
6 , all solutions increase without bound. For solutions with

initial values in the range y < −
√

6 or 0 < y <
√

6 , the slopes remain negative, and
hence these solutions decrease without bound. Solutions with initial conditions in
the range −

√
6 < y < 0 initially increase. Once the solutions reach the critical

value, given by the equation y3 − 6y = 2t2, the slopes become negative and remain
negative. These solutions eventually decrease without bound.

1.2

4.(a) The equilibrium solution satisfies the differential equation dye/dt = 0. Setting
aye − b = 0, we obtain ye(t) = b/a.

(b) Since dY/dt = dy/dt, it follows that dY/dt = a(Y + ye)− b = a Y .
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6.(a) Consider the simpler equation dy1/dt = −ay1. As in the previous solutions,
rewrite the equation as (1/y1)dy1 = −a dt. Integrating both sides results in y1(t) =
c e−at.

(b) Now set y(t) = y1(t) + k, and substitute into the original differential equation.
We find that −ay1 + 0 = −a(y1 + k) + b. That is, −ak + b = 0, and hence k = b/a.

(c) The general solution of the differential equation is y(t) = c e−at + b/a. This
is exactly the form given by Eq.(17) in the text. Invoking an initial condition
y(0) = y0, the solution may also be expressed as y(t) = b/a+ (y0 − b/a)e−at.

8.(a) The general solution is p(t) = p0 e
rt. Based on the discussion in the text,

time t is measured in months. Assuming 1 month= 30 days, the hypothesis can be
expressed as p0 e

r·1 = 2p0. Solving for the rate constant, r = ln(2), with units of
per month.

(b) N days= N/30 months. The hypothesis is stated mathematically as p0e
rN/30 =

2p0. It follows that rN/30 = ln(2), and hence the rate constant is given by r =
30 ln(2)/N . The units are understood to be per month.

10.(a) Assuming no air resistance, with the positive direction taken as downward,
Newton’s Second Law can be expressed as mdv/dt = mg, in which g is the grav-
itational constant measured in appropriate units. The equation can be written
as dv/dt = g, with solution v(t) = gt+ v0. The object is released with an initial
velocity v0.

(b) Suppose that the object is released from a height of h units above the ground.
Using the fact that v = dx/dt, in which x is the downward displacement of the
object, we obtain the differential equation for the displacement as dx/dt = gt+ v0.
With the origin placed at the point of release, direct integration results in x(t) =
gt2/2 + v0 t. Based on the chosen coordinate system, the object reaches the ground
when x(t) = h. Let t = T be the time that it takes the object to reach the ground.
Then gT 2/2 + v0T = h. Using the quadratic formula to solve for T , we obtain
T = (−v0 ±

√
v0 + 2gh )/g. The positive answer corresponds to the time it takes

for the object to fall to the ground. The negative answer represents a previous
instant at which the object could have been launched upward (with the same impact
speed), only to ultimately fall downward with speed v0, from a height of h units
above the ground. The numerical value is T =

√
2 · 9.8 · 300/9.8 ≈ 7.82 s.

(c) The impact speed is calculated by substituting t = T into v(t) in part (a). That
is, v(T ) =

√
v0 + 2gh . The numerical value is v =

√
2 · 9.8 · 300 ≈ 76.68 m/s.

13. The general solution of the differential equation dQ/dt = −r Q is Q(t) =
Q0e

−rt, in which Q0 = Q(0) is the initial amount of the substance. Let τ be
the time that it takes the substance to decay to one-half of its original amount,
Q0. Setting t = τ in the solution, we have 0.5Q0 = Q0e

−rτ . Taking the natural
logarithm of both sides, it follows that −rτ = ln(0.5) or rτ = ln 2.
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14. The differential equation governing the amount of radium-226 is dQ/dt = −r Q,
with solution Q(t) = Q(0)e−rt. Using the result in Problem 13, and the fact that
the half-life τ = 1620 years, the decay rate is given by r = ln(2)/1620 per year. The
amount of radium-226, after t years, is therefore Q(t) = Q(0)e−0.00042786t. Let T
be the time that it takes the isotope to decay to 3/4 of its original amount. Then
setting t = T , and Q(T ) = (3/4)Q(0), we obtain (3/4)Q(0) = Q(0)e−0.00042786T .
Solving for the decay time, it follows that −0.00042786T = ln(3/4) or T ≈ 672.36
years.

16. Based on Problem 15, the governing differential equation for the temperature in
the room is du/dt = −0.15 (u− 10). Setting t = 0 at the instant that the heating
system fail, the initial condition is u(0) = 70 ◦F. Using separation of variables,
the general solution of the differential equation is u(t) = 10 + C e−0.15 t. Invoking
the given initial condition, the temperature in the room is given by u(t) = 10 +
60 e−0.15 t. Setting u(t) = 32, we obtain t = 6.69 hr.

18.(a) The accumulation rate of the chemical is (0.01)(300) grams per hour. At
any given time t, the concentration of the chemical in the pond is Q(t)/106 grams
per gallon. Consequently, the chemical leaves the pond at a rate of (3× 10−4)Q(t)
grams per hour. Hence, the rate of change of the chemical is given by

dQ

dt
= 3− 0.0003Q(t) g/hr.

Since the pond is initially free of the chemical, Q(0) = 0.

(b) The differential equation can be rewritten as dQ/(10000−Q) = 0.0003 dt. In-
tegrating both sides of the equation results in − ln |10000−Q| = 0.0003t+ C. Tak-
ing the exponential of both sides gives 10000−Q = c e−0.0003t. Since Q(0) = 0, the
value of the constant is c = 10000. Hence the amount of chemical in the pond at
any time is Q(t) = 10000(1− e−0.0003t) grams. Note that 1 year= 8760 hours. Set-
ting t = 8760, the amount of chemical present after one year is Q(8760) ≈ 9277.77
grams, that is, 9.27777 kilograms.

(c) With the accumulation rate now equal to zero, the governing equation becomes
dQ/dt = −0.0003Q(t) g/hr. Resetting the time variable, we now assign the new
initial value as Q(0) = 9277.77 grams.

(d) The solution of the differential equation in part (c) is Q(t) = 9277.77 e−0.0003t.
Hence, one year after the source is removed, the amount of chemical in the pond is
Q(8760) ≈ 670.1 grams.

(e) Letting t be the amount of time after the source is removed, we obtain the equa-
tion 10 = 9277.77 e−0.0003t. Taking the natural logarithm of both sides, −0.0003 t =
ln(10/9277.77) or t ≈ 22, 776 hours≈ 2.6 years.
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(f)

19.(a) It is assumed that dye is no longer entering the pool. In fact, the rate at
which the dye leaves the pool is 200 · [q(t)/60000] g/min. Hence the equation that
governs the amount of dye in the pool is dq/dt = −q/300 (g/min). The initial
amount of dye in the pool is q(0) = 5000 grams.

(b) The solution of the governing differential equation, with the specified initial
value, is q(t) = 5000 e−t/300.

(c) The amount of dye in the pool after four hours is obtained by setting t = 240.
That is, q(4) = 5000 e−0.8 = 2246.64 grams. Since the size of the pool is 60, 000
gallons, the concentration of the dye is 0.0374 grams/gallon, and the answer is no.

(d) Let T be the time that it takes to reduce the concentration level of the dye to
0.02 grams/gallon. At that time, the amount of dye in the pool is 1, 200 grams.
Using the answer in part (b), we have 5000 e−T/300 = 1200. Taking the natural
logarithm of both sides of the equation results in the required time T ≈ 7.14 hours.

(e) Consider the differential equation dq/dt = −(r/60, 000) q. Here the parameter
r corresponds to the flow rate, measured in gallons per minute. Using the same
initial value, the solution is given by q(t) = 5000 e−r t/60,000. In order to determine
the appropriate flow rate, set t = 240 and q = 1200. (Recall that 1200 grams of dye
has a concentration of 0.02 g/gal). We obtain the equation 1200 = 5000 e−r /250.
Taking the natural logarithm of both sides of the equation results in the required
flow rate r ≈ 357 gallons per minute.

1.3

1. The differential equation is second order, since the highest derivative in the
equation is of order two. The equation is linear, since the left hand side is a linear
function of y and its derivatives.

3. The differential equation is fourth order, since the highest derivative of the
function y is of order four. The equation is also linear, since the terms containing
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the dependent variable is linear in y and its derivatives.

4. The differential equation is first order, since the only derivative is of order one.
The dependent variable is squared, hence the equation is nonlinear.

5. The differential equation is second order. Furthermore, the equation is nonlinear,
since the dependent variable y is an argument of the sine function, which is not a
linear function.

7. y1(t) = et, so y ′1(t) = y ′′1 (t) = et. Hence y ′′1 − y1 = 0. Also, y2(t) = cosh t, so
y ′1(t) = sinh t and y ′′2 (t) = cosh t. Thus y ′′2 − y2

= 0.

9. y(t) = 3t+ t2, so y ′(t) = 3 + 2t. Substituting into the differential equation, we
have t(3 + 2t)− (3t+ t2) = 3t+ 2t2 − 3t− t2 = t2. Hence the given function is a
solution.

10. y1(t) = t/3, so y ′1(t) = 1/3 and y ′′1 (t) = y ′′′1 (t) = y ′′′′1 (t) = 0. Clearly, y1(t)
is a solution. Likewise, y2(t) = e−t + t/3, so y ′2(t) = −e−t + 1/3, y ′′2 (t) = e−t ,
y ′′′2 (t) = −e−t, y ′′′′2 (t) = e−t. Substituting into the left hand side of the equation,
we find that e−t + 4(−e−t) + 3(e−t + t/3) = e−t − 4e−t + 3e−t + t = t. Hence both
functions are solutions of the differential equation.

12. y1(t) = t−2, so y ′1(t) = −2t−3 and y ′′1 (t) = 6 t−4. Substituting into the left hand
side of the differential equation, we have t2(6 t−4) + 5t(−2t−3) + 4 t−2 = 6 t−2 −
10 t−2 + 4 t−2 = 0. Likewise, y2(t) = t−2 ln t, so y ′2(t) = t−3 − 2t−3 ln t and y ′′2 (t) =
−5 t−4 + 6 t−4 ln t. Substituting into the left hand side of the equation, we have

t2(−5 t−4 + 6 t−4 ln t) + 5t(t−3 − 2t−3 ln t) + 4(t−2 ln t) =

= −5 t−2 + 6 t−2 ln t+ 5 t−2 − 10 t−2 ln t+ 4 t−2 ln t = 0.

Hence both functions are solutions of the differential equation.

13. y(t) = (cos t) ln cos t+ t sin t, so y ′(t) = −(sin t) ln cos t+ t cos t and y ′′(t) =
−(cos t) ln cos t− t sin t+ sec t. Substituting into the left hand side of the dif-
ferential equation, we have (−(cos t) ln cos t− t sin t+ sec t) + (cos t) ln cos t+
t sin t = −(cos t) ln cos t− t sin t+ sec t+ (cos t) ln cos t+ t sin t = sec t. Hence
the function y(t) is a solution of the differential equation.

15. Let y(t) = ert. Then y ′(t) = rert, and substitution into the differential equation
results in rert + 2ert = 0. Since ert 6= 0, we obtain the algebraic equation r + 2 = 0.
The root of this equation is r = −2.

17. y(t) = ert, so y ′(t) = r ert and y ′′(t) = r2ert. Substituting into the differential
equation, we have r2ert + rert − 6 ert = 0. Since ert 6= 0, we obtain the algebraic
equation r2 + r − 6 = 0, that is, (r − 2)(r + 3) = 0. The roots are r1 = 2 and r2 =
−3.
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18. Let y(t) = ert. Then y ′(t) = rert, y ′′(t) = r2ert and y ′′′(t) = r3ert. Substitut-
ing the derivatives into the differential equation, we have r3ert − 3r2ert + 2rert = 0.
Since ert 6= 0, we obtain the algebraic equation r3 − 3r2 + 2r = 0 . By inspection,
it follows that r(r − 1)(r − 2) = 0. Clearly, the roots are r1 = 0, r2 = 1 and r3 = 2.

20. y(t) = tr, so y ′(t) = r tr−1 and y ′′(t) = r(r − 1)tr−2. Substituting the deriva-
tives into the differential equation, we have t2

[
r(r − 1)tr−2

]
− 4t(r tr−1) + 4 tr = 0.

After some algebra, it follows that r(r − 1)tr − 4r tr + 4 tr = 0. For t 6= 0, we ob-
tain the algebraic equation r2 − 5r + 4 = 0 . The roots of this equation are r1 = 1
and r2 = 4.

21. The order of the partial differential equation is two, since the highest derivative,
in fact each one of the derivatives, is of second order. The equation is linear, since
the left hand side is a linear function of the partial derivatives.

23. The partial differential equation is fourth order, since the highest derivative,
and in fact each of the derivatives, is of order four. The equation is linear, since
the left hand side is a linear function of the partial derivatives.

24. The partial differential equation is second order, since the highest derivative of
the function u(x, y) is of order two. The equation is nonlinear, due to the product
u · ux on the left hand side of the equation.

25. If u1(x, y) = cos x cosh y, then ∂2u1/∂x
2 = − cos x cosh y and ∂2u1/∂y

2 =
cos x cosh y. It is evident that ∂2u1/∂x

2 + ∂2u1/∂y
2 = 0. Also, when u2(x, y) =

ln(x2 + y2), the second derivatives are

∂2u2

∂x2
=

2

x2 + y2
− 4x2

(x2 + y2)2
and

∂2u2

∂y2
=

2

x2 + y2
− 4y2

(x2 + y2)2
.

Adding the partial derivatives,

∂2u2

∂x2
+
∂2u2

∂y2
=

2

x2 + y2
− 4x2

(x2 + y2)2
+

2

x2 + y2
− 4y2

(x2 + y2)2
=

=
4

x2 + y2
− 4(x2 + y2)

(x2 + y2)2
= 0.

Hence u2(x, y) is also a solution of the differential equation.

27. Let u1(x, t) = sin (λx) sin (λat). Then the second derivatives are

∂2u1

∂x2
= −λ2 sin λx sin λat and

∂2u1

∂t2
= −λ2a2 sin λx sin λat.

It is easy to see that a2∂2u1/∂x
2 = ∂2u1/∂t

2. Likewise, given u2(x, t) = sin(x− at),
we have

∂2u2

∂x2
= − sin(x− at) and

∂2u2

∂t2
= −a2 sin(x− at).

Clearly, u2(x, t) is also a solution of the partial differential equation.
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28. Given the function u(x, t) =
√
π/t e−x

2/4α2t, the partial derivatives are

uxx = −
√
π/t e−x

2/4α2t

2α2t
+

√
π/t x2e−x

2/4α2t

4α4t2

ut = −
√
πt e−x

2/4α2t

2t2
+

√
π x2e−x

2/4α2t

4α2t2
√
t

It follows that

α2 uxx = ut = −
√
π (2α2t− x2)e−x

2/4α2t

4α2t2
√
t

.

Hence u(x, t) is a solution of the partial differential equation.

30.(a) The kinetic energy of a particle of mass m is given by T = mv2/2, in which
v is its speed. A particle in motion on a circle of radius L has speed L (dθ/dt),
where θ is its angular position and dθ/dt is its angular speed.

(b) Gravitational potential energy is given by V = mgh, where h is the height
above a certain datum. Choosing the lowest point of the swing as the datum, it
follows from trigonometry that h = L(1− cos θ).

(c) From parts (a) and (b),

E =
1

2
mL2(

dθ

dt
)2 +mgL(1− cos θ) .

Applying the chain rule for differentiation,

dE

dt
= mL2 dθ

dt

d2θ

dt2
+mgL sin θ

dθ

dt
.

Setting dE/dt = 0 and dividing both sides of the equation by dθ/dt results in

mL2 d
2θ

dt2
+mgL sin θ = 0,

which leads to Equation (12).

31.(a) The angular momentum is the moment of the linear momentum about a given
point. The linear momentum is given by mv = mLdθ/dt. Taking the moment about
the point of support, the angular momentum is

M = mvL = mL2 dθ

dt
.

(b) The moment of the gravitational force is −mgL sin θ. The negative sign is
included since positive moments are counterclockwise. Setting dM/dt equal to the
moment of the gravitational force gives

dM

dt
= mL2 d

2θ

dt2
= −mgL sin θ,

which leads to Equation (12).


