CHAPTER

3

Second Order Linear Equations

1. Let y=-¢€", so that y’ =re" and y” =r?e". Direct substitution into the

differential equation yields (72 + 2r —3)e"™ = 0. Canceling the exponential, the
characteristic equation is 72 + 2r — 3 = 0. The roots of the equation are r = —3,1.
Hence the general solution is y = c1ef + cpe ™.

2. Let y = e™. Substitution of the assumed solution results in the characteristic
equation 72 + 3r +2 = 0. The roots of the equation are » = —2, —1. Hence the
general solution is y = cie ™t + coe 2.

4. Substitution of the assumed solution y = €"* results in the characteristic equation
272 —3r+1=0. The roots of the equation are r =1/2,1. Hence the general
solution is y = c1et/2 + cqet.

6. The characteristic equation is 472 — 9 = 0, with roots r = +3/2. Therefore the
general solution is y = ;e 3/2 4 ¢pe3t/2,

8. The characteristic equation is r? — 2r — 2 = 0, with roots r = 1 ++/3 . Hence
the general solution is y = c1e(1= V3t 4 cpe(1+V3)E,

9. Substitution of the assumed solution y = e"t results in the characteristic equa-
tion 72 +7 —2 = 0. The roots of the equation are r = —2,1. Hence the general
solution is y = c1e™2 + coet. Its derivative is y’ = —2c1e ™2t + cpe?. Based on the
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Chapter 3. Second Order Linear Equations

first condition, y(0) = 1, we require that ¢; + c2 = 1. In order to satisfy y’(0) =1,
we find that —2¢; + ¢ = 1. Solving for the constants, ¢; =0 and co = 1. Hence
the specific solution is y(t) = e’. It clearly increases without bound as ¢ — oc.

11. Substitution of the assumed solution y = €™ results in the characteristic equa-
tion 6r2 —5r +1=0. The roots of the equation are r =1/3,1/2. Hence the
general solution is y = c1et/3 + cpet/?. Tts derivative is y’ = c1et/3/3 + cpet/? /2.
Based on the first condition, y(0) =1, we require that ¢; +c2 =4. In order to
satisfy the condition y’(0) =1, we find that ¢1/3 4 ¢2/2 = 0. Solving for the con-
stants, ¢; = 12 and ¢, = —8. Hence the specific solution is y(t) = 12¢e'/3 — 8¢t/
It clearly decreases without bound as t — oc.

12. The characteristic equation is 72 + 3r = 0, with roots » = —3, 0. Therefore

the general solution is y = c¢1 + coe ™3¢, with derivative 3’ = —3coe 3!, In order

to satisfy the initial conditions, we find that ¢; + co = —2, and —3 ¢ = 3. Hence
-3t

the specific solution is y(t) = —1 — e~°*. This converges to —1 as t — oc.
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13. The characteristic equation is 72 4+ 5r + 3 = 0, with roots r = (=5 + 1/13)/2.
The general solution is y = c1e(=5=VI3t/2 4 0, e(=5+VI3L/2 with derivative

,:—5—\/ﬁ
2

In order to satisfy the initial conditions, we require that

—5—/13 —5+\/ﬁc
2

c1+c=1 and 5 c1 5

Solving for the coefficients, ¢; = (1 —5/v/13)/2 and ¢ = (1 4+ 5/4/13)/2. The so-
lution clearly converges to 0 as t — oco.

cle(

y —5—+/13)t/2 + —9 ‘; V13 026(—5+\/ﬁ)t/2 )

=0.
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14. The characteristic equation is 272 +r — 4 = 0, with roots r = (=14 /33)/4.
The general solution is y = cye(=1=V33)t/4 4 ) e(-1+V33)t/4 with derivative

y' = Lo vss _4 53 cre(-1=VE/A 1A vas —Zm coe(T1HVBL/A

In order to satisfy the initial conditions, we require that

—-1—-+33 —1+\/33C
2

=0 d
c1+ Co an 1 Cc1 1

Solving for the coefficients, ¢; = —2/v/33 and c¢2 = 2/4/33 . The specific solution

is
y(t) = —2 [6(717\/@)% _ 6(71+¢§)t/4} V33

=1
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It clearly increases without bound as ¢ — co.

16. The characteristic equation is 4r2 — 1 = 0, with roots 7 = £1/2 . Therefore the
general solution is y = ciet/2 + ¢pet/2. Since the initial conditions are specified
at t = —2, is more convenient to write y = dje~t2)/2 4 dye(*+2)/2 The derivative
is given by y’ = — [die~(+2/2] /2 + [dae(*+?/2] /2. In order to satisfy the initial
conditions, we find that dy +dy =1, and —d;/2+dy/2 = —1. Solving for the
coefficients, d; = 3/2, and dy = —1/2. The specific solution is

y(t) = 3—wi22 _ L iz _ 3 2 € 2
2 2 2e 2

It clearly decreases without bound as t — oc.

—104

18. An algebraic equation with roots —2 and —1/2 is 2r? 4+ 5r +2 = 0. This is
the characteristic equation for the differential equation 2y” + 5y’ +2y =0.

20. The characteristic equation is 212 — 3r +1 = 0, with roots r = 1/2, 1. There-
fore the general solution is y = cret/? + coet, with derivative y’ = clet/2/2 + coel.
In order to satisfy the initial conditions, we require ¢; + co = 2and ¢; /2 4+ ¢co = 1/2.
Solving for the coefficients, ¢; = 3, and ¢o = —1. The specific solution is y(t) =
3et/2 —¢t.  To find the stationary point, set y’ = 3e?/2/2 —e! =0. There is a
unique solution, with t; = In(9/4). The maximum value is then y(t;) =9/4. To
find the z-intercept, solve the equation 3e'/? —e! =0. The solution is readily
found to be t5 = 1In9 ~ 2.1972.
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22. The characteristic equation is 4r2 — 1 = 0, with roots r = 1/2. Hence the
general solution is y = cie %2 + cpet/? and y' = —cre 4?2 + cpet/? /2. Invoking
the initial conditions, we require that ¢; + co =2 and —cy + co = 28 . The specific
solution is y(t) = (1 — B)e~t/? + (1 + B)e'/?. Based on the form of the solution, it
is evident that as t — oo, y(t) — 0 aslongas = —1.

23. The characteristic equation is r? — (2a — 1)r + a(a — 1) = 0. Examining the
coefficients, the roots are »r = o, @« — 1. Hence the general solution of the differen-
tial equation is y(t) = c1e® + coel® Dt Assuming o € R, all solutions will tend
to zero as long as a < 0. On the other hand, all solutions will become unbounded
aslongasa—1>0, that is, a > 1.

26.(a) The characteristic roots are r = —3,—2. The solution of the initial value
problem is y(t) = (6 + B)e™ " — (4 + B)e 3.

b) The maximum point has coordinates to = In[(3(4 + 3))/(2(6 + B3))], yo = 4(6 +
B)*/(27(4+ B)?).

(c) yo = 4(6 4+ B)3/(27(4 + B)?) > 4, as long as > 6 + 61/3 .
(d) limg— o0 to =1n(3/2), limg_y00 yo = 0.

27.(a) Assuming that y is a constant, the differential equation reduces to cy = d.
Hence the only equilibrium solution is y = d/c.

(b) Setting y =Y + d/c, substitution into the differential equation results in the
equation aY” +bY ' +¢(Y +d/c) =d. The equation satisfied by Y is aY” +
bY’' +cY =0.

1.
2t —3t/2
W (e, e 5/2) = 266215 _Ee—gt/z = _get/z-
5 e—2t te—2t
W te™) = | gezt (1 —appem2| =€
D. . .
W(e'sin t, e cos t) = et(sirc; :f_l (Jfos ) et (coes EO_S Sin t)‘ _ 2

6.

cos? 6 1+ cos 20

2 —
W(cos™ 0,1 + cos 26) = ’—2 sin 0 cos § —2 sin 20

-o.
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7. Write the equation as y” + (3/t)y’ = 1. p(t) = 3/t is continuous for all ¢ > 0.
Since tg > 0, the IVP has a unique solution for all ¢ > 0.

9. Write the equation as y” + (3/(t —4))y’ + (4/t(t — 4))y = 2/t(t — 4) . The coef-
ficients are not continuous at t = 0 and ¢ = 4. Since ¢y € (0,4), the largest interval
is0<t<4.

10. The coefficient 31In|¢| is discontinuous at ¢t = 0. Since to > 0, the largest
interval of existence is 0 <t < 0.

11. Write the equation as y” + (x/(z — 3))y’ + (In|z| /(x — 3))y = 0. The coeffi-
cients are discontinuous at = 0 and = 3. Since g € (0,3), the largest interval
is0<z<3.

13. y{’ =2. We see that t?(2) —2(t?) = 0. yy’ = 2¢3, with t?(y4') — 2(y2) = 0.
Let y3 = c1t? + cot™1, then w3’ = 2c; + 2cot 3. It is evident that ys is also a
solution.

16. No. Substituting y = sin(#?) into the differential equation,
—4t?sin(t?) + 2 cos(t?) + 2t cos(t*)p(t) + sin(t?)q(t) = 0.
At t = 0, this equation becomes 2 = 0 (if we suppose that p(¢) and ¢(t) are contin-

uous), which is impossible.

17. W(e?, g(t)) = e2'g’(t) — 2e%'g(t) = 3e*. Dividing both sides by €2, we find
that g must satisfy the ODE g’ — 2g = 3e2*. Hence g(t) = 3t €' + ce?’.

19. W(f,9)=fg' — f'g. Also, W(u,v) =W (2f —g, f+2g). Upon evaluation,
W(u,v)=5fg" =5f'g =5W(f,g).

20. W(f,9)=fg —f'g=tcost—sint, and W(u,v)=—4fg’ +4f'g. Hence
W(u,v) = —4t cos t +4sin t.

21. We compute

aryr +agy2 by +boya| _

W (a1y1 + asya,biyr + b =
(11 2Y2, 01Y1 2Y2) ary) + asyh  biy) + bayh

= (a1y1 + a2y2) (bry1 + bays) — (bry1 + baye)(ary] + asys) =
= ar1ba (195 — y1y2) — a2bi (Y195 — y1y2) = (arba — azb) W (y1, y2).
This now readily shows that y3 and y4 form a fundamental set of solutions if and

only if a1b2 — a2b1 7& 0.

23. The general solution is y = c1e™3! + coe™t. W(e 3, e7!) = 2e~*, and hence
the exponentials form a fundamental set of solutions. On the other hand, the fun-
damental solutions must also satisfy the conditions y1(1) =1, y{(1) = 0; y2(1) =0,
y4(1) = 1. For yi, the initial conditions require ¢; +cy = e, —3¢; —ca = 0. The
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coefficients are ¢; = —e®/2, co = 3e¢/2. For the solution ys, the initial conditions re-
quire ¢; + ¢ = 0, —3c; — co = e. The coefficients are ¢; = —e3/2, co = ¢/2. Hence

the fundamental solutions are

1 3 1 1
vy = _56—3@—1) n 56—(t—1) and gy — _56—3@—1) n 56—(15—1).

24. Yes. y{' = —4 cos 2t; y5' = —4 sin 2t. W (cos 2t,sin 2¢) = 2.

25. Clearly, y; = €' is a solution. y4 = (1 + t) , Y3’ = (2 + t)e!. Substitution into
the ODE results in (2 + t)e! — 2(1 +t)e! + tet = 0. Furthermore, W (e!, tet) = e2t.
Hence the solutions form a fundamental set of solutions.

27. Clearly, y; = z is a solution. yg = cos =, y;’ = —sin z. Substitution into the
ODE results in (1 — z cot z)(—sin x) — z(cos x) + sin = 0. We can compute that
W (y1,y2) = x cos x — sin x, which is nonzero for 0 < x < 7. Hence {z,sin z} is a
fundamental set of solutions.

30. Writing the equation in standard form, we find that P(¢) = sin ¢/ cos ¢t. Hence
the Wronskian is W (t) = ce=J(int/cost)dt — celnlcos t] — ¢ o5 ¢ in which ¢ is
some constant.

31. After writing the equation in standard form, we have P(z) = 1/x. The Wron-
skian is W (z) = ce=J(/2)dv — ce=Mlzl = ¢/2 in which ¢ is some constant.

32. Writing the equation in standard form, we find that P(z) = —2z/(1 — 2?).
The Wronskian is W (z) = ce~J ~22/(1=a?) dz _ cem == = ¢/(1 — 2?), in which
c is some constant.

33. Rewrite the equation as p(t)y” + p’(t)y’ + q(t)y = 0. After writing the equa-
tion in standard form, we have P(t) = p’(t)/p(t) . Hence the Wronskian is

W(t) = ce [P O/PWdt — o= p(t) — ¢ /p) .

35. The Wronskian associgted with the solutions of the differential equation is
given by W (t) = ce™J =2/t°dt — ce=2/t Since W(2) = 3, it follows that for the
hypothesized set of solutions, ¢ = 3e. Hence W (4) = 3 /e .

36. For the given differential equation, the Wronskian satisfies the first order dif-
ferential equation W'+ p(t)W = 0. Given that W is constant, it is necessary that

p(t) =0.

37. Direct calculation shows that W (fg,fh)=(fa)(fh) — (fg)(fh) = (fg)(f'h+
0 = (f'g+ fg")(fh) = [*W(g,h).

39. Since y; and ys are solutions, they are differentiable. The hypothesis can thus
be restated as y{(to) = y4(tg) =0 at some point ¢y in the interval of definition.
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This implies that W (yy ,y2)(to) = 0. But W(y1,y2)(to) = ce™ JPM  which can-
not be equal to zero, unless ¢ = 0. Hence W (y;,y2) =0, which is ruled out for a
fundamental set of solutions.

42. P=1,Q=xz, R=1. We have P" — Q'+ R=0. The equation is exact.
Note that (y’)’ + (xy)’ =0. Hence y’+ xy = c¢;. This equation is linear, with

integrating factor yu = ¢**/2. Therefore the general solution is

x
y(z) = cle*IQ/Q/ e 2 du + coe™ " /2,
zo

43. P=1, Q =322, R=2x. Note that P — Q'+ R = —b5z, and therefore the
differential equation is not exact.

45. P=2% Q =2, R=—1. We have P” — Q'+ R =0. The equation is exact.
Write the equation as (z%y’)’ — (zy)’ = 0. After integration, We conclude that
22y’ — xy = c. Divide both sides of the differential equation by x2. The resulting
equation is linear, with integrating factor p = 1/x. Hence (y/z) =cxz~3. The
solution is y(t) = iz~ + o

47. P=2%, Q=x, R=2%— 12 Hence the coefficients are 2P’ — Q = 3z and
P'"—Q'+R=2x2>+1-12 The adjoint of the original differential equation is
given by 2?p” +3zp’ + (22 +1—-1vH)pu=0.

49. P=1,Q =0, R = —x. Hence the coefficients are given by 2P’ — Q =0 and
P” — Q'+ R = —x. Therefore the adjoint of the original equationis u” —zu=0.

2. 273 = ¢2e73" = ¢%(cos 3 — i sin 3).
3. e™=cosm+isinm=—1.
4. 27200 = ¢2(cos(m/2) — i sin(1/2)) = —€2i.

6. w1+ = e(F1H20In T — omIn T2 I Ti — (o5 (2 In ) 44 sin (2 In 7)) /7.

8. The characteristic equation 1s r2—2r4+6= 0, with roots r =1 + iv/5 . Hence
the general solution is 4 = cjef cos V5t 4+ coetsin VBt

9. The characteristic equation is 72 + 2r — 8 = 0, with roots » = —4,2. The roots
are real and different, hence the general solution is y = cie ™% 4 ¢, 2.

10. The characteristic equation is 7% + 2r +2 = 0, with roots 7 = —1 £ 4. Hence
the general solution is y = cie "t cos t + co e~ !sin ¢.
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12. The characteristic equation is 472 +9 = 0, with roots 7 = 4(3/2)i. Hence
the general solution is y = ¢1 cos(3t/2) + ¢g sin(3t/2).

13. The characteristic equation is 72 + 2r + 1.25 = 0, with roots r = —1 4 i/2.
Hence the general solution is y = cief cos(t/2) + co e sin(t/2).

15. The characteristic equation is 72 + 7+ 1.25 = 0, with roots r = —(1/2) £ 4.
Hence the general solution is y = cie~ /2 cos t + coe /?sin t.

16. The characteristic equation is % + 4r + 6.25 = 0, with roots r = —2 + (3/2) 1.
Hence the general solution is y = c¢je =2 cos(3t/2) + co e 2! sin(3t/2).

17. The characteristic equation is 72 +4 = 0, with roots r = +2i. Hence the
general solution is y = ¢j cos 2t + ¢ sin 2t. Now y’ = —2¢y sin 2t + 2¢5 cos 2t .
Based on the first condition, y(0) = 0, we require that ¢; = 0. In order to satisfy
the condition y’(0) =1, we find that 2co =1. The constants are ¢; =0 and
¢a = 1/2. Hence the specific solution is y(¢) = sin 2¢ /2. The solution is periodic.

0.6 A

0.4 4
»
. A A
o T T T T 1
2 4 6 10
b 7
-0.2 1
—0.44

~0.6 -

19. The characteristic equation is r? —2r +5 = 0, with roots r = 1+ 2i. Hence
the general solution is y = cie! cos 2t + cp €' sin 2¢. Based on the initial condition
y(m/2) =0, we require that ¢; =0. It follows that y = coe’sin 2¢, and so the
first derivative is y’ = ¢y el sin 2t + 2c9 ef cos 2¢. In order to satisfy the condition
y'(n/2) =2, we find that —2e™/2cy =2. Hence we have ¢y = —e~™/2. There-
fore the specific solution is y(t) = —e'~™/2 sin 2¢. The solution oscillates with an
exponentially growing amplitude.

60 7
50+

40 o

20 1
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20. The characteristic equation is 72 4+ 1 = 0, with roots 7 = 4. Hence the gen-
eral solution is y = ¢j cos ¢t + ¢ sin t. Its derivative is y’ = —cysin t + ¢o cos t.
Based on the first condition, y(7/3) = 2, we require that ¢; + 3¢y =4. In or-
der to satisfy the condition y'(7/3) = —4, we find that —v/3¢; + c3 = —8. Solving
these for the constants, ¢c; = 1 + 2v/3 and Ccy = /3 — 2. Hence the specific solution
is a steady oscillation, given by y(t) = (1 +2v/3)cos t + (v/3 — 2)sin t.

21. From Problem 15, the general solution is y = cie~ /2 cos t + co e */?sin t. In-

voking the first initial condition, y(0) = 3, which implies that ¢; = 3. Substituting,
it follows that y = 3e~*/2cos t + co e */?sin ¢, and so the first derivative is

/ 2

3
y' = —Se?cost— 3¢ ?sint +coe % cos t — %e*t/ sin t.
Invoking the initial condition, y’(0) = 1, we find that —3/2 4+ c; =1, and so ¢z =
5/2. Hence the specific solution is y(t) = 3e~/2cos t + (5/2) e"*/%sin t. Tt oscil-
lates with an exponentially decreasing amplitude.

24.(a) The characteristic equation is 572 + 2r 4+ 7 = 0, with roots r = —(1 & iv/34)/5.
The solution is u = cie~t/5 cos v/34t/5 + coe~t/®sin /34t /5. Invoking the given
initial conditions, we obtain the equations for the coefficients: ¢; = 2, —2 + /34 ¢y =
5. That is, ¢; = 2, co = 7/v/34 . Hence the specific solution is

V34 T s V34
—€ Sl ——

u(t) = 275 cos —t+ t.
(t) z n z
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(b) Based on the graph of w(t), T is in the interval 14 <t < 16. A numerical
solution on that interval yields T ~ 14.5115 .

26.(a) The characteristic equation is r? + 2ar + (a® + 1) = 0, with roots r = —a +
i. Hence the general solution is y(t) = cie™% cos t + cae " sin t. Based on the
initial conditions, we find that ¢; =1 and ¢y = a. Therefore the specific solution
is given by y(t) = e “cos t + ae *sin t = V1 + a? e cos (t — ¢), in which ¢ =
arctan(a).

(b) For estimation, note that |y(t)| < v1+ a? e”*. Now consider the inequality
V1+a? e < 1/10. The inequality holds for ¢ > (1/a)In(10v/1 + a2 ). Therefore
T < (1/a)In(10v1+ a?). Setting a = 1, the numerical value is T ~ 1.8763.

(c) Similarly, Ty /4 ~ 7.4284, Ty )5 ~ 4.3003, Ty ~ 1.5116.

(d)

T T
0.5 1 1.5 2 2.5 3
a

Note that the estimates T, approach the graph of (1/a)In(10v1+ a?) as a gets
large.

27. Direct calculation gives the result. On the other hand, it was shown in
Problem 3.2.37 that W (fg,fh) = f>W(g,h). Hence W (e  cos ut,e* sin ut) =
e2 MW (cos pt ,sin put) = €M [cos pt(sin ut)’ — (cos ut) sin ut] = pe?M.

28.(a) Clearly, y; and y» are solutions. Also, W (cos t,sin t) = cos?t +sin®t = 1.
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(b) y' =ieit, y” =i2el = —¢'. Evidently, y is a solution and so y = ¢1y1 + ca¥a.
(c) Setting t =0, 1 =¢ycos 0+ ¢ sin 0, and ¢; = 1.

(d) Differentiating, i e = ¢y cos t. Setting t =0, i = c cos 0 and hence ¢y = i.
Therefore e = cos t + i sin ¢.

29. Euler’s formula is e* = cos t + i sin t. It follows that e~* = cost —i sin t.
Adding these equation, e + e~% = 2 cos t. Subtracting the two equations results
in e —e ™ =2isint.

30. Let ry = A1 + i1, and ro = A9 + iz . Then

e(rtr2)t — g(atAa)ttipatiua)t — g(ArtA2)t [cos(p1 + p2)t + @ sin(pg + p2)t] =
= P22 [(cos gt + isin pyt)(cos pat + isin pgt)] =

rit _rot

Alt( e

= eMP(cos pit + isin pit) - 2t (cos pit + isin pit) = e

Hence e(rtm2)t — grit grat,

32. Clearly, u' = \e cos ut — pe sin ut = eM (X cos ut — psin ut) and then u”’ =
e M (X cos put — psin put) + eM(—Ausin ut — p? cos pt). Plugging these into the dif-
ferential equation, dividing by e* # 0 and arranging the sine and cosine terms we
obtain that the identity to prove is

(a(A? — p?) 4+ bA + ¢) cos put + (—2Apa — by) sin put = 0.

We know that \ % iy solves the characteristic equation ar? + br + ¢ = 0, so a(\ —
i)? + b\ —ip) + ¢ = a(A\? — p?) + bA + ¢+ i(—2Apa — pb) = 0. If this complex
number is zero, then both the real and imaginary parts of it are zero, but those
are the coefficients of cosput and sin pt in the above identity, which proves that
au' 4+ bu’ 4+ cu = 0. The solution for v is analogous.

35. The equation transforms into 3" +y = 0. The characteristic roots are r = =+i.
The solution is y = ¢1 cos(z) + ¢ sin(x) = ¢ cos(Int) + ¢o sin(lnt).

37. The equation transforms into y” + 2y’ + 1.25y = 0. The characteristic roots
are r = —1 +4/2. The solution is
cos(1Int) sin(3 Int)

y =cie Fcos(x/2) + cae” T sin(x/2) = 1 " + ¢ "

38. The equation transforms into y” — 5y’ — 6y = 0. The characteristic roots are
r = —1, 6. The solution is y = c1e™® + 257 = c1e™ "t 4 c2e®mt = ¢ /t + cotS.

39. The equation transforms into y” — 5y’ + 6y = 0. The characteristic roots are
r =2, 3. The solution is y = c1€%® + c2e3® = 121"t 4 231t = 112 + cot3.

41. The equation transforms into y” + 2y’ — 3y = 0. The characteristic roots are
r =1, —3. The solution is y = c1e” + c2e™3% = 1™ + coe ™31 = ¢t + o /3.
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42. The equation transforms into y” + 6y’ + 10y = 0. The characteristic roots are
r = —3 £ 4. The solution is

3 3

1 1
y =cre P cos(z) + cae” > sin(x) = C1ig cos(Int) + c233 sin(Int).

43.(a) By the chain rule, y'(z) = (dy/dz)x’. In general, dz/dt = (dz/dx)(dx/dt).
Setting z = (dy/dt), we have

fy_dede A [dyde)do_[dyde)de dy d ] d

dt?  dedt  dx |dedt| dt |da?dt| dt ' dodr |dt| dt
However,
o ] de_[Ea]dt do_ oy
de | dt | dt dt? | dz dt ~ di?
Hence

dy _ dy [da)® dy dx
dt2  da? | dt dz de?’

(b) Substituting the results in part (a) into the general differential equation, y” +
p(t)y’ + q(t)y = 0, we find that

d?y [dx 2 dy d*x dy dx
a2 th] t i az TP g Ty =0
Collecting the terms,
dz]? d?y d’z dx | dy
[dt] pe) |:dt2 p(t)dt] %JFQ(t)y*O-

(c) Assuming (dz/dt)? = kq(t) , and q(t) > 0, we find that dz/dt = \/k q(t) , which
can be integrated. That is, x = u(t) = [ \/kq(t) dt = [ \/q(t) dt, since k = 1.

(d) Let k =1. It follows that d*z/dt* + p(t)dz/dt = du/dt + p(t)u(t) = ¢'/2\/q +
p+/q - Hence

d*x dz dz]? o q'(t) 4 2p(t)q(t)
][] =

As long as dx/dt # 0, the differential equation can be expressed as

d?y | |d'() +2p(t)a(t) | dy Y =0
da 2[q)* ] de |
For the case q(t) < 0, write q(t) = — [—q(t)], and set (dz/dt)? = —q(t).

45. p(t) = 3t and q(t) = t*. We have x = [tdt = ¢?/2. Furthermore,

q'(t) +2p(t)q(t) _ 1+3¢°
2[q(t))** 2

The ratio is not constant, and therefore the equation cannot be transformed.




Chapter 3. Second Order Linear Equations

w

46. p(t) =t — 1/t and q(t) = t*. We have = = [tdt = t?/2. Furthermore,

¢'(t) + 2(t)q(t) _
2[q()]*"?

The ratio is constant, and therefore the equation can be transformed. From Problem
43, the transformed equation is

Py | dy
— 4+ = =0.
dx? + dx ty

Based on the methods in this section, the characteristic equation is 72 +7+1 =0,
with roots r = (—1 = 1/3)/2. The general solution is y(x) = c;e™%/% cos V3 2/2 +
co e~ ®/?sin \/32/2. Since x = t2/2, the solution in the original variable ¢ is

y(t) = et/4 [cl cos (V3 t2/4) + ¢y sin (ﬁt2/4)] .

2. The characteristic equation is 9r% + 67 + 1 = 0, with the double root r = —1/3.
The general solution is y(t) = cie™t/3 + cot e=/3.

3. The characteristic equation is 472 — 47 — 3 = 0, with roots r = —1/2, 3/2. The
general solution is y(t) = cie™t/? + cpe?/2.

4. The characteristic equation is 4r? + 12r +9 = 0, with double root r = —3/2.
The general solution is y(t) = (¢1 + ¢2 t)e—:st/z'

6. The characteristic equation is 2 — 6r +9 = 0, with the double root r = 3. The
general solution is y(t) = c1e3 + cot €3t

7. The characteristic equation is 472 + 17r +4 = 0, with roots r = —1/4, —4.
The general solution is y(t) = cie~"/* + cye ™%

8. The characteristic equation is 1672 + 24r + 9 = 0, with double root r = —3/4.
The general solution is y(t) = ce™ /4 + cot e 3/4,

10. The characteristic equation is 2r2 +2r +1 = 0. We obtain the complex roots
r = (=1 % i)/2. The general solution is y(t) = cre~t/? cos(t/2) 4 coe /% sin(t/2).

11. The characteristic equation is 972 — 127 4+ 4 = 0, with the double root r = 2/3.
The general solution is y(t) = ¢;e%/? + ot €?/3. Invoking the first initial condi-
tion, it follows that ¢; = 2. Now y'(t) = (4/3 + c2)e?/3 + 2cot €24/3 /3. Invoking
the second initial condition, 4/3 +cy = —1, or c2 = —7/3. Hence we obtain the
solution y(t) = 2€2*/3 — (7/3)te®/3. Since the second term dominates for large ¢,
y(t) = —oo.
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13. The characteristic equation is 972 + 6r + 82 =0. We obtain the complex
roots 7 = —1/3 =+ 3i. The general solution is y(t) = c;e™/? cos 3t + coe™ /3 sin 3t .
Based on the first initial condition, ¢; = —1. Invoking the second initial condi-
tion, we conclude that 1/3 +3co = 2, or ¢z = 5/9. Hence y(t) = —e~'/3 cos 3t +
(5/9)et/3 sin 3t. The solution oscillates with an exponentially decreasing ampli-
tude.

-0.5

15.(a) The characteristic equation is 472 4+ 12r + 9 = 0, with double root r = —3/2.
The general solution is y(t) = ¢1 e 8t/2 4 ¢yt e3/2 . Invoking the first initial condi-
tion, it follows that ¢; = 1. Now y'(t) = (—3/2 + c2)e 32 — (3/2)cat e31/2. The
second initial condition requires that —3/2+ ¢y = —4, or ¢y = —5/2. Hence the
specific solution is y(t) = e 3t/2 — (5/2)t e=34/2,

19

-0.5 4
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(b) The solution crosses the x-axis at t = 2/5.
(c) The solution has a minimum at the point (16/15, —5e~5/%/3).

(d) Given that y'(0) =b, we have —3/24cy =b, or c¢2 =b+3/2. Hence the
solution is y(t) = e=3"/2 4 (b + 3/2)t e~3%/2. Since the second term dominates, the
long-term solution depends on the sign of the coefficient b + 3/2. The critical value
isb=-3/2.

16. The characteristic roots are r1 = ro = 1/2. Hence the general solution is given
by y(t) = c1et/? 4 cot /2. Invoking the initial conditions, we require that ¢; = 2,
and that 1+ cy = b. The specific solution is y(t) = 2e*/2 + (b — 1)t e*/2. Since the
second term dominates, the long-term solution depends on the sign of the coefficient
b — 1. The critical value is b = 1.

18.(a) The characteristic roots are r; = ro = —2/3. Therefore the general solution
is given by y(t) = cre 23 4 ot e=2t/3 . Invoking the initial conditions, we require
that ¢; = a, and that —2a/3 4+ co = —1. After solving for the coefficients, the
specific solution is y(t) = ae=2/3 + (2a/3 — 1)t e~ /3.

(b) Since the second term dominates, the long-term solution depends on the sign
of the coefficient 2a/3 — 1. The critical value is a = 3/2.

20.(a) The characteristic equation is 72 + 2ar +a? = (r +a)? = 0.
(b) With p(t) = 2a, Abel’s Formula becomes W (y; ,ya) = ce™J 204t = ¢ =201,

(c) y1(t) = e~ is a solution. From part (b), with ¢ =1, e™* yJ(t) + ae~ "y (t) =

e~2% which can be written as (e* y»(t))’ = 1, resulting in e yy(t) = t.

22.(a) If the characteristic equation ar? + br + ¢ has equal roots ry, then ar? +
bri +c=a(r —r1)®>=0. Then clearly Lle"'] = (ar? +br + c)e"™ = a(r — ry)?e"™.
This gives immediately that L[e™!] = 0.

(b) Differentiating the identity in part (a) with respect to r we get (2ar + b)e™ +
(ar? 4+ br + c)te™ = 2a(r — r1)e" + a(r — r1)*te™. Again, this gives L[te™!] = 0.
23. Set yo(t) = t?v(t). Substitution into the differential equation results in

t2 (20" + 4tv’ + 20) — 4t(t%v’ + 2tv) + 6t20 = 0.
After collecting terms, we end up with t*v” = 0. Hence v(t) = ¢; + cot, and thus
y2(t) = c1t? + cot. Setting ¢; = 0 and ¢z = 1, we obtain yo(t) = t3.
24. Set y2(t) =twv(t). Substitution into the differential equation results in

t2(tv” +2v") + 2t(tv” +v) —2tv = 0.

After collecting terms, we end up with t3v” 4+ 4t>v’ = 0. This equation is linear
in the variable w = v’. It follows that v/(t) = c¢t™*, and v(t) = ¢1¢73 + ¢2. Thus
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yo(t) = c1t72 + cot . Setting ¢; = 1 and cp = 0, we obtain yo(t) = t=2.

26. Set yo(t) = tv(t). Substitution into the differential equation resultsinv” — v’ =
0. This equation is linear in the variable w = v’. It follows that v’(t) = cie’, and
v(t) = cret + ca. Thus ya(t) = citel + cat. Setting ¢; = 1 and co = 0, we obtain
yo(t) = tet.

28. Set yo(x) = e*v(x). Substitution into the differential equation results in v 4
(x —2)/(x — 1) v’ = 0. This equation is linear in the variable w = v’. An integrat-
ing factor is y = e/ (#=2/(@=1dz — o2 /(3 _ 1), Rewrite the equation as [e*v’/(z —
1))’ = 0, from which it follows that v’(z) = ¢(z — 1)e*. Hence v(x) = cyze " + ¢
and yo(x) = 1z + cae”. Setting ¢; =1 and ¢y = 0, we obtain ys(x) = x.

29. Set yo(x) = y1(x) v(z), in which y; (z) = 2'/%e>V®. Tt can be verified that y; is
a solution of the differential equation, that is, z2y{’ — (z — 0.1875)y; = 0. Substi-
tution of the given form of s results in the differential equation 22940 " + (427/* +
2°/*)v’ = 0. This equation is linear in the variable w = v’. An integrating factor
is p= ef 227741/ 2m)]de _ Vo e?V®. Rewrite the equation as [z e*V® v']' =0,
from which it follows that v’(z) = ce~*V*/\/z. Integrating, v(z) = cie *V™ + ¢,
and as a result, ya(z) = 1l /e 2VE 4yl /4e2VE | Setting ¢; =1 and ¢ =0, we
obtain yy(x) = 2'/4e2V7,

31. Direct substitution verifies that y;(t) = e 9°/2 is a solution of the differential
equation. Now set ya(z) = y1(z) v(x). Substitution of y, into the equation results
in v” — dzv’ = 0. This equation is linear in the variable w = v’. An integrating
factor is pu = e~ 9%"/2. Rewrite the equation as [ e=9%"/2p/) =0, from which it
follows that v/(z) = ¢1 € /2. Integrating, we obtain

v(z) = cl/ eMz/Qdu—&—v(O).
0

Hence

x
ya(x) = 01675””2/2/ 392y + 62675902/2.
0

Setting co = 0, we obtain a second independent solution.

33. After writing the differential equation in standard form, we have p(t) = 3/t.
Based on Abel’s identity, W (y1,y2) = cre™ J3/t4 = ¢;¢t=3. As shown in Problem
32, two solutions of a second order linear equation satisfy (y2/vy1)" = W (y1,y2)/y>.
In the given problem, y;(t) =t~!. Hence (ty2) = cit~!. Integrating both sides
of the equation, ya(t) = 1t !In ¢t + cot~!. Setting ¢; =1 and ¢z = 0 we obtain
ya(t) =t 'Int.

35.  After writing the differential equation in standard form, we have p(z) =
—x/(x —1). Based on Abel’s identity, W(yy,ys) = cel #/@=Ddr — cor(g 1),
Two solutions of a second order linear equation satisfy (y2/y1) = W (y1,%2)/y3. In
the given problem, y;(z) = e”. Hence (e ®yq) =ce ®(xz —1). Integrating both
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sides of the equation, ya(z) = c1x + coe®. Setting ¢; =1 and ¢ =0, we obtain
yo(z) = .

36. Write the differential equation in standard form to find p(z) = 1/x. Based on
Abel’s identity, W(y1,y2) = ce™ JVwde — ¢2=1 Two solutions of a second order
linear differential equation satisfy (y2/y1)" = W (y1,%2)/y?. In the given problem,
y1(x) = 2~ /?sin z. Hence

\ T 1
. y2)/ =C—/—
S T Sin

(

Integrating both sides of the equation, yq(z) = c12~
ting ¢; = 1 and ¢y = 0, we obtain ys(z) = 27 '/%cos z.

T

1/2 1/2

cos T + cox~*/“sin x. Set-

38.(a) The characteristic equation is ar? +c¢=0. If a,c > 0, then the roots are
r = xiy/c/a . The general solution is

[c . e
y(t) =crcos |/ —t+cosing/— ¢,
a a

(b) The characteristic equation is ar? 4+ br = 0. The roots are r = 0, —b/a, and
hence the general solution is y(t) = ¢; 4+ cpe /¢, Clearly, y(t) — ¢;. With the
given initial conditions, ¢; = yo + (a/b)yj.

which is bounded.

39. Note that 2cos ¢ sin ¢ = sin 2¢. Then 1 — kcos t sin t =1 — (k/2) sin 2¢. Now
if 0 <k <2, then (k/2)sin 2t < |sin 2¢| and —(k/2)sin 2t > — |sin 2¢|. Hence

k
l—kcostsint:1—551n2t>1—\sin2t\20.

40. The equation transforms into 3" — 4y’ + 4y = 0. We obtain a double root r = 2.
The solution is y = c1e?* + core?® = ¢ e? Int L colnte?nt = ¢¢2 + cot? Int.

42. The equation transforms into y” — 7y’/2 + 5y/2 = 0. The characteristic roots
are r =1, 5/2, so the solution is y = c;e® + c2e>%/? = c1e™? 4 cpe®M1/2 = ¢1t +
62t5/2.

43. The equation transforms into y” + 2y’ + y = 0. We get a double root r = —1.
The solution is y = c1e™® + core ™ = cre” Mt + colnte Mt =it 4+ cot ' nt.

44. The equation transforms into y” — 3y’ +9y/4 =0. We obtain the double
root r = 3/2. The solution is y = ¢;€3%/2 4 coue®®/2 = 132 4 ¢y Inted /2 =
c1t3/? + eot3/? Int.
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2. The characteristic equation for the homogeneous problem is r2 4+ 2r +5 =0,
with complex roots r = —1 4 2i. Hence y.(t) = cie"tcos 2t + coetsin 2t. Since
the function ¢g(¢) = 3 sin 2¢ is not proportional to the solutions of the homogeneous
equation, set Y = A cos 2t + Bsin 2t. Substitution into the given differential equa-
tion, and comparing the coefficients, results in the system of equations B — 4A = 3
and A+ 4B = 0. Hence Y = —(12/17) cos 2t + (3/17) sin 2¢t. The general solution
isy(t) =y.(t)+Y.

3. The characteristic equation for the homogeneous problem is 72 —r — 2 = 0, with
roots r = —1, 2. Hence y.(t) = cie™t + c2e?. Set Y = At? + Bt + C. Substitution
into the given differential equation, and comparing the coefficients, results in the
system of equations —24 =4, —2A — 2B = -2 and 2A — B —2C =0. Hence Y =
—2t% + 3t — 7/2. The general solution is y(t) = y.(t) + Y.

4. The characteristic equation for the homogeneous problem is 2 +r — 6 = 0, with
roots r = —3, 2. Hence y.(t) = c1e™3" + c2e?’. Set Y = Ae3t + Be™2!. Substitu-
tion into the given differential equation, and comparing the coefficients, results in
the system of equations 64 = 12 and —4B = 12. Hence Y = 2¢3! — 3e=2¢. The
general solution is y(t) = y.(t) + Y.

5. The characteristic equation for the homogeneous problem is 72 —2r —3 =0,
with roots r = —1, 3. Hence y.(t) = cie™! + c2e® . Note that the assignment
Y = Ate™? is not sufficient to match the coefficients. Try Y = Ate~! + Bt2e?.
Substitution into the differential equation, and comparing the coefficients, results
in the system of equations —4A+ 2B =0 and —8B = —3. This implies that
Y = (3/16)te~t + (3/8)t%e~t. The general solution is y(t) = y.(t) + Y.

7. The characteristic equation for the homogeneous problem is 2 +9 = 0, with
complex roots r = +3i. Hence y.(t) = ¢1 cos 3t + casin 3t. To simplify the anal-
ysis, set g1(t) =6 and go(t) = t?e3. By inspection, we have Y; =2/3. Based
on the form of gy, set Yo = Ae3' + Bte? + Ct?e3!. Substitution into the differ-
ential equation, and comparing the coefficients, results in the system of equations
184+ 6B +2C =0,18B+12C =0, and 18C = 1. Hence

1 1

1
4 3t 3t L2 3t
= 1626 27te + 18t e’.

The general solution is y(t) = y.(t) + Y1 + Ya.

Y,

9. The characteristic equation for the homogeneous problem is 2r2 + 3r + 1 = 0,
with roots 7 = —1, —1/2. Hence y.(t) = cie~t + coe™!/2. To simplify the analysis,
set g1(t) = t? and go(t) = 3sin t. Based on the form of g;, set Y1 = A + Bt + Ct2.
Substitution into the differential equation, and comparing the coefficients, results
in the system of equations A+ 3B +4C =0,B+6C =0, and C = 1. Hence we
obtain Y; = 14 — 6t +t2. On the other hand, set Yo = D cos t + F sin t. After
substitution into the ODE, we find that D = —9/10 and E = —3/10. The general
solution is y(t) = y.(t) + Y1 + Y.
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11. The characteristic equation for the homogeneous problem is 2 4+ w2 = 0, with
complex roots r = twgi. Hence y.(t) = ¢1cos wot+ cosin wot. Since w # wy,
set Y = A cos wt + B sin wt. Substitution into the ODE and comparing the co-
efficients results in the system of equations (w3 —w?)A =1 and (w3 —w?)B =0.
Hence

—— Ccos wt.
2 _ 2

The general solution is y(t) = y.(t) + Y.

12. From Problem 11, y.(t) is known. Since cos wq is a solution of the homogeneous
problem, set Y = At cos wot + Bt sin wpt. Substitution into the given ODE and
comparing the coefficients results in A =0 and B = 1/2wy. Hence the general
solution is y(t) = ¢ cos wot + casin wot + tsin wot/(2wp ).

14. The characteristic equation for the homogeneous problem is r> —r —2=20,
with roots 7 = —1, 2. Hence y.(t) = cie* + cp €. Based on the form of the right
hand side, that is, cosh(2t) = (%' + e72!)/2, set Y = At €*' + Be~2!. Substitution
into the given ODE and comparing the coefficients results in A = 1/6 and B = 1/8.
Hence the general solution is y(t) = cie ™" + co e®® +te?' /6 + e721/8.

16. The characteristic equation for the homogeneous problem is r2 4+ 4 = 0, with
roots r = 4 2i. Hence y.(t) = c; cos 2t + cosin 2t. Set Y; = A + Bt + Ct?. Com-
paring the coefficients of the respective terms, we find that A= —-1/8, B=0,
C =1/4. Now set Yo = De!, and obtain D = 3/5. Hence the general solution is
y(t) = c1 cos 2t + cosin 2t — 1/8 + 12 /4 + 3 €' /5. Invoking the initial conditions, we
require that 19/40 + ¢; = 0 and 3/5 + 2¢; = 2. Hence ¢; = —19/40 and ¢ = 7/10.

17. The characteristic equation for the homogeneous problem is 7?2 —2r +1 =10,
with a double root r = 1. Hence y.(t) = c1e’ + cate’. Consider ¢ (t) = te’. Note
that g; is a solution of the homogeneous problem. Set Y; = At%e! + Bt3e! (the first
term is not sufficient for a match). Upon substitution, we obtain Y; = t3¢!/6. By
inspection, Ya = 4. Hence the general solution is y(t) = cie! + cot et + t3e! /6 + 4.
Invoking the initial conditions, we require that ¢; +4 =1 and ¢; +c¢; = 1. Hence
cp=—-3and ¢y =4.

19. The characteristic equation for the homogeneous problem is r2 4+ 4 = 0, with
roots r = £2i. Hence y.(t) = ¢1cos 2t + cosin 2¢. Since the function sin 2t is
a solution of the homogeneous problem, set Y = At cos 2t + Bt sin 2¢t. Upon
substitution, we obtain Y = —3t cos 2t /4. Hence the general solution is y(t) =
1 o8 2t + ¢ sin 2t — 3t cos 2t /4. Invoking the initial conditions, we require that
¢y =2 and 2¢y — (3/4) = —1. Hence ¢; = 2 and ¢y = —1/8.

20. The characteristic equation for the homogeneous problem is 72 +2r 4+ 5 =
0, with complex roots r= —14 2i. Hence y.(t) = cie ! cos 2t + cae™tsin 2¢.
Based on the form of g(t), set Y = Ate™'cos 2t + Bte 'sin 2t. After compar-
ing coefficients, we obtain Y =te tsin 2¢t. Hence the general solution is y(t) =
cre~tcos 2t 4 cpe~tsin 2t + te~tsin 2¢. Invoking the initial conditions, we require
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that ¢y =1 and —c1 +2¢2 =0. Hence ¢; =1 and ¢ = 1/2.

22.(a) The characteristic equation for the homogeneous problem is 2 + 1 = 0, with
complex roots r =+ i. Hence y.(t) =c1cost+ cosint. Let g1(t) =t sint and
g2(t) = t. By inspection, it is easy to see that Y5(t) =¢. Based on the form of
g1(t), set Y1(t) = At cos t + Bt sin t + Ct?cos t + Dt?sin t.

(b) Substitution into the equation and comparing the coefficients results in A =0,
B=1/4,C=-1/4,and D =0. Hence Y (t) =t+tsint /4 —t?cos t /4.

23.(a) The characteristic equation for the homogeneous problem is r? — 5r + 6 = 0,
with roots r = 2, 3. Hence y.(t) = c1e?' + coe3. Consider g1 (t) = (3t +4)sin ¢,
and go(t) = et cos 2t. Based on the form of these functions on the right hand side
of the ODE, set Ya(t) = e'(A; cos 2t + Agsin 2t) and Y1 () = (B + Bat)e?!sin t +
(C1 + Cat)e? cos t.

(b) Substitution into the equation and comparing the coefficients results in

1 3 1
Y(t) = —%(et cos 2t + 3¢’ sin 2t) + itth(cos t—sint) + e2t(§ cos t — 5sin t).

25.(a) We obtain the double characteristic root 7 = 2. Hence y.(t) = c1e* + cate®’.
Consider the functions g1(t) = 2t2, go(t) = 4te?', and g3(t) =t sin 2t. The cor-
responding forms of the respective parts of the particular solution are Y;(t) =
Ao + Alt + A2t2, Yg(t) = 62t(32t2 + Bgt?)), and Yg(t) = t(01 cos 2t + CQ sin 2t) +
(D1 cos 2t + Do sin 2t).

(b) Substitution into the equation and comparing the coefficients results in

1 2 1 1
Y(t) = 1(3 + 4t +2t%) + gt?’e225 + gt cos 2t + 1—6(005 2t — sin 2t).

26.(a) The homogeneous solution is y.(t) = ¢y cos 2t + o sin 2¢. Since cos 2t and
sin 2t are both solutions of the homogeneous equation, set

Y (t) = t(Ag + At + Agt?®) cos 2t + t(Bg + Byt + Bot?)sin 2t.

(b) Substitution into the equation and comparing the coefficients results in

1 1. 1
Y(t) = (S%t — Etd ) cos 2t + E(2875 + 13t?) sin 2t.

27.(a) The homogeneous solution is y.(t) = cie™ + cate™!. None of the functions
on the right hand side are solutions of the homogenous equation. In order to include
all possible combinations of the derivatives, consider
Y (t) = et (Ag + Art + Ast?) cos 2t + ' (By + Byt + Byt?)sin 2t +
+ e YOy cos t + Cysin t) + De.
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(b) Substitution into the differential equation and comparing the coefficients results
in
Y (t) = et (Ag + Art + Ast?) cos 2t + €' (By + Byt + Byt?)sin 2t
3 3
+ e*t(—ﬁ cos t + 3 sin t) + 2¢'/3,

in which Ay = —4105/35152, Ay = 73/676, Ay = —5/52, By = —1233/35152, By =
10/169, By = 1/52.

28.(a) The homogeneous solution is y.(t) = cie” ' cos 2t + coe " sin 2t. None of the
terms on the right hand side are solutions of the homogenous equation. In order to
include the appropriate combinations of derivatives, consider
Y (t) = e ' (At 4 Agt?) cos 2t + e~ ! (Bt + Bot?)sin 2t +
+ e 2(Cy + C1t) cos 2t + e~ (Dy + Dyt) sin 2t.

(b) Substitution into the differential equation and comparing the coefficients results
in
Y(t) = ite_t cos 2t + §t2€_t sin 2t
16 8
Lo Lo .
55¢ (74 10t) cos 2t + T (14 5t)sin 2¢.

30. The homogeneous solution is y.(t) = ¢1 cos A\t 4 ¢o sin At. Since the differential
operator does not contain a first derivative (and A # mm), we can set

N
Y(t) = Z Cyn sin mmt .
m=1
Substitution into the differential equation yields

N N N
— Z m2w2C,, sin mnt + \2 Z C,, sin mmt = Z Ay, Sin mat .

m=1 m=1 m=1

Equating coefficients of the individual terms, we obtain

m —1.2...N.

O =N g M

32. The homogeneous solution is y.(t) = cie™ ! cos 2t + coe™'sin 2¢. The input
function is independent of the homogeneous solutions, on any interval. Since the
right hand side is piecewise constant, it follows by inspection that

15, o<t<m/2
Y= { 0, t>m/2 '
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For 0 <t < /2, the general solution is y(t) = cie™tcos 2t + coe”tsin 2t +1/5.
Invoking the initial conditions y(0) = y’(0) =0, we require that ¢; = —1/5, and
that ¢ = —1/10. Hence
y(t) = 1 i(?e*t cos 2t + e "sin 2t)
5 10

on the interval 0 < ¢ < /2. We now have the values y(7/2) = (1 +e~™/2)/5, and
y'(m/2) =0. For t > 7/2, the general solution is y(t) = d1e~" cos 2t + dge™ ' sin 2t.
It follows that y(7m/2) = —e~™/2d; and y'(7/2) = e~™/2d; — 2e~7"/2dy . Since the
solution is continuously differentiable, we require that —e~"/2d; = (1 +e~7"/2)/5
and e~ "/2d; — 2e=™/2dy = 0. Solving for the coefficients, d; = 2dy = — (™% +1)/5.

0.25

0.8 -

0.6 -

0.4 +

0.2 -

. : ~0.05 -

34. Since a,b,c > 0, the roots of the characteristic equation have negative real
parts. That is, r = a == B¢, where o < 0. Hence the homogeneous solution is

Ye(t) = c1e* cos Bt + coe® sin Bt .
If g(t) = d, then the general solution is
y(t) = d/c + cre™ cos Bt + cae* sin Bt.

Since a < 0, y(t) — d/c ast — oo. If ¢ =0, then the characteristic roots are
r=0andr = —b/a. The ODE becomes ay” + by’ = d. Integrating both sides, we
find that ay’ + by = dt + ¢;. The general solution can be expressed as

y(t) = dt/b+ 1 + coe

In this case, the solution grows without bound. If b = 0, also, then the differential
equation can be written as y” = d/a, which has general solution y(t) = dt?/2a +
c1 4 c¢o . Hence the assertion is true only if the coefficients are positive.

35.(a) Since D is a linear operator, D%y + bDy + cy = Dy — (r1 + r2) Dy + riray =
D2y —roDy — 11Dy + rimoy = D(Dy — roy) — r1(Dy — roy) = (D — r1)(D — 1r2)y.

(b) Let w= (D —r3)y. Then the ODE (i) can be written as (D —ri)u = g(t),
that is, u’ — ryu = g(t). The latter is a linear first order equation in w. Its general
solution is

t
u(t) = e”t/ e " Tg(T)dr 4 cre™t .

to
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o

From above, we have y’ —roy = u(t). This equation is also a first order ODE.
Hence the general solution of the original second order equation is

t
y(t) = e”t/ e "2Tu(T)dT + coe™t .

to

Note that the solution y(t) contains two arbitrary constants.

37. Note that (2D? +3D + 1)y = (2D + 1)(D + 1)y. Let u = (D + 1)y, and solve
the ODE 2u’+ u = t? 4+ 3sin t. This equation is a linear first order ODE, with
solution

¢
3
u(t) = e_t/2/ e7/? {72/2—&— isin 7':| dr +ce V% =

to
6 3
:t2—4t+8—gcost+gsint+ce*t/2.

Now consider the ODE y’ 4+ y = u(t). The general solution of this first order ODE
is ,
y(t) = e_t/ eTu(r)dr + cae™",

to

in which wu(¢) is given above. Substituting for w(¢) and performing the integration,

9 3
y(t) =t* — 6t + 14 — 10 8 t— 10 sin t 4 cre”t? 4 cpet.

38. We have (D? +2D + 1)y = (D + 1)(D + 1)y. Let u = (D + 1)y, and consider
the ODE u’ + u = 2e~*. The general solution is u(t) = 2t e~* 4+ ce~'. We therefore
have the first order equation u’ +u = 2te~* + cie~!. The general solution of the
latter differential equation is

t
y(t) = e_t/ 27 +e1]dr + coe”t = e (# + 1t + c2).
to

39. We have (D? 4+ 2D)y = D(D + 2)y. Let u = (D + 2)y, and consider the equa-
tion u’ =3+ 4sin 2¢. Direct integration results in u(t) = 3¢ — 2cos 2t + ¢. The
problem is reduced to solving the ODE y’ + 2y = 3t — 2cos 2t + c¢. The general
solution of this first order differential equation is

t
y(t) = e_Qt/ e*7 [37 — 2cos 27 + ¢]dT + cpe % =
to

3,1
= §t - §(cos 2t + sin 2t) + ¢1 + cpe 2.

1. The solution of the homogeneous equation is y.(t) = c1e* + cpe3t. The functions
y1(t) = €?* and yo(t) = €3 form a fundamental set of solutions. The Wronskian
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of these functions is W (y1,92) = €5, Using the method of variation of parameters,
the particular solution is given by Y (¢) = uq(¢) y1(t) + u2(t) y2(t), in which

o3t (9t o2t (9t
up(t) = — Vé?t) ) dt =2e " and wus(t) = Vé?t) ) dt = —e 2,

Hence the particular solution is Y'(t) = 2et — ef = €.

3. The solution of the homogeneous equation is y.(t) = cie™t + cate™t. The func-
tions y1(t) = et and ys(t) = te~! form a fundamental set of solutions. The Wron-
skian of these functions is W (y1,y2) = e~ 2. Using the method of variation of
parameters, the particular solution is given by Y (¢) = uq(¢) y1(t) + u2(¢) y2(t), in
which

te~t(3e7t)

WD dt = —3t%/2 and wus(t) =

Ul(t) = —
Hence the particular solution is Y (t) = —3t%e~!/2 + 3t%e~! = 3t2e!/2.

4. The functions y; (t) = e'/? and y(t) = tet/? form a fundamental set of solutions.
The Wronskian of these functions is W (y;,y2) = e!. First write the equation in
standard form, so that g(t) = 4e*/2. Using the method of variation of parameters,

the particular solution is given by Y () = uq(¢) y1 (t) + ua(t) y2(¢), in which

tet/2(4et/2) et/2(4et/2)

W W) dt = 4t.

up (t) = — dt = —2t*> and ug(t) = /

Hence the particular solution is Y () = —2t2et/? + 4t2et/? = 2t2¢t/2

6. The solution of the homogeneous equation is y.(t) = ¢ cos 3t + cosin 3t. The
two functions y;(t) = cos 3t and ys(t) = sin 3t form a fundamental set of solu-
tions, with W (y1,y2) = 3. The particular solution is given by Y'(¢) = uy(t) y1(¢) +
uz(t) y2(t), in which

: 2
ui(t) = — / o see 20 3t$(st§c 3) dt = —csc 3t

3t(9 sec? 3t
us(t) = / Cosévéic)dt = In(sec 3t + tan 3t),

since 0 < ¢t < 7/6. Hence Y () = —1 + (sin 3t) In(sec 3t + tan 3t). The general so-
lution is given by

y(t) = c1 cos 3t + cosin 3t + (sin 3¢) In(sec 3t + tan 3t) — 1.

7. The functions y;(t) = e=2* and ys(t) = te 2! form a fundamental set of so-
lutions. The Wronskian of these functions is W (y,y2) = e~#. The particular
solution is given by Y (t) = u1(t) y1(¢) + ua(t) y2(¢), in which

ul(t):—/te_é;;t)e_)dt:—lnt and Ug(t):/e_s;/_(t(;_)dt:—l/t.
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Hence the particular solution is Y (t) = —e~2!In t — e~2!. Since the second term is
a solution of the homogeneous equation, the general solution is given by

y(t) = cre ™ + cote ™2t — e In t.

8. The solution of the homogeneous equation is y.(t) = ¢; cos 2t + co sin 2¢t. The
two functions y;(t) = cos 2t and yo(t) = sin 2¢ form a fundamental set of solu-
tions, with W (y1,y2) = 2. The particular solution is given by Y (¢) = uy (¢) y1(¢) +
us(t) y2(t), in which

i () = — / sin 2¢(3 csc 2t) dt = —31/2

W (t)
us(t) = /Wdt = zln(sin 2t),

since 0 < t < /2. Hence Y (t) = —(3/2)t cos 2t + (3/4)(sin 2t) In(sin 2¢). The gen-
eral solution is given by

3 3
y(t) = ¢1 cos 2t + o sin 2t — itcos 2t + z(sin 2t) In(sin 2t).

9. The functions y; (t) = cos (t/2) and y»(t) = sin(¢/2) form a fundamental set of
solutions. The Wronskian of these functions is W(y1,y2) = 1/2. First write the
ODE in standard form, so that g(t) = sec(¢/2)/2. The particular solution is given
by Y'(t) = u1(t) y1(t) + u2(t) y2(t), in which

wn(t) = — / cos (t/;%/[?‘z;(t/ 2l gt = 2 n(eos (t/2))

sin(t/2) [sec(t/2)]
t) = dt =1.
UQ( ) / QW(t)
The particular solution is Y (¢) = 2cos(t/2) In(cos (t/2)) + ¢ sin(¢/2). The general
solution is given by

y(t) = c1cos (t/2) + casin(t/2) + 2 cos(t/2) In(cos (t/2)) + ¢ sin(¢/2).

10. The solution of the homogeneous equation is y.(t) = ciet + cotel. The functions
y1(t) = e’ and yo(t) = te' form a fundamental set of solutions, with W (y1,y2) =
e?!. The particular solution is given by Y (t) = uy (t) y1(t) + ua(t) y2(t), in which

ui(t) = —/mdt = —%ma +12)

B et(et) B
us(t) = /mdt = arctan t.

The particular solution is Y (t) = —(1/2)e! In(1 + t2) + te* arctan(t). Hence the
general solution is given by

1
y(t) = cre’ + cote’ — get In(1 4 %) + te’ arctan(t).
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12. The functions y; (t) = cos 2t and y»(t) = sin 2t form a fundamental set of solu-
tions, with W (y1,y2) = 2. The particular solution is given by Y (¢) = uy (t) y1(¢) +
ua(t) y2(t), in which

I I
ui(t) = —7/ g(s) sin 2sds and  wug(t) = 7/ g(s) cos 2sds.

2 to 2 to
Hence the particular solution is

1 K 1 !
Y(t) = —5 cos 2t/ g(s) sin 2sds + 3 sin 275/ g(s) cos 2sds.

to tO

Note that sin 2t cos 2s — cos 2t sin 2s = sin(2t — 2s). It follows that

Y(t) = 1/ g(s)sin(2t — 2s)ds .

2 Ji,

The general solution of the differential equation is given by

1t
y(t) = c1 cos 2t + cosin 2t + 3 / g(s)sin(2t — 2s)ds.
to

13. Note first that p(t) = 0,q(t) = —2/t> and g(t) = (3t> — 1) /t>. The functions
y1(t) and yo(t) are solutions of the homogeneous equation, verified by substitution.
The Wronskian of these two functions is W(y1,y2) = —3. Using the method of
variation of parameters, the particular solution is Y () = uy(t) y1(¢) + u2(t) y2 (%),
in which

—1(942
ul(t):—/Wdt:t_2/6+lnt

us(t) /Wdt —t3/3+1/3.

Therefore Y (t) =1/6 +t>Int —t2/3+1/3.

15. Observe that g(t) = te?'. The functions y;(¢) and ya(t) are a fundamental set
of solutions. The Wronskian of these two functions is W (y;,y2) = te!. Using the
method of variation of parameters, the particular solution is Y (t) = w1 (¢) y1(¢) +
uz(t) y2(t), in which

ul(t):—/eéé.(et))dt:—e%ﬂ and ug(t):/uwg;)dt:tet.

Therefore Y (t) = —(1+1)e?!/2 +te? = —e?/2 4 te?t)2.

16. Observe that g(t) = 2(1 — t) e~t. Direct substitution of y;(t) = ! and y2(t) = ¢
verifies that they are solutions of the homogeneous equation. The Wronskian of the
two solutions is W (y1,y2) = (1 — t) e!. Using the method of variation of parameters,
the particular solution is Y (t) = uq (¢) y1(t) + w2 (t) y2(t), in which

ur(t) = — / wlm;(i))e_dt =te ? fe7%)/2
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21— 1) »
Mt):/ = 2

Therefore Y (t) =te ™t +e t/2 —2te ™t = —te™t + e71/2.
17. Note that g(z) = In z. The functions y; (z) = 22 and y2(x) = 22 In z are solu-
tions of the homogeneous equation, as verified by substitution. The Wronskian of

the solutions is W (y1,y2) = #3. Using the method of variation of parameters, the
particular solution is Y (z) = ui(z) y1(x) + ua(z) y2(z), in which

2?In x(ln )

up(z) = — W) dr = —(In z)%/3
us(z) = de = (In 2)?/2.

Therefore Y (z) = —2%(In 2)3/3 + 22(In 2)3/2 = 2%(In 2)3/6.

19. First write the equation in standard form. Note that the forcing function
becomes g(z)/(1 — x). The functions y;(x) = ¢* and y(x) = x are a fundamental
set of solutions, as verified by substitution. The Wronskian of thesolutions is
W (y1,y2) = (1 — z)e*. Using the method of variation of parameters, the particular
solution is Y (z) = u1 () y1(x) + uz(z) y2(x), in which

) S
“mﬁuﬁmﬁ d w) = [ GEE

0

Therefore

Y(x)__emLIWdT+ijWdT_

, =W () a-nW )
_ [ (we” —efr)g(r)
i s

20. First write the equation in standard form. The forcing function becomes

g(x)/x?. The functions y;(z) = 2~ /?sin z and yy(z) = z~'/?cos = are a fun-

damental set of solutions. The Wronskian of thesolutions is W(y1,y2) = —1/z.

Using the method of variation of parameters, the particular solution is Y (z) =

u1(z) y1(x) + uz(z) y2(x), in which
up(z) = / S TNT)) (g(T))dT and  wug(x) = —/ SmTART)) (g(T))dT.

xo T\//]T x
Therefore

_sinz [TcosT (g(T))dt _cosx ["sin T(Q(T))d

TVE L v T Ly

1 [sumnel),
‘ﬁA A

21. Let y1(¢) and y2(t) be a fundamental set of solutions, and W (t) = W (y1,y2) be
the corresponding Wronskian. Any solution, u(¢), of the homogeneous equation is

Y (z) T
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a linear combination u(t) = a1y1(t) + aay2(t). Invoking the initial conditions, we
require that
Yo = a1 y1(to) + a2 y2(to)
!/ !/ /
Yo = a1y (to) + azys(to)

Note that this system of equations has a unique solution, since W (tp) # 0. Now
consider the nonhomogeneous problem, L [v] = ¢(¢), with homogeneous initial con-
ditions. Using the method of variation of parameters, the particular solution is
given by

R e s

The general solution of the IVP (iii) is

v(t) = Bryr(t) + Baya(t) + Y (t) = Brya (t) + Baya(t) + y1(t)ui (t) + ya(t)ua(t)

in which u; and us are defined above. Invoking the initial conditions, we require
that

0 = B1y1(to) + Baya(to) + Y (to)
0 = B1y; (to) + Bays(to) + Y ' (to)

Based on the definition of u; and us, Y (t9) = 0. Furthermore, since yju{ + yous =
0, it follows that Y /(¢p) = 0. Hence the only solution of the above system of equa-
tions is the trivial solution. Therefore v(t) =Y (t). Now consider the function
y=u+wv. Then L[y] = L{u+v] = L[u]+ L[v] = g(t). That is, y(t) is a solution
of the nonhomogeneous problem. Further, y(tg) = u(to) + v(to) = yo, and simi-
larly, y'(to) = y§. By the uniqueness theorems, y(t) is the unique solution of the
initial value problem.

23.(a) A fundamental set of solutions is y;(t) = cos t and y2(t) = sin t. The Wron-
skian W (¢t) = y1y4 — y{y2 = 1. By the result in Problem 22,

_[*cos(s) sin(t) — cos(t) sin(s)
Vo - | e

g(s)ds

0

= / [cos(s) sin(t) — cos(t) sin(s)] g(s)ds.

to

Finally, we have cos(s) sin(t) — cos(t) sin(s) = sin(t — s).

(b) Using Problem 21 and part (a), the solution is
¢
y(t) = yo cost + y,sint + / sin(t — s)g(s)ds .
0

24. A fundamental set of solutions is y;(t) = €% and ya(t) = €’ . The Wronskian
W (t) = y1ys — y{ye = (b — a)el@t?t By the result in Problem 22,

t _as bt at ,bs t _as bt at ,bs
e®®e’ — e*e 1 e®®e’ —ee
= _— = .
Y (t) /to W) g(s)ds P /to aib)s g(s)ds
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Hence the particular solution is

¢
Y(t) = L eP=9) _ ealt=9) | 4(s5)ds
b—a g ’

to

26. A fundamental set of solutions is y;(t) = e and ys(t) = te® . The Wronskian
W (t) = y19y4 — y{y2 = €2**. By the result in Problem 22,

t as+at at+as t as+at
te —se (t—s)e
Y(t)= ds = - ds .
( ) /t (S) g(S) i ~/to 62(13 g(S) i

0

Hence the particular solution is

Y(t) = / (t — 5)e = g(s)ds .

to

27. The form of the kernel depends on the characteristic roots. If the roots are real

and distinct,
b(t—s) _ ,a(t—s)
e e
Kt—-s)=———
(t—s) —
If the roots are real and identical,
K(t—s)=(t—s)e*™%)

If the roots are complex conjugates,

A(t—s)

e sin p(t — s)

I

K(t—s)=

28. Let y(t) = v(t)y1(t), in which y; () is a solution of the homogeneous equation.
Substitution into the given ODE results in

v"y1 +20"y{ + vyl +p(t) [y +vyi] +at)oyr = g(t) -
By assumption, y{" + p(t)y1 + q(¢)y1 = 0, hence v(t) must be a solution of the ODE
vy 4 [2y{ + p(tya]o" = g(t) .

Setting w = v’, we also have w’'y; + [2y{ + p(t)y1] w = g(¢) .

30. First write the equation as y” 4+ 7t 'y + 5t~ 2y =¢t~!. As shown in Problem
28, the function y(t) =t 1v(t) is a solution of the given ODE as long as v is a
solution of

o [P T =
that is, v + 5t~' v’ = 1. This ODE is linear and first order in v’. The integrating

factor is = t°. The solution is v/ = /6 + ct~>. Direct integration now results in
v(t) =t2/12+ 1t + co. Hence y(t) = t/12 + c1t75 + et ™1,

31. Write the equation as y” —t~}(1 +t)y + ¢t~y =te*. As shown in Problem
28, the function y(t) = (1 +t)v(t) is a solution of the given ODE as long as v is a
solution of

(I+t)v"+ 2=t (1+t)*] v =te*,
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that is,
"o 1+ t v = t 6215
t(t+ 1) t+1

This equation is first order linear in v/, with integrating factor u = t=1(1 +t)%e~t.
The solution is v/ = (t2e%! + cite?) /(1 +t)2. Integrating, we obtain v(t) = e%!/2 —
e?/(t+1) + cret/(t + 1) + co. Hence the solution of the original ODE is y(t) =
(t—1)e? /2 +crel + ca(t+1).

32. Write the equation as y” + (1 — )7y — (1 —¢)~ty = 2(1 — t) e~t. The func-
tion y(t) = e'v(t) is a solution to the given ODE as long as v is a solution of

e + 2" +t(1—t) e v =2(1—t)e ",

that is, v +[(2—1)/(1 —t)]v’ = 2(1 — t) e~ 2!, This equation is first order linear
in v/, with integrating factor p = e*/(t — 1). The solution is

v =(t—=1)(2e7% 4 cre?).

Integrating, we obtain v(t) = (1/2 —t)e™2! — cite™! + co. Hence the solution of
the original ODE is y(t) = (1/2 — t)e™t — 1t + caet.

1. Rcos 6 =3 and Rsin § =4, so R = /25 =5 and § = arctan(4/3). We obtain
that v =5 cos(2t — arctan(4/3)).

3. Rcosd =4 and Rsin § = —2, so R = /20 = 2v/5 and § = —arctan(1/2). We
obtain that u = 21/5 cos(3t 4 arctan(1/2)).

4. Rcos 6 = —2and Rsin § = —3,s0 R = v/13 and § = 7 + arctan(3/2). We obtain
that u = V13 cos(nt — m — arctan(3/2)).

5. The spring constant is k = 2/(1/2) = 4 1b/ft. Mass m = 2/32 = 1/16 1b-s?/ft.
Since there is no damping, the equation of motion is u” /16 + 4u = 0, that is, u” +
64u = 0. The initial conditions are w(0) =1/4 ft, v/(0) =0 ft/s. The general
solution is wu(t) = A cos 8t + B sin 8t. Invoking the initial conditions, we have
u(t) =cos 8 /4. R=1/4ft, § =0 rad, wg =8 rad/s, and T'=7/4 s.

7. The spring constant is k = 3/(1/4) = 12 Ib/ft. Mass m = 3/32 Ib-s?/ft. Since
there is no damping, the equation of motion is 3u” /32 + 12u = 0, that is, u” +
128u = 0. The initial conditions are w(0) = —1/12 ft, u/(0) = 2 ft/s. The general
solution is u(t) = A cos 82t + B sin 8/2t. Invoking the initial conditions, we
have

1 1
u(t) = —— cos 8V2t + —— sin 8V/2¢.
Q 12 42

R = /11/288 ft, § = m — arctan(3/v/2) rad, wy = 8v/2 rad/s, T = 7/(4v/2) s.
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10. The spring constant is k = 16/(1/4) = 64 1b/ft. Mass m = 1/2 1b-s?/ft. The
damping coefficient is v = 2 Ib-s/ft . Hence the equation of motion is " /2 + 2u’ +
64u = 0, that is, u” +4u’+128u =0. The initial conditions are u(0) =0 ft,
u'(0) = 1/4 ft/s. The general solution is u(t) = A cos 2v/31t + B sin 2¢/31¢. In-
voking the initial conditions, we have

u(t) = e % sin 2V/31¢.

0.015 o
0.010 o

0.005

o
1 0.' f s )

-0.005 o

-0.010 4

Solving u(t) =0, on the interval [0.2, 0.4], we obtain ¢ = m/2v/31 = 0.2821 s.
Based on the graph, and the solutlon of u(t ) = —0.01/12 ft, we have |u(t)] < 0.01
for t > 7 =1.5927.

11. The spring constant is £k =3/(.1) =30 N/m. The damping coefficient is
given as v =3/5 N-s/m. Hence the equation of motion is 2u” + 3u’/5 + 30u =
0, that is, u” +0.3u’ 4+ 15u = 0. The initial conditions are «(0) = 0.05 m and
u’(0) = 0.01 m/s. The general solution is u(t) = A cos ut + B sin ut, in which p =
3.87008 rad/s. Invoking the initial conditions, we have u(t) = e~%15(0.05 cos ut +
0.00452sin put). Also, u/wo = 3.87008/+/15 ~ 0.99925 .

13. The frequency of the undamped motion is wy = 1. The quasi frequency of the
damped motion is p = /4 —~2 /2. Setting p = 2w /3, we obtain v = 2v/5 /3.

14. The spring constant is k = mg/L. The equation of motion for an undamped
system is mu” + mgu/L = 0. Hence the natural frequency of the system is wg =

v/g/L. The period is T = 27 /wy .

15. The general solution of the system is u(t) = A cos y(t — tg) + B sin v(t — to) .
Invoking the initial conditions, we have wu(t) = ugcosy(t — to) + (wf/v)siny(t —
to). Clearly, the functions v = ug cosy(t — to) and w = (u/7v)sin~y(t — to) satisfy
the given criteria.

16. Note that r sin(wot — 8) = r sinwot cos § — r coswyt sinf. Comparing the
given expressions, we have A = —rsin and B=rcosf. That is, r=R=
VA2 + B?, and tan 6 = —A/B = —1/tan §. The latter relation is also tan 6 +
cotd=1.

18. The system is critically damped, when R =2,/L/C . Here R = 1000 ohms.
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21.(a) Let u = Re™7*/?™ cos(ut — §). Then attains a maximum when ut, —J§ =
2kn. Hence Ty = tgy1 —ti, =27/ 1.

(0) (1)) = =7/ e s/ 2 (s /20, Hence ) i) =
er(2m/u)/2m _ oy Ta/2m

(¢) A =Infu(t)/u(ty1)] = y(27/p)/2m = 7y /pm .
22. The spring constant is k = 16/(1/4) = 64 Ib/ft. Mass m = 1/2 Ib-s?/ft. The

damping coefficient is v =2 lb-s/ft. The quasi frequency is u =231 rad/s.
Hence A = 27 /v/31 ~ 1.1285.

25.(a) The solution of the IVP is u(t) = e~*/8(2 cos 3v/7t/8 4 (21/7/21) sin 3v/7t/8).

2 o

Using the plot, and numerical analysis, 7 ~ 41.715.
(b) For v =0.5, 7 &~ 20.402; for v = 1.0, 7 =~ 9.168; for y = 1.5, 7 ~ 7.184.
(c)

30 H

20 1 he

(d) For y =16, 7~ 7.218; for y =17, 7 = 6.767; for v =18, 7 ~ 5.473; for
v=1.9, 7 = 6.460. 7 steadily decreases to about 7,,;, ~ 4.873, corresponding to
the critical value vo =~ 1.73.

(e) We can rewrite the solution as u(t) = Re~7%/2 cos(ut — §), where R = 4//4 — ~2.
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Neglecting the cosine factor, we can approximate 7 by solving Re 77/2 =1 /100,
thus finding

2 2 400
7~ —In(l100R) = —-In| — | .
g ( ) gl <\/4 - 72>
For v = 0.25, 7 = 42.4495; for v = 0.5, 7 =~ 21.3223; for v = 1.0, 7 ~ 10.8843; for

v =15, 7 ~ 7.61554; for v = 1.6, 7 ~ 7.26143; for v = 1.7, 7 ~ 6.98739; for v = 1.8,
T 2 6.80965; for v = 1.9, T ~ 6.80239.

26.(a) The characteristic equation is mr? +~yr + k = 0. Since 42 < 4km , the roots
are ri 9 = (—y £ iy/4mk — 42)/2m. The general solution is

dmk — 2 dmk — ~?
R !
m m

u(t) = e t/2m

Invoking the initial conditions, A = ug and B = (2muvg — yug)/+/4mk — 2.

(b) We can write u(t) = Re~"/?" cos(ut — §) , in which

_ 2 _
. \/ug L Cm—wp l@mvowl |

dmk — ugy/4dmk — 2

ay)

I
=

+

(2muvo — yuo)? 5 m(kud 4+ yuovo + mv3) a+ by
dmk —~2 dmk — 2 N\ Amk — 427

It is evident that R increases (monotonically) without bound as v — (2vmk)~ .

28.(a) The general solution is u(t) = Acos v/2t + Bsin v/2t. Invoking the initial
conditions, we have u(t) = v/2 sin v/2 t.

(b)
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The condition »'(0) = 2 implies that u(t) initially increases. Hence the phase point
travels clockwise.

31. Based on Newton’s second law, with the positive direction to the right, > F =
mu”, where Y F = —ku —~u’. Hence the equation of motion is mu” 4+ ~yu' +
ku=0. The only difference in this problem is that the equilibrium position is
located at the unstretched configuration of the spring.

32.(a) The restoring force exerted by the spring is Fiy = —(ku + eu?). The oppos-
ing viscous force is F; = —yu’. Based on Newton’s second law, with the pos-
itive direction to the right, Fs 4+ Fy = mu’. Hence the equation of motion is

mu’ +yu' + ku+eud =0.

(b) With the specified parameter values, the equation of motion is u” +u =0.
The general solution of this ODE is u(t) = A cos t + B sin t. Invoking the initial
conditions, the specific solution is u(t) =sin t. Clearly, the amplitude is R =1,
and the period of the motion is T' = 27 .

(c) Given € = 0.1, the equation of motion is u” +u + 0.1u®> = 0. A solution of the
IVP can be generated numerically. We estimate A = 0.98 and 7' = 6.07.

e=0.1
0.8
0.6
0.4

0.2 4

0.2
-0.4
-0.6

~0.8 -
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w
o

(d) For e=0.2, A=0.96 and T = 5.90. For e = 0.3, A = 0.94 and T = 5.74.

£=02 £=03

0.8 - 0.8
0.6 o 0.6 4
u
0.4 - 0.4
0.2 0.2
o ] o
2 4 6 8 10 12 2 4 8 10 12
t t
-0.2 4 -0.2
-0.4 - -0.4
-0.6 - -0.6 1
~0.8 4 -0.8 -

(e) The amplitude and period both seem to decrease.

(f) For e = —0.1, A=1.03 and T'=6.55. For e =—0.2, A=1.06 and T = 6.90.
For e = —0.3, A=1.11 and T = 7.41. The amplitude and period both seem to
increase.

2. We have sin(a+ ) = sin « cos 8 £ cos « sin 5. Subtracting the two identities,
we obtain sin(a + ) —sin(a — ) =2 cos a sin 8. Setting o+ =7t and a —
B = 6t, we get that o = 6.5t and S = 0.5t. This implies that sin 7t — sin 6t =
2 sin (t/2) cos (13t/2).

3. Consider the trigonometric identities cos(a 4 ) = cos « cos 8 F sin « sin S.
Adding the two identities, we get cos(a — ) + cos(a+ ) = 2 cos a cos B. Com-
paring the expressions, set « + 8 = 27t and a — 8 = wt. This means a = 37t/2 and
B = wt/2. Upon substitution, we have cos(wt) + cos(2nt) = 2 cos(3nt/2) cos(nt/2).

4. Adding the two identities sin(a = ) =sin « cos 8 %+ cos a sin 3, it follows
that sin(a — 8) +sin(a + ) = 2sin « cos . Setting a + =4t and o — § = 3t,
we have a = 7t/2 and 8 = t/2. Hence sin 3t + sin 4t = 2 sin(7¢/2) cos(t/2) .
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6. Using MKS units, the spring constant is k = 5(9.8)/0.1 =490 N/m, and the
damping coefficient is v = 2/0.04 = 50 N-s/m. The equation of motion is

5u” 4+ 50u” + 490u = 10 sin(t/2) .
The initial conditions are ©(0) =0 m and «’(0) = 0.03 m/s.

8.(a) The homogeneous solution is u.(t) = Ae =% cos /73t + Be 5t sin /73t . Based
on the method of undetermined coefficients, the particular solution is

1

U) = {53081

Hence the general solution of the ODE is u(t) = u.(t) + U(¢). Invoking the initial
conditions, we find that

[—160 cos(t/2) + 3128 sin(t/2)].

A =160/153281 and B = 38344373 /1118951300 .

Hence the response is

383443y/73
)= |160e 5t cos VT3t + o OV IP =Sty VT3t| + U(L).
ult) = 5gagy |160€ T cos TR0 ¢ +U®

(b) wc(t) is the transient part and U(t) is the steady state part of the response.

()

0.02 o

0.01

-0.01

-0.02 4

(d) The amplitude of the forced response is given by R = 2/A, in which

A = 1/25(98 — w?)2 + 2500 w? .

The maximum amplitude is attained when A is a minimum. Hence the amplitude
is maximum at w = 4v/3 rad/s.

9. The spring constant is k = 12 1b/ft and hence the equation of motion is

6
3—2u” +12u =4 cos Tt,
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that is, u” + 64u = (64/3) cos 7¢t. The initial conditions are u(0) =0 ft, v/(0) =
0 ft/s. The general solution is wu(t) = Acos 8¢ + Bsin 8¢ + (64/45) cos 7t. In-
voking the initial conditions, we have wu(t) = —(64/45) cos 8t + (64/45) cos Tt =
(128/45) sin(t/2) sin(15t/2) .

12. The equation of motion is 2u” + u’ 4+ 3u = 3 cos 3t — 2sin 3t. Since the system
is damped, the steady state response is equal to the particular solution. Using
the method of undetermined coefficients, we obtain us4(t) = (sin 3t — cos 3t)/6.
Further, we find that R = /2 /6 and § = arctan(—1) = 37/4. Hence we can write
uss(t) = (V2 /6) cos(3t — 31 /4).

13.(a,b) Plug in u(t) = Rcos(wt — ¢) into the equation mu” + yu' 4+ ku = Fy cos wt,
then use trigonometric identities and compare the coefficients of coswt and sinwt.
The result follows.

(c) The amplitude of the steady-state response is given by
Fo
- Vm2(wZ —w?)2 +42w? ’
Since Fy is constant, the amplitude is maximum when the denominator of R is
minimum. Let z = w?, and consider the function f(z) = m?(w3 — 2)? + v%2. Note

that f(2) is a quadratic, with minimum at z = w3 — v%/2m?. Hence the amplitude
R attains a maximum at w2, = wis —2/2m?. Furthermore, since wZ = k/m,

2
2 2 i
—w?l1— .
Wmaz = “0 [ 2km}

Substituting w? = w?,,, into the expression for the amplitude,

FO FO FO

R: = —_— .
VA Am? + 42 (W — ~2/2m?2) Vwiy? —a2/4m2 qwey/1 — 42 /4mk

17.(a) The steady state part of the solution U(t) = A coswt + B sin wt may be found
by substituting this expression into the differential equation and solving for A and
B. We find that

32(2 — w?) 8w
= 5 B == .
64 — 63w? 4 16w* 64 — 63w? 4 16w*
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(b) The amplitude is
8

A= .
V64 — 63w? + 16 w?

()

(d) See Problem 13. The amplitude is maximum when the denominator of A is
minimum. That is, when w = wpe, = 3v/14 /8 & 1.4031. Hence A = 64/+/127 .

18.(a) The homogeneous solution is u.(t) = Acos ¢t + Bsin ¢t. Based on the method
of undetermined coefficients, the particular solution is

U(t) cos wt .

T 1-w?
Hence the general solution of the ODE is u(t) = u.(t) + U(¢). Invoking the initial
conditions, we find that A = 3/(w? — 1) and B = 0. Hence the response is

u(t) [cos wt —cos t].

T1-u?

AR il

(a) w=10.7 (b) w=10.8 (¢) w=0.9

Note that
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19.(a) The homogeneous solution is u.(t) = Acos t + Bsin ¢. Based on the method
of undetermined coefficients, the particular solution is

U(t) cos wt .

T 1 w?
Hence the general solution is u(t) = u.(t) + U(t). Invoking the initial conditions,
we find that A = (w? +2)/(w? — 1) and B = 1. Hence the response is

1

u(t) = T2 [3 cos wt — (w2+2)cos t} +sin t.

Note that
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21.(a)

(b) Phase plot - v’ vs u :

23.(a)
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(b) Rvs w
2.59
] .
2]
1.59
p .
]
0.549 -
r T T T T T T T T
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

(¢) The amplitude for a similar system with a linear spring is given by
5
R= .
V25 — 4902 + 2504

04 | o6 0’8 1’0 12 14 1'6 1's 270
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